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A Geometric Criterion to Be Pseudo-Anosov

Richard P. Kent IV & Christopher J. Leininger

Abstract. If S is a hyperbolic surface and
◦
S the surface obtained

from S by removing a point, the mapping class groups Mod(S) and
Mod(

◦
S) fit into a short exact sequence

1 → π1(S) → Mod(
◦
S) → Mod(S) → 1.

We give a new criterion for mapping classes in the kernel to be pseudo-
Anosov using the geometry of hyperbolic 3-manifolds. Namely, we
show that if M is an ε-thick hyperbolic manifold homeomorphic
to S × R, then an element of π1(M) ∼= π1(S) represents a pseudo-
Anosov element of Mod(

◦
S) if its geodesic representative is “wide.”

We establish similar criteria where M is replaced with a coarsely hy-
perbolic surface bundle coming from a δ-hyperbolic surface–group
extension.

1. Introduction: Mapping Classes from Fibrations

If X is a surface, let Mod(X) = π0(Homeo+(X)) be its mapping class group, and
let

◦
X be the surface obtained from X by removing a point.
Surface bundles X → E → B over a space B with fiber X are determined

by homomorphisms π1(B) → Mod(X); see [21]. Thurston’s geometrization the-
orem for fibered 3-manifolds opens the door to an investigation of the geometric
behavior of such surface bundles. For instance, there are necessary and sufficient
geometric conditions on π1(B) → Mod(X) that guarantee that π1(E) is word-
hyperbolic; see [9; 10]. To verify these conditions, one is often faced with the
problem of determining when a subgroup G < Mod(X) is purely pseudo-Anosov,
a problem we take up here.

To describe our first result, let N be a closed hyperbolic 3-manifold that fibers
over the circle with fiber a surface S, and let NZ → N be the corresponding infi-
nite cyclic covering of N . The long exact sequence of the fibration is concentrated
in a short exact sequence

1 π1(S) π1(N) Z 1, (1.1)

which injects into the Birman exact sequence [4]

1 π1(S) Mod(
◦
S) Mod(S) 1.
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Choosing a lift t of the generator of Z to π1(N), any element of π1(N) may
be written uniquely as a product gtk , where g is an element of π1(S). When k

is nonzero, this element represents a pseudo-Anosov mapping class in Mod(
◦
S).

When k is zero, this element lies in π1(S), and, by a theorem of Kra [15] (see also
[14]), it is pseudo-Anosov in Mod(

◦
S) if and only if it fills S. These observations

were first made by Agol [2].

Criterion 1 (Agol’s criterion). A subgroup H of π1(N) is a purely pseudo-
Anosov subgroup of Mod(

◦
S) if and only if every nontrivial element of H ∩ π1(S)

fills S.

This topological criterion is very difficult to check. Our main theorem is a geo-
metric criterion for an element of π1(NZ) to be filling.

Theorem 5. Let S be a closed oriented surface of Euler characteristic χ =
χ(S) < 0, and let ε and K be positive numbers. There is a W = W(χ, ε,K) > 0
such that the following holds. Equip M = S×R with any ε-thick hyperbolic struc-
ture, and let � : M → R be a K-Lipschitz submersion. If Y is a proper incom-
pressible subsurface of S and CY is the convex core of the corresponding cover of
M , then the width diam(�(CY )) of CY is at most W . In particular, if γ is a geodesic
loop in M such that diam(�(γ )) > W , then γ fills S.

If diam(�(γ )) > W , then we say that γ is wide. Agol’s criterion then becomes:

Criterion 2 (width criterion). A subgroup H of π1(N) is a purely pseudo-
Anosov subgroup of Mod(

◦
S) if every nontrivial element of H ∩ π1(S) is wide.

Remarks. 1. The fact that geodesic representatives in N of elements of π1(S)

realized by simple closed curves on S are not wide is fairly straightforward.
2. Filling elements need not be wide.

This criterion, and Theorem 5, arose out of the authors’ attempts to find purely
pseudo-Anosov surface subgroups of mapping class groups by exploiting the
abundance of surface subgroups of hyperbolic 3-manifold groups (see [12]).

In Section 3, we prove a generalization of Theorem 5 to the case of punctured
surfaces, Theorem 9. The authors and S. Dowdall use these theorems to prove the
following.

Theorem 3 (Dowdall–Kent–Leininger [8]). Suppose N is a finite volume hyper-
bolic 3-manifold that fibers over the circle with fiber S and G < π1(N). As a
subgroup of Mod(

◦
S), G is convex cocompact in the sense of Farb and Mosher [9]

if and only if G is finitely generated and purely pseudo-Anosov.

In particular, this answers a special case of Question 1.5 of [9] and generalizes
Theorem 6.1 of [14].

In Section 4, we generalize Theorem 5 in a different direction by replacing M

with a hyperbolic surface-group extension �.
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Theorem 11. Let

1 π1(S) � G 1
� (1.2)

be a short exact sequence with � a hyperbolic group, and equip � and G

with word metrics on finite generating sets. There is a W > 0 such that, given
any nonfilling γ in π1(S) and any γ -quasi-invariant geodesic G in �, we have
diam(�(G)) ≤ W .

Given an infinite cyclic subgroup of G, we obtain a short exact sequence

1 π1(S) �Z Z 1

that injects into (1.2), and one may be tempted to argue that Theorem 11 thus
follows quickly from Criterion 2. This attack is thwarted by the fact that �Z is
wildly metrically distorted in �.

Again, the authors and S. Dowdall apply Theorem 11 to prove the following
theorem.

Theorem 4 (Dowdall–Kent–Leininger [8]). Let

1 π1(S) � G 1

be a short exact sequence with � hyperbolic. Any quasi-convex finitely generated
purely pseudo-Anosov subgroup of � ⊂ Mod(

◦
S) is convex cocompact.

2. Criterion to Fill

If M is manifold, � : M →R is a function, and X is a subset of M , we define the
width of X with respect to � (or simply the width of X) to be diam(�(X)). If X

is a subset of any covering space of 	 : N → M , we define the width of X to be
diam(�(	(X))).

Let S be a closed orientable hyperbolic surface. A closed curve in S × R is
filling if its projection to S is filling.

If M = S ×R is equipped with a hyperbolic metric and Y is an incompressible
subsurface of S, then we let �Y be the Kleinian group corresponding to π1(Y ) ⊂
π1(M), and 	 : MY = H

3/�Y → M the corresponding cover. We let CY ⊂ MY

denote the convex core. We say that this hyperbolic structure is ε-thick if the
injectivity radius at every point is bounded below by ε.

Theorem 5. Let S be a closed oriented surface of Euler characteristic χ =
χ(S) < 0, and let ε and K be positive numbers. There is a W = W(χ, ε,K) > 0
such that the following holds. Equip M = S×R with any ε-thick hyperbolic struc-
ture, and let � : M → R be a K-Lipschitz submersion. If Y is a proper incom-
pressible subsurface of S, then the width of CY is at most W . In particular, if γ is
a geodesic loop in M such that diam(�(γ )) > W , then γ fills S.
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When M is the cover of a fibered hyperbolic 3-manifold corresponding to the
fiber, the following lemma follows from the main theorem of [24].

Lemma 6. If M = S ×R is equipped with a hyperbolic structure without parabol-
ics, and Y is a proper incompressible subsurface of S, then the group �Y is a
Schottky group (a convex cocompact free Kleinian group).

Proof. Suppose that �Y is not a Schottky group.
Since M has no cusps, and 	 is a covering, MY also has no cusps. So �Y must

be geometrically infinite.
If we let SY denote the covering of S corresponding to Y (which is homeomor-

phic to the interior of Y ), then MY
∼= SY ×R is homeomorphic to the interior of a

handlebody. By Canary’s covering theorem [6], there is a neighborhood E of the
end of MY such that 	|E is finite-to-one. Since 	 is a covering map and MY − E
is compact, we conclude that 	 is finite-to-one. But M is homotopy equivalent to
a closed surface, and �Y is free. �

Proof of Theorem 5. Let ∂Y ∗ be the geodesic representative of ∂Y in M .
The geodesic multicurve ∂Y ∗ is realized by a pleated surface F → M (see

Theorem 5.3.6 of [7]). Since M is ε-thick and F → M is a 1-Lipschitz incom-
pressible map, there is a number B = B(χ, ε) that bounds the diameter of (the
image of) F in M . Since � is K-Lipschitz, the width of F is at most KB , and
hence so is the width of ∂Y ∗.

If CY has no interior, we let ∂CY be the double DCY , considered as a map
DCY → CY → M . Note that since �Y is Schottky, ∂CY is a nonempty, compact
pleated surface.

Lemma 7. There is a number W = W(χ, ε,K) such that ∂CY has width less
than W .

Proof. Let δ be less than the minimum of ε and the two-dimensional Margulis
constant.

There is a number D = D(χ, ε) such that ∂CY lies in the D-neighborhood of
∂Y ∗. To see this, let P(δ) be the δ-thin part of ∂CY , and note that the components
of ∂CY − P(δ) have diameters bounded above by a constant E = E(χ, δ). Since
M is ε-thick, every loop in P(δ) bounds a disk in MY . Moreover, every point in
P(δ) lies in a loop of length less than δ. Such a loop bounds a disk in MY of
diameter at most δ, and since ∂Y ∗ is disk-busting, every point of P(δ) is within δ

of ∂Y ∗. But every point of ∂CY −P(δ) is within E of P(δ). Letting D = E + δ,
we have ∂CY contained in the D-neighborhood of ∂Y ∗.

Since ∂Y ∗ has width at most KB , the width of ∂CY is at most W = KB +
2KD. �

If ∂CY = CY , we are done by Lemma 7. So we assume that C◦
Y 	= ∅. The map

π : CY → M is an immersion on C◦
Y , and since � is a submersion, the composition

� ◦ π : CY → R is a submersion on C◦
Y as well. It follows that � ◦ π achieves its
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extrema on ∂CY . So the width of CY equals the width of ∂CY , which is bounded
by Lemma 7. �

3. The Cusped Case

Let S be a noncompact finite-volume hyperbolic surface with Euler characteristic
χ < 0, and let M be a hyperbolic manifold homeomorphic to S × R. Note that
when M is the infinite cyclic cover of a 3-manifold fibering over the circle, the lift
of the bundle projection is not a Lipschitz map to R. Since such projections are
natural for measuring width, we find the naive analog of Theorem 5 too restrictive.
In this section, we discuss the correct analog, where one must first project onto the
complement of a neighborhood of the cusps before taking a Lipschitz projection
to R to compute widths.

Let M = S ×R, and equip M with a type-preserving hyperbolic structure with-
out accidental parabolics. Let P ⊂ S denote a standard cusp neighborhood of the
ends, so that S0 = S − P is a compact surface with boundary, and S0 → S is a
homotopy equivalence. Let P = P ×R ⊂ M and set

M0 = M − P = S0 ×R.

We assume that the restriction of the hyperbolic metric to each component of P is
isometric to a standard cusp neighborhood

P3(r) = {(z, t) ∈ H
3 | t > r}/〈(z, t) 
→ (z + 1, t)〉

for some r satisfying arccosh(1+1/2r2) < μ3, where μ3 is the three-dimensional
Margulis constant. We often write P(r) = P when r is relevant.

Given an essential subsurface Y ⊂ S, let MY → M denote the cover corre-
sponding to Y , and CY ⊂ MY its convex core. An argument similar to the proof of
Lemma 6 shows that the Kleinian group �Y corresponding to Y is geometrically
finite without accidental parabolics. The boundary ∂CY is a locally convex pleated
surface whose cusps are carried to cusps of MY (consequently, CY is bent along
a compact geodesic lamination). Each cusp of ∂CY has a standard neighborhood
Ur isometric to

P2(r) = {(x, t) ∈H
2 | t > r}/〈(x, t) 
→ (x + 1, t)〉.

Note that there is a definite cusp neighborhood in any hyperbolic surface
that misses every compact geodesic lamination. To see this, fix a cusp neighbor-
hood and consider a sequence of leaves of compact laminations reaching deeper
and deeper into the cusp neighborhood. By compactness, these leaves must be
tangent to horocycles deeper and deeper in the cusp neighborhood. But these
horocycles are getting shorter and shorter, from which it is apparent that the
leaves must eventually have self-intersections, providing a contradiction. It fol-
lows that there is an r0 = r0(χ) such that Ur is disjoint from the pleating lo-
cus when r ≥ r0. It follows that, for r ≥ r0, our Ur is totally geodesic. We take
r ≥ max{r0, (2 cosh(μ3) − 1)−1/2}, thus ensuring that Ur is totally geodesic and
carried into P.
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Proposition 8. There is an r = r(χ) with the following property. Equip M =
S × R with a type-preserving hyperbolic metric without accidental parabolics,
and suppose that each component of P is isometric to P3(r). Let Y ⊂ S be an
essential subsurface whose corresponding cover MY → M has convex core CY .
Then each component of the intersection of CY and P is isometric to

P3(r,R) = {(z, t) ∈ H
3 | t > r and 0 ≤ Im(z) ≤ R}/〈(z, t) 
→ (z + 1, t)〉

for some R > 0.

Proof. An area argument shows that if r > 0 is sufficiently large (depending only
on χ ), any pleated surface representative of S meets P(r) only in its cusps. (To
see this, note that if a pleated surface representative of S plunges deep into P(r),
then its diameter would be large. This forces one of two alternatives: either an
essential curve on S lies in P(r), violating our accidental parabolics hypothesis,
or the pleated surface contains a large diameter disk, violating the Gauss–Bonnet
theorem.) We assume that r is at least this large, in addition to the constraints
already imposed on r .

Let Y be an essential subsurface of S. For a given r > 0, let Vr be the union
of the cusp neighborhoods Ur ⊂ ∂CY constructed above. If r > 0 is sufficiently
large, and a point of ∂CY −Vr is sufficiently deep in P(r), then area considerations
again imply that ∂CY − Vr must contain a compressible curve bounding a disk D
contained in CY and some component of P(r). (As in the area argument above, the
surface ∂CY −Vr has bounded area, and, paired with the no accidental parabolics
hypothesis, this guarantees that any essential curve in ∂CY −Vr lying in P(r) must
be nullhomotopic there. This produces the desired disk.) Since ∂Y is disk-busting
in CY , its geodesic representative ∂Y ∗ ⊂ CY must intersect D, and hence P(r).
But this means that if F → M is any pleated surface representative of S realizing
∂Y ∗, then the noncuspidal part of F must hit P(r), contradicting our choice of r .
We find that ∂CY − Vr is carried a uniformly bounded distance (depending only
on χ ) into P(r). Choosing a larger r , we assume that ∂CY hits P(r) only in the Ur .

Let PY (r) be the preimage of P(r) in MY . Suppose K is a component of CY ∩
PY (r) which is not of the form P3(r,R) for any R > 0. Then the closure of K
must intersect ∂PY (r) in a locally convex (horospherical) surface H. This surface
lies in C◦

Y since ∂CY hits PY (r) only in the Ur . Moreover, H is compact since
CY is compact after its cuspidal thin part is thrown away. But this all implies
that ∂PY (r) in MY has a compact component, namely H, which is absurd. We
conclude that every component of CY ∩ PY (r) has the form P3(r,R). It follows
that every component of CY ∩ P(r) has this form. �

We say that a hyperbolic structure on a noncompact manifold M is ε-thick if the
length of its shortest geodesic loop is at least ε.

Theorem 9. Let S be a finite-type noncompact oriented surface of Euler charac-
teristic χ < 0. Let ε and K be positive numbers. Equip M = S ×R with an ε-thick
hyperbolic metric, and let r = r(χ) be the number given by Proposition 8. There
is a W = W(χ, ε,K) > 0 such that the following holds. Let � : M − P(r) −→ R
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be a K-Lipschitz map, and let ν : M −→ M − P(r) be the normal projection. If
Y is a proper incompressible subsurface of S with convex core CY mapping to M

via 	 : CY → M , then diam(�(ν(	(CY )))) ≤ W . If γ is a geodesic loop in M

with diam(�(ν(γ ))) > W , then γ fills S.

We define the width of a subset X ⊂ M to be diam(�(ν(X))), and of a subset
X ⊂ N of a covering space 	 : N → M to be diam(�(ν(	(X)))).

Lemma 10. There is a constant W = W(χ, ε,K) such that ∂CY has width less
than W . In particular, the boundary ∂XY of XY = CY − P(r) has width less
than W .

Proof. The proof is similar to the proof of Lemma 7.
Let δ be the minimum of ε and arccosh(1 + 1/2r2) < μ3.
We again let ∂CY be the double DCY when CY is two-dimensional, considered

as a map DCY → CY → M .
There is a D = D(χ, ε) such that ∂CY − P(r) lies in the D-neighborhood

of ∂Y ∗. To see this, let P(δ) be the δ-thin part of ∂CY . Note that, by our choice of
δ, we have ∂CY − P(r) ⊂ ∂CY −P(δ).

The components of ∂CY − P(δ) have diameters uniformly bounded above by
a constant E = E(χ, δ).

The thin part P(δ) is a union of cusp-neighborhoods and neighborhoods of
short geodesics. The cusp neighborhoods lie in P(r). As before, the geodesic
neighborhoods are within δ of the disk-busting ∂Y ∗.

We conclude that ∂CY − P(r) is contained in the D-neighborhood of ∂Y ∗ for
D = E + δ.

Since ∂Y ∗ has width at most KB , the width of ∂CY , which is equal to the width
of ∂CY − P(r), is at most W = KB + 2KD. �

Proof of Theorem 9. The proof is essentially the same as the proof of Theo-
rem 5. If C◦

Y is empty, then CY = ∂CY , and the theorem follows immediately from
Lemma 10. When C◦

Y 	= ∅, we first observe that by the definition of ν and Propo-
sition 8

diam(�(ν(	(CY )))) = diam(�(	(CY − P(r)))).

The composition � ◦ 	 restricted to C◦
Y − P(r) is a submersion and hence on

CY − P(r) attains its maximum and minimum values on ∂XY . By Lemma 10, the
width of CY is at most W . �

4. General Surface Bundles

We again assume that S is a closed surface.
We assume that the reader is acquainted with the basic notions in the study of

hyperbolic groups at the level of Chapters III.H and III.� of [5].
Consider a short exact sequence 1 → π1(S) → � → G → 1 where � is hyper-

bolic, which we call a hyperbolic sequence. We choose a finite generating set for
� containing one for π1(S), which in turn provides one for G, and we let Xπ1(S),



234 Richard P. Kent IV & Christopher J. Leininger

X� , XG be the corresponding Cayley graphs. Since XG is of primary importance,
we often write X = XG. There are simplicial maps

Xπ1(S) X� XG,
π

which induce our short exact sequence. For any γ in �, we let γ̃ ∗ denote any
geodesic in X� whose endpoints are the ideal fixed points of γ . So γ̃ ∗ is a γ -
quasi-invariant geodesic.

Theorem 11. Given a hyperbolic sequence 1 → π1(S) → � → G → 1, there is
a W > 0 such that, given any nonfilling γ in π1(S) and any γ -quasi-invariant
geodesic γ̃ ∗, we have diam(π(γ̃ ∗)) ≤ W .

The statement needed in [8] is the following, which follows easily from Theo-
rem 11. Given a hyperbolic sequence 1 → π1(S) → � → G → 1 and a proper
subsurface Y ⊂ S with associated subgroup �Y < �, we let WH(�Y ) denote the
union of all quasi-invariant geodesic axes of elements in �Y , called the weak hull
of WH(�Y ).

Corollary 12. Given a hyperbolic sequence 1 → π1(S) → � → G → 1, there
is a W ′ > 0 such that, given any proper subsurface Y ⊂ S with corresponding
subgroup �Y < �, we have diam(π(WH(�Y ))) ≤ W ′.

Proof. Let W be as in Theorem 11, let δ be the hyperbolicity constant for �,
and set W ′ = W + 4δ. Given two elements γ1 and γ2 in �, let γ̃ ∗

1 and γ̃ ∗
2 be a

pair of respective quasi-invariant geodesics. It suffices to show that diam(π(γ̃ ∗
1 ∪

γ̃ ∗
2 )) ≤ W ′ since the diameter of π(WH(�Y )) is bounded by the supremum of

such diameters over all pairs of quasi-invariant axes for all pairs of elements in �Y .
We choose points xi in γ̃ ∗

i with diam(π(x1 ∪ x2)) = diam(π(γ̃ ∗
1 ∪ γ̃ ∗

2 )). Ap-
plying γi to γ̃ ∗

i for i = 1,2, we assume that x1 and x2 are far from γ̃2 and γ̃1,
respectively. There is then a third element γ3 in �Y with a quasi-invariant geo-
desic γ̃ ∗

3 that contains x1 and x2 in its 2δ-neighborhood N2δ(γ̃
∗
3 ). Since γ3 is in

�Y and π is 1-Lipschitz, Theorem 11 gives us

diam(π(γ̃ ∗
1 ∪ γ̃ ∗

2 )) = diam(π(x1 ∪ x2)) ≤ diam(N2δ(γ̃
∗
3 ))

≤ W + 4δ = W ′. �

The short exact sequence 1 → π1(S) → � → G → 1 gives us a monodromy
representation ρ : G → Mod(S). By [9], hyperbolicity of the sequence implies
that ρ has finite kernel and that G0 = ρ(G) is a convex cocompact subgroup of
Mod(S), meaning that G0 has a quasi-convex orbit in Teichmüller space.

The preimage of G0 in Mod(
◦
S) is an extension �G0 of G0 by π1(S), which is

the homomorphic image of �, and we have the commutative diagram with exact
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rows

1 π1(S) Mod(
◦
S) Mod(S) 1

1 π1(S) �G0 G0 1

1 π1(S) � G 1

The map � → �G0 also has finite kernel and is thus a quasi-isometry. Using sta-
bility of geodesics in Gromov hyperbolic spaces (Theorem III.H.1.7 of [5]), one
can easily check that it suffices to prove Theorem 11 when ρ : G → G0 is an
isomorphism. We therefore assume that G is a convex cocompact subgroup of
Mod(S) and that � = �G = �G0 .

There is a canonical S-bundle S(S) over Teichmüller space T (S) in which the
fiber over [m] in T (S) is identified with S endowed with the hyperbolic metric m.
The universal cover of this space is a hyperbolic plane bundle H(S) → T (S). The
Bers fibration [3] identifies H(S) and the Teichmüller space T (

◦
S) of

◦
S, and we

have the commutative diagram with equivariant actions

1 π1(S) Mod(
◦
S) Mod(S) 1

� � �
H

2 H(S) T (S)

S S(S) T (S)

We fix a connection on S(S) → T (S), meaning that we choose smoothly vary-
ing direct-sum decomposition of each tangent space of S(S) into the tangent space
of the fiber and a choice of horizontal space.

We pick a G-equivariant embedding X = XG → T (S) that sends edges to
geodesics and is therefore Lipschitz. We have pullback bundles

H
2 HX X

S SX X

and we call H2 → HX → X an associated hyperbolic plane bundle. For x in X,
we let Hx denote the fiber of HX → X over x. We let π stand for any of the maps
HX → X, SX → X, and X� → X, letting context determine which is meant.

Pulling our connection back to SX , we equip SX with a piecewise Riemannian
metric that locally splits as a product of the hyperbolic metric on the fibers and
the metric lifted from X. We pull this metric back to HX .

Given two points x and y in X and a geodesic between them, there is a parallel
transport map Hx → Hy defined by following the horizontal lines of the connec-
tion over the geodesic. Since G acts cocompactly on X, there is a K0 > 0 such
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that for any two points x and y in X, this map is K
d(x,y)

0 -bi-Lipschitz with respect
to the hyperbolic metrics on the fibers.

There is a fiber-preserving �-equivariant quasi-isometry X� → HX making
the following diagram commute:

Xπ1(S) X� X

H
2 HX X

Given γ in π1(S), let Ax(γ ) denote the axis of γ in the fiber Hx and define a
subset A(γ ) of HX by

A(γ ) =
⋃
x∈X

Ax(γ ).

Let xγ in X be a point for which the translation length of γ on Axγ (γ ) is minimal
over all Ax(γ ). We endow A(γ ) with the subspace metric coming from the path
metric on the 1-neighborhood N1(A(γ )) and denote both of these metrics by dγ .

By the stability of geodesics in hyperbolic spaces (Theorem III.H.1.7 of [5]),
the following theorem implies Theorem 11.

Theorem 13. Given a hyperbolic sequence 1 → π1(S) → � → G → 1 with as-
sociated hyperbolic plane bundle H2 →HX → X, there exist K,C > 0 such that
if γ in π1(S) is a nonfilling loop in S, then Axγ (γ ) is a (K,C)-quasi-geodesic
in HX .

Proof that Theorem 13 implies Theorem 11. The quasi-isometry X� → HX

sends γ̃ ∗ to a γ -quasi-invariant uniform quasi-geodesic, which is therefore uni-
formly close to Axγ (γ ). Since Axγ (γ ) projects to the point x, and the projection
to X is Lipschitz, the image of γ̃ ∗ is within some uniform distance W of the
image of x. �

The rest of the paper is devoted to the proof of Theorem 13, which is inspired by
the ideas in [9], [10], [16], [17]. As the argument is somewhat involved, we pause
to give a detailed sketch.

4.0. Outline of the Rest of the Paper

Sketch of the proof of Theorem 13. The basic idea is to construct a retraction
HX → Axγ (γ ) that is uniformly coarsely Lipschitz. Being coarsely Lipschitz
means that there are K ′,C′ > 0 such that the distance in Axγ (γ ) between the
image of any two points is at most K ′ times their distance in HX , up to an addi-
tive error of C′, and uniformity means that these constants do not depend on γ .
The existence of such a map implies that Axγ (γ ) is uniformly quasi-geodesic.

The map H� → Axγ (γ ) is a composition of two maps H� → A(γ ) →
Axγ (γ ).

The construction of the first map HX → A(γ ), and the fact that it is uniformly
coarsely Lipschitz (see Lemma 14) is due to Mitra [20]. (This does not use the
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assumption that γ is nonfilling.) This first map is defined as the fiberwise closest-
point projection: the restriction to a fiber Hx is the closest point projection to
Ax(γ ) with respect to the hyperbolic metric on the fiber. The details of this step
are in Section 4.1.

The second map A(γ ) → Axγ (γ ) is defined using a collection {
n}n∈Z of
sections 
n ⊂ A(γ ) of the projection A(γ ) → X introduced in Section 4.2. These
sections have the following properties (see Theorem 17):

1. The section map X → 
n ⊂ Axγ (γ ) is a uniform quasi-isometry.
2. For any x in X, the fiber Ax(γ ) ∼= R intersects the set of sections in a biinfinite

increasing sequence of points {
n ∩ Ax(γ )}n∈Z. In other words, the sections
intersect the fibers in order, escaping to the ends.

3. In the distinguished fiber Axγ (γ ), the distance between consecutive points of
{
n ∩Axγ (γ )}n∈Z is constant.

4. The distance between consecutive points of {
n ∩ Ax(γ )}n∈Z is uniformly
bounded below.

The existence of sections with the first and third properties is due to Mj and Sar-
dar [16]. This is based on a result of Mosher [22] that provides uniform quasi-
isometrically embedded sections through any point of A(γ ) (see Lemma 16).

The second and fourth properties require some new ideas, explained below, and
require the hypothesis that γ is nonfilling, unlike the first and third. Before this
explanation, we describe the map A(γ ) → Axγ (γ ). Each of the fibers is isometric
to R, and, by the second property, the sections cut these fibers into intervals.
The union of the intervals from 
n to 
n+1 over all x forms a region Rn, and
the map A(γ ) → Axγ (γ ) is defined by sending this entire region to the point

n ∩Axγ (γ ). Uniform properness of the fibers implies that this map is uniformly
coarsely Lipschitz as required. The detailed construction of this second map is in
Section 4.2.1.

To establish the second and fourth properties of the sections, note that for any
x in X, there is a uniform biinfinite quasi-geodesic g in X through x and xγ . This
quasi-geodesic is uniformly close to a Teichmüller geodesic τ in T (S). Moreover,
the closest point projection from g to τ lifts to a fiber-preserving map between the
corresponding hyperbolic plane bundles

Hg →Hτ ,

and a result of Farb and Mosher [9] shows that this map may be taken a uniform
quasi-isometry. To understand the sequence {
n ∩Ax(γ )}n∈Z, we analyze its im-
age in Hg . This lies in some fiber and is a biinfinite sequence uniformly close
to the axis for γ in that fiber. As long as all estimates are uniform, it therefore
suffices to consider a sequence of sections {
n}n∈Z of the axis bundle Aτ (γ )

over τ .
The Teichmüller geodesic τ is defined by a quadratic differential (see Sec-

tion 4.4.1). It is therefore natural to replace the fiberwise hyperbolic metric on
Hτ with the singular Sol metric (see Section 4.5.1) for which the restriction to
each fiber is the Euclidean cone metric defined by the quadratic differential (see
Section 4.3). This is done at the expense of a uniform distortion in distances (see
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Lemma 18), by a result of Minsky [18]. We thus reduce further to the axis bundle
Aτ (γ )Sol for γ with respect to the singular Sol metric and the attendant sections

n, for which we prove properties 2 and 4.

The problem is now a technical one concerning geodesics in the Euclidean
cone metrics of quadratic differentials. We refer the general audience to Sec-
tion 4.4 for definitions and details and briefly sketch the key points for the expert.

The point xγ is uniformly close to the balance time for γ along τ , which we
take to be τ(0), so the role of xγ in property 3 is taken by τ(0). Using arguments
of Masur and Minsky [17], we prove that any segment of Aτ(0)(γ )Sol of suffi-
cient length (depending only on �) must increase in length exponentially in both
forward and backward time along τ after a uniformly bounded amount of time
(see Proposition 21). Taking the distance between consecutive points of the fiber
to be sufficiently large, properties 2 and 4 follow.

To establish this exponential growth, we argue as follows. There is a simple
closed curve α disjoint from γ since γ is nonfilling. From [17] we know that
α becomes mostly horizontal and mostly vertical, respectively, after a uniformly
bounded amount of time into the future and the past, respectively, measured from
time zero at the balance point. We prove that after further uniform steps forward
and backward in time, γ itself becomes mostly horizontal and vertical, respec-
tively. There cannot be too many consecutive short saddle connections (by a com-
pactness argument), and so, in the remote future and past, exponential growth
kicks in for any sufficiently long segment. This is the last step and completes the
proof.

We note that, due to certain logical dependencies, the description just given
does not follow the sections below linearly. �

4.1. Fiberwise Projection

The following construction belongs to Mitra [20] and is used throughout his work.
Consider the map pγ : HX →A(γ ) obtained by fiberwise closest point projection
to A(γ ). That is, for z in Hx , let pγ (z) be the point on Ax(γ ) that is closest to z

with respect to the hyperbolic metric on Hx . The following lemma is a translation
to our setting of the results in Section 3 of Mitra’s paper [20]. We give the proof
for the reader’s convenience.

Lemma 14 (Mitra [20]). Given a hyperbolic sequence 1 → π1(S) → � → G → 1
with associated hyperbolic plane bundle H

2 → HX → X, there are K1,C1 > 0
such that for any γ in π1(S), the projection pγ : HX → A(γ ) is (K1,C1)-
coarsely Lipschitz. Consequently, A(γ ) is (K1,C1)-quasi-isometrically embed-
ded in HX .

Proof. We begin with a few observations about the metric dγ . For any 0 < r < 1
and x in X, consider the r-neighborhood of the fiber over x in X, Nr (Hx) =
π−1(B(x, r)). Because r < 1, B(x, r) is a tree in X, and so there is a unique
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parallel transport to the fiber Hx for every point in Nr (Hx). We denote this map

fx : Nr (Hx) → Hx.

The map fx is Kr
0 -Lipschitz and Kr

0 –bi-Lipschitz when restricted to any fiber Hy ,
for y in B(x, r).

Choose 0 < r < 1 so that the stability constant (see Theorem III.H.1.7 of [5])
for (Kr

0 ,0)-quasi-geodesics in H
2 is less than 1. For any x, y in X with d(x, y) ≤

r , it follows that the parallel transport line from z in Ay(γ ) to fx(z) in Hx is
contained in N1(A(γ )), and hence

dγ (z, fx(z)) = d(z, fx(z)) = d(x, y) ≤ r.

Let δh denote the hyperbolicity constant for H2.

Claim 15. Given any two points w, z in HX with d(w, z) ≤ r , we have

dγ (pγ (w),pγ (z)) ≤ Kr
0r + 2(1 + Kr

0δh) + r.

Proof. Let w, z in X be any two points with d(w, z) ≤ r , and let x = π(w) and
y = π(z) such that d(x, y) ≤ r .

Recall that for any c ≥ δh and any geodesic triangle � ⊂ H
2, the set of points

within a distance c of all three sides is nonempty and has diameter at most 2c. The
closest point projection of one vertex of � to the opposite side is such a point.

Inside Hy , the point pγ (z) is within δh of all three sides of the geodesic tri-
angle � having vertex z and opposite side Ay(γ ). It follows that inside Hx , the
point fxpγ (z) has distance at most Kr

0δh from all three sides of the (Kr
0 ,0)-quasi-

geodesic triangle fx(�). Because the sides of this are within a distance 1 of the
geodesics with the same endpoints, it follows that fxpγ (z) is within a distance
1 + Kr

0δh of all three sides of the geodesic triangle defined by fx(z) and Ax(γ ).
Since pγ fx(z) has distance at most δh < 1 + Kr

0δh from each of these sides, it
follows that

dx(pγ fx(z), fxpγ (z)) ≤ 2(1 + Kr
0δh).

Moreover, the path exhibiting this distance bound lies entirely inside Hx , and
the geodesic in Hx between these points lies within a distance 1 of Ax(γ ). In
particular, it follows that

dγ (pγ fx(z), fxpγ (z)) ≤ dx(pγ fx(z), fxpγ (z)) ≤ 2(1 + Kr
0δh).

Applying the triangle inequality proves the claim since

dγ (pγ (w),pγ (z)) ≤ dγ (pγ (w),pγ fx(z)) + dγ (pγ fx(z), fxpγ (z))

+ dγ (fxpγ (z),pγ (z)) (4.1)

≤ dx(w, fx(z)) + 2(1 + Kr
0δh) + r (4.2)

≤ Kr
0d(w, z) + 2(1 + Kr

0δh) + r (4.3)

≤ Kr
0r + 2(1 + Kr

0δh) + r. (4.4)

In inequality (4.3), we have used the fact that fx is Kr
0 -Lipschitz. �
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From the claim we see that pγ is (K1,C1)-coarsely Lipschitz, where K1 = Kr
0 +

2(1 + Kr
0δh)/r + 1 and C1 = Kr

0r + 2(1 + Kr
0δh) + r . Since the inclusion of

A(γ ) into HX is 1-Lipschitz, it follows that A(γ ) is (K1,C1)-quasi-isometrically
embedded. �

4.2. Quasi-isometric Sections

Let E and B be metric spaces, and let π : E → B be a 1-Lipschitz map. By a
(k, c)-quasi-isometric section (or just (k, c)-section) of π : E → B we mean a
subset 
 ⊂ E that is the image of a (k, c)-coarsely Lipschitz map σ : B → E

with π ◦ σ = idB . Since π is 1-Lipschitz, the map σ is a (k, c)-quasi-isometric
embedding. In fact,

d(x, y) = d(πσ(x),πσ(y)) ≤ d(σ (x), σ (y)) ≤ kd(x, y) + c.

Mosher’s quasiisometric section lemma [22] says that if 1 → π1(S) → � →
G → 1 is hyperbolic, then there is a (k0, c0)-section of π : X� → X for some
k0 and c0. From this we obtain a (k0, c0)-section 
 of HX → X after enlarging
k0 and c0. Using the fact that π1(S) < � acts cocompactly on the fibers, and by
taking c0 even larger, it follows that for any point z in HX , there is a (k0, c0)-
section 
 for HX → X containing z; see also [16].

Given a (k0, c0)-section 
 of HX → X, we have that pγ (
) is a (K2,C2)-
section for K2 = k0K1 and C2 = K1c0 + C1, by Lemma 14. We therefore have
the following result of [16].

Lemma 16 (Mj–Sardar [16]). Given a hyperbolic sequence 1 → π1(S) → � →
G → 1 with associated hyperbolic plane bundle H

2 → HX → X, there are K2

and C2 with the following property. For all γ in π1(S), all x in X, and all z

in Ax(γ ), there exists a (K2,C2)-section 
 of HX → X with 
 ⊂ A(γ ) and

 ∩Hx = {z}.
A section 
 as in this lemma will be called a (K2,C2)-section for γ (though z).
In the sequel, we are interested in collections of these. The leaf Ax(γ ) is a line
oriented by the action of γ and so possesses a well-defined order. We say that a
collection {
n}n∈Z of (K2,C2)-sections for γ are linearly ordered over x if the
assignment n 
→ 
n ∩Ax(γ ) is order preserving.

Theorem 17. Given a hyperbolic sequence 1 → π1(S) → � → G → 1 with as-
sociated hyperbolic plane bundle H

2 → HX → X, there are D1 > D0 > 0 with
the following property. If γ in π1(S) is nonfilling and {
n}n∈Z is a collection of
(K2,C2)-sections for γ such that

{
n}n∈Z is linearly ordered over xγ and dxγ (
n,
n+1) = D1,

then, for every x in X,

{
n}n∈Z is linearly ordered over x and dx(
n,
n+1) ≥ D0.
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4.2.1. Proof of Theorem 13 Assuming Theorem 17.

Proof of Theorem 13 assuming Theorem 17. Let γ be nonfilling. By Lemma 16,
there are (K2,C2)-sections {
n}n∈Z for γ as in Theorem 17.

Let Rn denote the open region in A(γ ) between 
n and 
n+1. By the conclu-
sion of Theorem 17, each Rn is a union of intervals, one in each fiber. According
to Theorem 3.2 of [16], there are constants K ′ and C′ depending only the bundle
H

2 → HX → X such that the fiberwise closest point projection

pn : HX →Rn

is (K ′,C′)-coarsely Lipschitz map (where Rn is given the metric inherited from
the path metric on a sufficiently large neighborhood in HX ). Theorem 3.2 of [16]
is attributed to Mitra [20] since it is a direct translation of arguments there, much
like the proof of Lemma 14.

Define
ηγ : A(γ ) →Axγ (γ )

by ηγ (Rn) = ηγ (
n) = 
n ∩Axγ (γ ). We will show that ηγ is coarsely Lipschitz.

Claim. There is a B1 > 0 depending only on the bundle H
2 → HX → X such

that if w is in Rm ∪
m and z is in Rn ∪
n with d(w, z) ≤ 1, then |m−n| ≤ B1.

Proof. Assume that m ≤ n.
First assume that w and z are in the same fiber Aπ(w)(γ ) = Aπ(z)(γ ). By

Theorem 17 we have dπ(w)(w, z) ≥ D0(n − m). Now, the fibers of HX (in which
the fibers of A(γ ) are geodesic) are uniformly proper, and so there is a positive
E0 depending only on H

2 →HX → X such that d(w, z) ≥ E0dπ(w)(w, z). So

1 ≥ d(w, z) ≥ E0D0(n − m − 1),

and we are done in this case with B1 = 1/E0D0 + 1.
If w and z are in different fibers, we argue as follows. Let z′ be a point in the

fiber Hπ(w) with

d(z, z′) = d(z,Hπ(w)) ≤ d(z,w) ≤ 1.

We have pn(z) = z and pn(z
′) = z′′ for some z′′ in Rn ∩ Hπ(w). Since pn is

(K ′,C′)-coarsely Lipschitz, uniform properness gives us

1 + K ′ + C′ ≥ 1 + K ′d(z, z′) + C′

≥ d(w, z) + d(z, z′′)
≥ d(w, z′′)
≥ E0D0(n − m − 1),

and the proof is complete with B1 = (1 + K ′ + C′)/E0D0 + 1. �
It follows from the claim that

dxγ (ηγ (z), ηγ (w)) ≤ B1D1

if d(z,w) ≤ 1, and so ηγ is (B1D1,B1D1)-coarsely Lipschitz. It follows
that Axγ (γ ) is (B1D1,B1D1)-quasi-isometrically embedded in A(γ ), and
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hence (K,C)-quasi-isometrically embedded in HX for K = K1B1D1 and C =
K1B1D1 + C1, by Lemma 14.

This proves Theorem 13. �

For x sufficiently far from xγ , the distances dx(
n,
n+1) are in fact much larger
than the estimate in Theorem 17. As a function of d(x, xγ ), they are exponentially
larger than the distances dxγ (
n ∩ Axγ (γ ),
n+1 ∩ Axγ (γ )), due to flaring. For
nonfilling γ , the exponential growth will kick in outside a ball about xγ of a
uniformly bounded radius.

The rest of the paper is devoted to the proof of Theorem 17, which requires a
study of quadratic differentials, Teichmüller geodesics, and singular Sol metrics,
taken up in the next section.

4.3. Quadratic Differentials and Flat Metrics

We refer the reader to [25] for a detailed treatment of quadratic differentials and
their associated flat metrics.

Given a complex structure on S, a unit-norm holomorphic quadratic differ-
ential q on S both determines and is determined by a nonpositively curved Eu-
clidean cone metric on S together with a pair of orthogonal singular foliations
with geodesic leaves (called the vertical and horizontal foliations). Given q and
a nonsingular point p, there is a preferred coordinate ζ = x + iy that carries a
neighborhood of p isometrically into the plane such that the arcs of the horizontal
and vertical foliations to horizontal and vertical segments, respectively.

We let Q1(S) denote the space of all unit-norm holomorphic quadratic dif-
ferentials on S, which forms the unit cotangent bundle over Teichmüller space
T (S). We let m = m(q) denote the hyperbolic metric in the conformal class of a
quadratic differential q and write q 
→ m(q) for the map Q1(S) → T (S).

Let S̃ → S be the universal covering. Given q in Q1(S), we abuse notation and
continue to refer to the pullback of q and m to S̃ as q and m, respectively. The
identity map idS̃ : S̃ → S̃ is a quasi-isometry with respect to m and the singular
flat metric for q . In fact, by Proposition 2.5 of [9] or Lemma 3.3 of [18], for
example, we have the following lemma.

Lemma 18 (Minsky [18]). Given r > 0, there exist K3,C3 > 0 such that if q in
Q1(S) lies over the r-thick part of T (S), then

idS̃ : (S̃,m) → (S̃, q)

is a (K3,C3)-quasi-isometry.

4.3.1. Geodesics and Straight Segments. Fix q in Q1(S). Given γ in π1(S) a
(nontrivial) element, we will let γ ∗

0 denote the q-geodesic representative in S and
γ̃ ∗

0 a lift of this geodesic to a biinfinite q-geodesic in S̃. The geodesic γ ∗
0 should

be considered a locally isometric map from a circle or interval of some length into
S as the geodesic is not determined by its image.
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The geodesics γ ∗
0 and γ̃ ∗

0 are either Euclidean geodesics (geodesics in the com-
plement of the singularities) or concatenations of straight segments (Euclidean
geodesic segments connecting pairs of singular points with no singular points in
their interior).

We let ‖γ ‖q denote the q-length of γ ∗
0 and ‖γ ‖q,v and ‖γ ‖q,h the vertical and

horizontal lengths of γ ∗
0 , respectively. These are related by

1

2
(‖γ ‖q,v + ‖γ ‖q,h) ≤ max{‖γ ‖q,v,‖γ ‖q,h} (4.5)

≤ ‖γ ‖q (4.6)

≤ ‖γ ‖q,v + ‖γ ‖q,h (4.7)

≤ 2 max{‖γ ‖q,v,‖γ ‖q,h}. (4.8)

More generally, given a (local) q-geodesic δ : I → S or δ : I → S̃ defined on
an interval I ⊂ R, we let ‖δ‖q , ‖δ‖q,h, and ‖δ‖q,v denote the length, horizontal
length, and vertical length, respectively.

We let ‖γ ‖m denote the length of the m = m(q)-geodesic representative. Given
r > 0, if K3,C3 are as in Lemma 18, we have

1

K3
‖γ ‖q ≤ ‖γ ‖m ≤ K3‖γ ‖q . (4.9)

Inequality (4.9) is free of the constant C3 thanks to the fact that the length is equal
to the asymptotic translation length.

More generally, given any geodesic metric m′ on S for which the pullback to
S̃ makes idS̃ : (S̃,m′) → (S̃, q) a (K6,C6)-quasi-isometry, we have

1

K6
‖γ ‖q ≤ ‖γ ‖m ≤ K6‖γ ‖q . (4.10)

From (4.9) we easily obtain the following.

Lemma 19. For any r > 0, there exists ε > 0 with the following property. Given
any q in Q1(S) lying over the r-thick part of T (S) and any (local) q-geodesic
segment δ : [0,1] → S or δ : [0,1] → S̃, there is an arc of δ of length at least ε

containing no singularities.

Proof. We assume as we may that r < 1 and set ε = r/(K3(4g−2)) < 1/(4g−2).
Suppose that there is a q-geodesic segment δ : [0,1] → S such that every sub-

segment of length at least ε contains a singularity. This segment contains a con-
catenation δ′ of at least 4g − 4 straight segments of q-length less than ε, each
connecting a pair of singularities. Since there are at most 4g − 4 singularities of
q , the segment δ′ must visit some singularity more than once, thus forming a loop
β of q-length less than (4g − 4)ε < r/K3. Except at the basepoint, this loop β

is locally geodesic and is therefore essential. By (4.9), the hyperbolic length of β

is less than K3(r/K3) = r , which contradicts the fact that q lies over the r-thick
part of T (S).

For δ : [0,1] → S̃, we push forward to S and appeal to the first case. �
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Applying the lemma to any closed geodesic γ0, we have the following.

Corollary 20. Let r > 0, and let ε be as in Lemma 19. If q in Q1(S) lies over
the r-thick part of T (S) and γ in π1(S), then γ0 contains a straight segment of
length at least ε.

4.4. Teichmüller Geodesics and Lengths

We refer the reader to [1] and [11] for detailed treatments of Teichmüller theory.

4.4.1. Teichmüller Deformations. The Teichmüller deformation associated to a
quadratic differential q in Q1(S) determines a 1-parameter family of quadratic
differentials qt . More precisely, if q has preferred coordinate ζ = x + iy, then qt

is determined by its preferred coordinate ζt = etx + ie−t y (in particular, q = q0).
The map τq : R → T (S) obtained by composing t 
→ qt with the projection
Q1(S) → T (S), namely τq(t) = mt = m(qt ), is a Teichmüller geodesic. Every
geodesic in T (S) is of this form.

4.4.2. Balance Times. If δ : I : S or δ : I → S̃ is a (local) q-geodesic, we can
reparameterize δ to be a (local) qt -geodesic for any t . In particular, straight seg-
ments can be linearly reparameterized to be (locally) geodesic. We denote the
reparameterization by δt .

For any γ in π1(S), we have

‖γ ‖qt ,h = ‖γ ‖q,he
t and ‖γ ‖qt ,v = ‖γ ‖q,ve

−t .

We let γ ∗
t and γ̃ ∗

t denote the qt -geodesic reparameterizations of the qt -geodesics
γ ∗

0 and γ̃ ∗
0 , respectively.

We say that γ is balanced at time t if ‖γ ‖qt ,h = ‖γ ‖qt ,v . If γ is balanced at
time t0, then for b = ‖γ ‖qt0 ,v + ‖γ ‖qt0 ,h, we have

b cosh(t − t0) ≤ ‖γ ‖qt ≤ 2b cosh(t − t0) (4.11)

by (4.5). So ‖γ ‖qt is minimized in the interval [t0 −arccosh(2), t0 +arccosh−1(2)]
and grows exponentially in |t |.

Given any q , suppose m′
t is a 1-parameter family of hyperbolic metrics on S

for which idS̃ : (S̃,m′
t ) → (S̃, qt ) is a (K6,C6)-quasi-isometry. Then

b

K6
cosh(t − t0) ≤ ‖γ ‖mt ≤ 2bK6 cosh(t − t0) (4.12)

by (4.10) and (4.11). In particular, the m′
t -length along τq(t) is minimized in the

interval [t0 − arccosh(2K6
2), t0 + arccosh(2K6

2)].
As an example, we could take m′

t = mt = m(qt ) to be the underlying hyper-
bolic metric, and then (K6,C6) = (K3,C3) by Lemma 18. However, Theorem 27
below provides our primary example of interest.
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4.4.3. Vertical and Horizontal. Given ε > 0, 0 < θ < π/4, and q in Q1(S), we
say that a q-straight segment δ is θ -almost vertical (respectively, θ -almost hori-
zontal) with respect to q if it makes an angle less than θ with the vertical (respec-
tively, horizontal) direction. A closed geodesic γ ∗

0 , or its lift γ̃ ∗
0 , is called (ε, θ)-

almost vertical (respectively, (ε, θ)-almost horizontal) with respect to q , provided
that it is a concatenation of q-straight segments each of which is θ -almost verti-
cal (respectively, θ -almost horizontal) or has length less than ε. Subject to certain
constraints described below, the constants ε and θ will be fixed, and we will thus
refer to segments and geodesics as simply almost vertical or almost horizontal.
The discussion here differs from that of [17] in that the constraints we consider
depend on the thickness constant r > 0.

4.4.4. Nonfilling Curves after Masur and Minsky. The next proposition relies
heavily on the work of Masur and Minsky, specifically Sections 5 and 6 of [17].
In particular, Masur and Minsky place an upper bound on ε and θ , depending
only on χ , that dictates, among other things, the amount of time it takes for a
balanced geodesic to become almost horizontal. We henceforth assume that ε0, θ0
are less than this bound. For any fixed r > 0, we also assume that ε0 is less than
the constant ε coming from Lemma 19.

Proposition 21. Given r > 0, there is a Tr > 0 with the following property. Sup-
pose that q in Q1(S) defines an r-thick geodesic τq in T (S) and γ in π1(S)

is nonfilling, balanced at time 0 in R. For any geodesic subpath δ0 ⊂ γ̃ ∗
0 with

‖δ0‖q > eTr , we have

‖δt‖qt >
ε0e

|t |−Tr

4
‖δ0‖q = ε0e

−Tr

4
e|t |‖δ0‖q

for any t .

We note the similarity between the conclusion of this proposition and (4.11).
By comparison, (4.11) is a statement about the qt -length of the entire curve γ ,
whereas this proposition provides information about the qt -length of any defi-
nite length segment of γ ∗

0 . In particular, it also grows exponentially outside some
neighborhood of the balance time. Furthermore, whereas (4.11) is true for any
closed geodesic, Proposition 21 is false if we allow γ to be filling: there is no T

making the proposition valid for all filling γ .

Proof of Proposition 21. In what follows, we appeal to Lemmas 6.4 and 6.5 of
[17], which provide bounds on diameters of shadows in the curve complex C(S) of
certain subsets of the Teichmüller geodesic τq . Since ours is an r-thick geodesic,
the shadow is a uniform quasi-geodesic. This is Lemma 4.4 of [23]. It also follows
quickly from the main theorem of [19] (see Section 7.4 of [13]). We may therefore
turn bounds on diameters in C(S) into bounds on diameters in the domain R of
τq , and we do so without further comment.

Since γ is nonfilling, there is an essential simple closed curve α disjoint
from it. Let t0 denote the balance time for α.
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Claim 22. There exists T0 > 0, depending only on ε0, θ0, and r , such that γ ∗
t is

almost horizontal for all t > T0 and is almost vertical for all t < −T0.

Proof. By Lemma 6.5 of [17], there is a T1 > t0 such that T1 − t0 is bounded
by a constant B(ε0, θ0, r) and such that for all t > T1, the geodesic α∗

t is almost
horizontal. Since i(δ,α) = 0, no segment of γ ∗

t intersects any segment of α∗
t away

from the singularities. Pick a straight segment of α∗
t with length at least ε0 (from

Corollary 20). As in the last paragraph of the proof of Lemma 6.5 of [17], we
can appeal to Lemma 6.4 of [17] to find a T2 > T1 such that, for all t > T2, the
geodesic γ ∗

t is almost horizontal.1 Moreover, the distance T2 −T1, and hence also
T2 − t0, is bounded by a constant C(ε0, θ0, r).

Reversing the roles of horizontal and vertical, there is T3 < t0 such that γ ∗
t is

almost vertical for all t < T3 and t0 − T3 is bounded by some D(ε0, θ0, r). The
balance time 0 for γ must occur in the interval [T3, T2] (since γ is neither almost
vertical nor almost horizontal when it is balanced), and setting T0 = max{T2, |T3|}
proves the claim. �

For all t > 0, we have

‖δt‖qt ≥ e−t‖δ0‖q0 . (4.13)

For t = T0, we have

‖δT0‖qT0
≥ e−T0‖δ0‖q0 ,

and we set Tr = 2T0.
Now, if δ0 ⊂ γ̃ ∗

T0
is a straight segment of length at least eTr , then we have

‖δT0‖qT0
≥ e−T0‖δ0‖q0 ≥ e−T0eTr > 1.

Therefore, by Lemma 19, the segment δT0 contains a segment δ′
T0

of length at least
ε0 contained in a straight segment. This segment δ′

T0
must be almost horizontal

since γ ∗
T0

(and hence γ̃ ∗
T0

) is almost horizontal. Therefore, for all t ≥ T0, we have

‖δ′
t‖qt ≥ ‖δ′

t‖qt ,h ≥ et−T0‖δ′
T0

‖qT0 ,h ≥ et−T0

2
‖δ′

T0
‖qT0

≥ ε0e
t−T0

2
.

There is such a segment δ′
T0

in each segment of length 1 in δT0 . By subdividing
δT0 into a maximal number n of disjoint segments of length at least 1, so that
n ≤ ‖δT0‖qT0

< n + 1, we have

‖δt‖qt ≥ nε0e
t−T0

2
= n

n + 1

(n + 1)ε0e
t−T0

2
≥ ε0e

t−T0

4
‖δT0‖qT0

.

Combining these strings of inequalities, we see that, for t ≥ T0, we have

‖δt‖qt ≥ ε0e
t−T0

4
e−T0‖δ0‖q0 = ε0e

t−Tr

4
‖δ0‖q0 .

1The key to the proof of Lemma 6.5 of [17] is finding a disjoint almost horizontal straight segment. In
our setting, this is provided by a segment of α∗

t .
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On the other hand, if 0 ≤ t < T0, then −t > t − Tr . Since ε0/4 < 1, we therefore
have

‖δt‖qt ≥ e−t‖δ0‖q0 ≥ et−Tr ‖δ0‖q0 ≥ ε0e
t−Tr

4
‖δ0‖q0

by (4.13). Thus, the proposition follows for t ≥ 0. A symmetric argument proves
the proposition for t ≤ 0. �

4.5. Surface Bundles over Teichmüller Geodesics

4.5.1. Singular Sol and Hyperbolic Metrics Are Uniformly Quasi-isometric.
Given q in Q1(T ) with Teichmüller geodesic τq , consider the pullback bundle

H
2 Hτq τq .

The lifted quadratic differential qt defines a flat metric on the fiber Hτq (t)
∼= H

2.
The lifted Teichmüller mapping identifies the fibers Hτq (t) with Hτq (0), determin-
ing a homeomorphism Hτq (t)

∼= S̃ × R so that (z,0) 
→ (z, t) is the Teichmüller
mapping. The coordinate t and preferred coordinates ζ = x + iy for q give lo-
cal coordinates for S × R away from {singularities of q} × R. We thus have the
metric e2t dx2 + e−2t dy2 + dt2 on (S − {singularities of q}) × R whose metric
completion is naturally identified with S̃ ×R ∼= Hτq and whose restriction to each
fiber is just the metric qt . We let HSol

τq
denote Hτq with this metric. This is the

singular Sol metric associated to q .
We now note that Proposition 21 provides an “exponential growth” version

of Theorem 17 for the singular Sol metric. Given γ in π1(S), define isometric
sections {�n}n∈Z of HSol

τq
→ τq by picking linearly ordered points {zn}n∈Z =

{(zn,0)}n∈Z ⊂ γ̃ ∗
0 ⊂ S̃ ×{0}. Let �n = {(zn, t) | t ∈R} ⊂ HSol

τq
∼= S̃ ×R. By con-

struction, the �n are linearly ordered over every τq(t). Let δn
0 denote the segment

from zn to zn+1 inside γ̃ ∗
0 , so that δn

t is the segment from �n to �n+1 inside γ̃ ∗
t .

This gives us the following singular Sol variant of Theorem 17.

Proposition 23. Given r > 0, let Tr > 0 be as in Proposition 21. Let q be a unit-
norm quadratic differential defining an r-thick geodesic τq in T (S) and suppose
that γ in π1(S) is nonfilling and balanced at time zero. Given isometric sections
{�n}n∈Z as above with

dτq(0)(�n,�n+1) = ‖δn
0‖q0 ≥ eTr ,

we have

dτq(t)(�n,�n+1) ≥ ε0e
−Tr

4
e|t |dτq(0)(�n,�n+1).

Given a unit-norm quadratic differential q defining an r-thick geodesic τq in T (S)

and a nonfilling γ in π1(S), the space ASol(γ ) = ⋃
γ̃ ∗
t is δSol-hyperbolic for

some δSol = δSol(g, r). In fact, this space is quasi-isometric to the hyperbolic
plane. Following the argument (in Section 4.2) that derives Theorem 13 from
Theorem 17, we have the following corollary of Proposition 23.
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If [a, b] is an interval, we let

ASol[a,b] =
⋃

a≤t≤b

γ̃ ∗
t .

Corollary 24. Let r > 0, and let Tr , q , and γ be as in Proposition 23. There are
constants A0, K4, and C4 depending only on r and the genus g of S such that the
fiber γ̃0 is a (K4,C4)-quasi-geodesic in ASol(γ ) and ASol[−a,a] is A0-quasi-convex
for all a.

Proposition 23 also has the following corollary.

Corollary 25. Let R, r > 0, and let Tr , q , γ , and �n be as in Proposition 23.
There is a B2 = B2(R, r) such that if the R-neighborhood of �n intersects �m,
then |n − m| ≤ B2.

We now promote Proposition 23 to a statement about arbitrary (k, c)-sections.

Proposition 26. Given r, k, c > 0, there exist D2 > D3 > 0 with the following
property. Let q be a unit-norm quadratic differential defining an r-thick geodesic
τq in T (S) and suppose that γ in π1(S) is nonfilling and balanced at time zero.
Suppose that {
n}n∈Z are (k, c)-sections contained in ASol(γ ) = ⋃

t γ̃
∗
t such

that

{
n}n∈Z is linearly ordered over τq(0) and dτq(0)(
n,
n+1) ≥ D3.

Then

{
n}n∈Z is linearly ordered over τq(t) and dτq(t)(
n,
n+1) ≥ D2e
|t |

for every t in R.

Proof. Let �n be the isometric sections as in Proposition 23. By Proposition 23,
it suffices to show that there is a number B such that if 
 is a (k, c)-section
contained in ASol(γ ), then there are numbers n > m with n−m ≤ B such that 


lies in the region bounded by �m and �n.
Let 
 be a (k, c)-section contained in ASol(γ ). Let n > m be such that �n and

�m intersect 
 nontrivially.
Pick (zm, tm) in �m ∩ 
 and (zn, tn) in �n ∩ 
. Let (wn, tm) be the point in

�n ∩ γ̃ ∗
tm

.
Assume that 0 ≤ tm ≤ tn.
Let G
 : [0, j ] → ASol be a (k, c)-quasi-geodesic in 
 joining (zm, tm) and

(zn, tn). Let G� be the geodesic in �n joining (wn, tm) and (zn, tn), and let V be
a geodesic in ASol(γ ) joining (zm, tm) and (wn, tm).

By Corollary 24, the set ASol[−tm,tm] is A0-quasi-convex. So V lies in an A0-
neighborhood of ASol[−tm,tm].

As the space ASol(γ ) is δSol-hyperbolic, it follows that the quasi-geodesic
triangle � = G
 ∪ G� ∪ V is δ′-thin for some δ′ depending only on δSol and k

and c.
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Let δ′′ = 3 max{A0, δ
′}. Since 
 is a (k, c)-section, there is an i = i(k, c) such

that
G
 |[i,j ] ⊂ ASol

[tm+δ′′,∞].
Since � is δ′-thin and V is contained in ASol[−∞,tm+A0], the segment G
 |[i,j ] must
lie in the δ′-neighborhood of G�. So G
 lies in the (ki + c + δ′)-neighborhood of
G� ⊂ �n.

Corollary 25 now bounds n − m.
The cases 0 ≤ tn ≤ tm, tm ≤ tn ≤ 0, and tn ≤ tm ≤ 0 are proven by essentially

the same argument. The cases tn ≤ 0 ≤ tm and tm ≤ 0 ≤ tn are proven by breaking
G
 into “positive” and “negative” segments and running the above argument on
each half. �

The following theorem is due to Farb and Mosher (see Proposition 4.2 of [9] and
its proof there) and is the final piece needed to prove Theorem 17.

Theorem 27 (Farb–Mosher [9]). Given r, k, c > 0, there exist K5, C5 with the
following properties. Suppose that g : R → T (S) is a (k, c)-quasi-geodesic that
stays a uniformly bounded distance from the r-thick Teichmüller geodesic τq and
let ν : R → R be a map such that g(t) 
→ τq(ν(t)) is the closest point projection.
Then this closest point projection is (K5,C5)-coarsely Lipschitz and lifts to a
fiber-preserving (K5,C5)-quasi-isometry

Hg → HSol
τq

for which the maps on fibers Hg(t) → (S̃, qν(t)) are (K5,C5)-quasi-isometries.

Proof of Theorem 17. To simplify the discussion, we suppress many of the con-
stants implicit in the proof and use “uniform” and “uniformly” to mean that the
constants involved depend only on the sequence 1 → π1(S) → � → G → 1 and
its associated bundle H

2 → HX → X.
Let 
n be our (K2,C2)-sections of HX → X.
For every x in X, take a biinfinite geodesic G0 in X through x and xγ . Com-

posing with X → T (S), we get a uniformly quasi-geodesic G fellow traveling
an r-thick Teichmüller geodesic τq for some r = r(�). We apply Theorem 27
to produce a uniform fiber-preserving quasi-isometry HG → HSol

τq
. Pushing the


n|G over to HSol
τq

, we obtain uniformly quasi-isometric sections 
′
n. We ap-

ply Proposition 26 and push the conclusion back to HG . The result is a statement
identical to that of Theorem 17 except that xγ has been replaced with the pullback
x0 of the balance time τq(0). Setting m′

t = g(t) and τq(ν(t)) (with the appropri-
ate reparameterization) in the discussion at the end of Section 4.4.2, we have
(K6,C6) = (K5,C5), so that (4.12) implies that x0 is uniformly close to xγ , and
this completes the proof. �
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