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Hilbert Transform Characterization and
Fefferman—Stein Decomposition
of Triebel-Lizorkin Spaces

CHIN-CHENG LIN, YING-CHIEH LIN,
& QIXIANG YANG

1. Introduction

There are several equivalent definitions for H'(R"). One of these is the Riesz
transforms characterization (cf. [10, p. 221]); that is, H I(R™) consists of the class
of L'(R") functions such that their Riesz transforms belong to L!(R") as well.
Furthermore,

Il 2 Nl + ZIIRj(f)IILI,

j=1
where the R; are the Riesz transforms. By the duality between H ! and BMO,
every ¢ € BMO(R") can be represented as

© = Qo+ Z R;j(¢;) (modulo constants),
Jj=1
where ¢g, p; € L*(R") (see [4, Thm. 3]). This decomposition is widely known
as the Fefferman-Stein decomposition.

Many authors (see e.g. [1; 2; 3; 7; 8; 11]) have generalized the Riesz trans-
forms characterization and Fefferman—Stein decomposition to different variants
of Hardy spaces and BMO spaces. Since both H'! and BMO are special cases of
Triebel-Lizorkin spaces, we seek to extend these two properties to (respectively)
the Triebel-Lizorkin spaces F lo’q(R) (2 < g < o0) and their duals ch’ql(R).

Let S(R) and S’(R) denote the Schwartz space and its dual, respectively. Choose
a fixed function ¢ € S(R) satisfying supp(p) C {E eR : 1/2 < |§] <2}, |¢(&)] >
C > 0for3/5 < |&] < 5/3,and 3, ,|¢(2/6)]> = 1if & # 0. Write ¢;(x) =
2/p(2/x), j € Z. For 1 < q < oo, the homogeneous Triebel-Lizorkin space
F lo’q(R) is the collection of all f € S'(R)/P, the tempered distributions modulo
polynomials, satisfying

1/q
1 N0 = H{Zw,- * f|>q}
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Its dual space Fog’q/(R), 1/g +1/q’ =1, is the collection of all f € S'(R)/P with

1 i , 1/q'
£l 00 = sup {m/ S (g * FOD dx} < oo
00 .

I dyadic j=—loga|1|

here the supremum is taken over all dyadic intervals / C R and |/| denotes the
length of 1.
Denote by H( f) the Hilbert transform of f with Fourier transform

H(F)(E) = —i sgn(&) £ ().

As mentioned previously for the special case n = 1, the Hardy space H'(R) can
be characterized by its Hilbert transform; that is, f € H'(R) if and only if f €
L'(R) and H(f) € L'(R). By the Fefferman—Stein decomposition, a function f €
BMO(R) can be represented as the sum fy + Hf; for fy and f in L°°(R). Both
properties play an important role in harmonic analysis. Since H' = F 10’2, BMO =
Fo% 2, and (H'Y = BMO, it is natural to ask whether the Triebel-Lizorkin spaces
F 10’q and their dual spaces Fo%’q/ have similar properties. In this paper, we give
affirmative answers for both by using Meyer wavelets. The difficulties for both
questions come from defining the suitable relative L' and L™ spaces and then
proving the relative conclusions.

Wavelets greatly facilitate the study of function spaces. We recall the defini-
tion of Meyer’s wavelets [9] as follows. Let ®(§) € C3°([—4mr/3,4m/3]) be an
even function satisfying ® (&) € [0,1] and ®(§) = 1 for |£] < 27/3. Set W(§) =
{®(£/2)> — D(§)?}/2. Then W(§) € C3°([—87/3,87/3]) is an even function and
satisfies the following conditions:

(@) W) [0,1];

(b) W(&) = 0 for [¢] < 27/3;

(©) W2(§) + W2(28) = Lfor § € [27/3,4/3];

(d) W2(&) + W?(dm — &) = 1for & e[4m/3,87/3].

Define the function ¢ (x) (father wavelet) and ¥ (x) (mother wavelet) by the Fourier
transform qS(fE) = ®(&) and 1@(5;) = W(&)e /2, respectively. For j. k € Z, we
write ¥; ¢ (x) = 2//24(2/x — k). Then {}; ¢ (x)}; ez forms an orthonormal basis
for L>(R).

For an arbitrary distribution f € S'(R)/P, define its wavelet coefficients by

ajx = (f,¥jx) for jkeZ.
Then the following wavelet expansion is true in the sense of distribution:
[ = Z{Z a,-,kw,-,km} =" 0;(NH).
JEZ * keZ JjEZ

Furthermore, Frazier and Jawerth [5, p. 47] proved that there is a one-to-one corre-
spondence between a distribution f in F’ 10"’ and a sequence of numbers {a; i} j rez-
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PRrROPOSITION 1.1.  Suppose 1 < g < oo. Then, for f € S'(R)/P,

1/q
{ > @7 ajlx@0x - k))"}

Jj,keZ

’

L1

1 flloq =

here x(x) denotes the characteristic function of the interval [0, 1).

We now proceed with the definition of the relative L' spaces. For any two integers
N and N’ with N < N/, set

v = Y Q).

N=<j=N’

We divide fu y’ into two parts, fN ! and fN N,, which are given by

S (x) if Nj <N,
Meh@) =1 Sy ew Q5 () i N+1= Ny < N,

and f (x) = fyn(x) — N, N,(x) For 2 < g < oo, the space L"9(R) is de-
fined as the collection of all f € S’(R)/P such that

)<OO.

1/l = sup  min (| £
N<N

Ny,2
S N<Ni<N'+1 FP4 + ” fvn

It follows directly from the definition that || f||z1.s < || fI| F0 and hence F q(R) -

LY9(R). The orthogonality of the wavelet basis {1} rez clearly allows us to
make the following statement.

REMARK 1.2. For fy y’ € LV(R),

fwnllpe = max  min (Hffév‘N/ pou+ L £a ] )-

N<N<N'<N' N<N;<N'+

The Hilbert transform characterization of F IO’Q(R), 2 < g < 00, can be stated as
follows.

THEOREM 1.3. For 2 < q < 00, a distribution [ € Flo’q(R) if and only if f €
L“9(R) and H(f) € L"9(R). Moreover, ||f||F~lo.,, ~ | fllpne + 1H) e

REMARK 1.4. The definition of L!"%(RR) can be extended to L"4(R") for arbitrary
dimension n € N in a similar way, yet proving the result in dimension 1 requires
only that we simultaneously control the norm of two functions. For n > 2 we
must control the norm of several functions, which cannot be done at the same
time. Hence we need to develop new skills for transferring the control over the
norm of several functions to the case where we control the norm of two functions
each time. Such a transformation may result in changes of norm each time. There-
fore, the approach used here cannot be applied for R” when n > 2.
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REMARK 1.5. The proof of Theorem 1.3 depends on the following implication:
fHf eLl' = feH' cF> for q>2.

This is why we require g > 2.

To obtain the Fefferman—Stein decomposition of Fo%‘q(R), 1 < g <2, we must
deal with the dual space of L"9(R). For 1 < g < 2, define the space L®9(R) as
the collection of all f € S'(R)/P satisfying

I fllzma = sup  max ([ £yt poo + [ 050 ) < o0
N<N

' NSN|<N'+1
By definition, ||f||FO<l,q < || fllzeee and hence L*9(R) C Fog’q(R). Let
So(R) :={f eSR): f = 0 in a neighborhood of the origin}.
Itis easy to see that Sy(R) is dense in L"9(R). Using the dualities (F,O’q)’ = (27
and (L") = L, we get the duality (L"9) = L°4".

THEOREM 1.6.  Suppose 2 < q < oo. The dual space of L"(R) is L4 (R) in
the following sense. If g € L°49'(R) then the map Lg given by Lg(f) = (f,8) is
a bounded linear functional on L“4(R); conversely, if L € (L"9(R))’ then there
exists a g € L4(R) such that £ = L.

Applying the above results, we obtain the following Fefferman—Stein decomposi-
tion of F2Y(R).

THEOREM 1.7.  Suppose 1 < q < 2. Then f € Fo%’q(R) if and only if there exist
fo, f1 € L4(R) such that f = fo+ H(f1).

We have seen that F,"(R) C L“4(R) and L®%(R) C Fa’(R). As the final re-
mark, we show at the end of this paper that both inclusions are proper.

REMARK 1.8. (i) For 2 < ¢ < oo, F"(R) G L"(R).

(ii) For 1 < ¢ <2, L®(R) G FL/(R).
The rest of the paper is organized as follows. In Section 2 we introduce a lemma and
prove the Hilbert transform characterization of Triebel-Lizorkin spaces F lo’q(R),
2 < g < oo. In Section 3, the duality of L"9(R) and L°*¢ (R) is established.

We show the Fefferman—Stein decomposition of Fo%’q(R) in Section 4. Finally, in
Section 5 we prove the proper inclusions F lo,q C L and L4 C FOY.

2. Proof of the Hilbert Transform Characterization

The boundedness of the Hilbert transform acting on F, lo,q was demonstrated in [6].

THEOREM 2.1.  Suppose 1 < g < oo. Then the Hilbert transform is bounded from
the Triebel-Lizorkin spaces F lo’q(R) into itself.
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In order to prove Theorem 1.3, we need the following lemma.

LEMMA 2.2. For 2 < q < oo, if f(x) € LY9(R) then 0(f) e H'(R) for all
J € Z. Moreover, there exists a constant C, independent of j and f, such that

1Q;i (Il = ClLfllzra-

Proof. For all j € Z we have Q;f = f; ;. From the definition of L“49(R) it fol-
lows that || fj jllz.e < I fll re. So to prove Lemma 2.2, it suffices to prove that

1Q;(Nllar = CIQ;(Hlloa and Qi (g < CIQ,; ()l for all j € Z. The
first inequality is a direct consequence of Proposition 1.1:

||Qj(f)||ﬁl()=2
1/2
= ' {Z(zf/ﬂaj,ux(zfx - k))z}
keZ L!
. ] 1/q
= ' {Z(z]/2|aj,klx(21x — k))"} = ||Qj(f)||F10,q for jeZ.
keZ L

For the second inequality, we note that Q;(f) = Q;(Q;(f)). Then, by Proposi-
tion 1.1,

. ) 1/2
1Q; (Nl o2 = ‘ {Z(zj/quj(f),wj,k>|x(2fx - k))z}
keZ L!
= | > 2720 () ¥l xIx — k)
keZ L
< / 10; (/YD w2y —k>|{ / 27x(2%x — k) dx}dy
R keZ R
- /RIQj(f)(y)IZW(Z-"y —ldy for jez.
keZ
Because y(x) decreases rapidly, we have
Y W(x—k|<C for xeR.
keZ
As aresult, [|Q;(f)llg ~ ||Q‘j(f)||F.l(),2 < Cl1Q;(f)p1, from which Lemma 2.2
follows. O

REMARK 2.3. The proof of Lemma 2.2 implies the following expression:
195 (N 2 N1Qi (Nl = NIHQ; (S | a-

We now are ready to show the Hilbert transform characterization of F ]0,q.

Proof of Theorem 1.3. Suppose f € Flo’q(]R) for 2 < g < oo. Then, by Theo-
rem 2.1 and the inequality || f||; 1. < ||f||F'lo,q, we immediately obtain || f||;1¢ +

IHC e S WF N0
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To show the converse it is sufficient to prove that, for any two integers N and
N’with N < N/,

Ifnnlloa S W fwnrlipee + IR NN e
where C > 0 is a constant independent of N and N'. By Remark 1.2,

n)-

According to the support property of the Fourier transform of a Meyer wavelet,
for any k, k' € Z we have

(R i) =0 if |j—j'I =2

I fxnllpe =  max  min (||f,§§$|p-lo,q+||f§‘;ﬁ

N<N<N'<N’' N<N;<N'+

Therefore,

N—1<j<N'+1\N<j'<N’
keZ k'eZ

H(fvn)(x) = Z Z ﬁ’,k’H(wj’,k/),Wj,k>¢j,k(x)

and
IH(fwv,n )L

= max min (||H(fN N') 1\7N/

N—1<N<N'<N'+1 N<Nj<N’+1

poa | fnne Y

n)-

For any fixed integers N < N’, we choose an integer ng with N < ng < N’ +1
such that

|7 o+ 152

NN’

min - ([L£3

Ny,2
N<Ni<N'+1 FPa * ” Fun

Ll) < Ifvnrllizia
and then choose another integer n; with N < n; < N’ 4+ 1 such that

1 2
|H v N n poa t |H(fv, NN

= min (HH(fNN’)NN/

N<N <N'+1

Ll

Ni2
04 + ”H(fN,N’)N:N/

1) < IH ) .

Consider three cases: (1) ng = ny; 2) ng < ny; 3) ng > ny. For ng = ny,

since ”fN ||L1 < I fu,nllze and both || Qo 1(fv,n) lgr and || Qn (fn,n) g
are dominated by || fy, n'|l 14 by Lemma 2.2, it follows that

1A% = Qo1 (w0 + On (v o S Itz (2.1
On the other hand,
H(fvnv ) = HENS = 1Qnom1(fvn) + O (fyn)}
+{Qug 1 (Fun) + On(fvn )y e
= H(fa = (Quo-1(fun) + On(fi, Nf)})
+ H(Qny—1(fn,n) + On(fy, N’))N N

In view of Proposition 1.1, Lemma 2.2, and the H I_boundedness of the Hilbert
transform, we have
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[H(Quo—1(fw,n) + QN(fN,N/));\ljt’jfl/

this expression, when combined with the inequality

11wy < IHU NN s

Hl S v w e

implies that

IH(£3% = 1Quom1(fwn) + On (v |
S vl + IH v v e (2.2)
Both (2.1) and (2.2) yield

| i = {Qunoa1 (v + O (v} 1
S H an’O&zf —{Qno—1(fnn) + On(fa,n)} ||L1
| HE = 1Qu1 (fwn) + O vw ) | s
S N v llne + IH ) L
S U v llina + IHfvno)ll - The definition

< || fn.nllz1.a- Therefore,

S v line + IR v N e

and so ||

of ng 1mp11es that ”

Lvllzsa < £ soa + 1 72

Now suppose ng < ni. Then, for g(x) = ZN§j<no—l Y ezl & Vi)W k(x)
with ||gllz=~ <1,

ny,2

(M 8) = (HAS v v 8) (2.3)
Similar to the case of ng = ny, we have

| £3%0 = Qo1 (Fwn) + Quo—a(fwvn) + Qv (w1 S I fwonellza-
That

[H(@uo—1(fw.n) + Quo—2(fun7) + QN(fN,N/))X/{}%/r | < Wl
and ||7'l(fN,N/)1'(,l7’13/ |1 < IH(fw.n)llz1a, together with (2.3), yield

|H(£a% = Qa1 (frvn?) + Cuo—a(fvn) + O (v )|
S M fwn e + IHC ) o

As aresult,

I f/\r/l,ofvz/ —{Qno-1(fNN) + Quno—2(fnn) + On(fun)} “,11
S v llipne + IH N v e

2 2
Then | £ 700 S 1A S 1A llne + IHCfy vl and so
S W llee + IH N ) e

Finally, for the case ng > n; we split fy y/(x) into three parts: fy ' (x) =
157,13v'( )+ f(Z) (x) + f(3) (x), where

B
Ll goa < | Fu%

Flowi + H f Nn,ofvz/
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fun @ =D 0i(fun)(x) = fi% (),

no<j<N’
D=3 Qi) (),
ni<j<ng
D@ =3 0i(fun) ).
N§j<n1
The definition of no implies that | 1\(/23v’ + fan < I fwnllpna-

For
h(x)= Z(h,l/fj,k>1/fj,k(x) satisfying [~ <1

N<j<n keZ

we have < N"’”];,z,,h) = ( 15,733\],,}1), which implies || fyn
lows from Lemma 2.2 that

1Ay = (@n—i(fvw) + On (| 1 S I el (2.4)
‘We observe that

S vl Tt fol-

ny,2

H(fwvn) e =H(Fyn + Cu(Fon)y
= H(fyn — {Qu-1(fvn) + On(frn)))
+ H( Q1 (fyn) + Qu (fvw) + On (v D mr. (2.5)

Applying Proposition 1.1, Lemma 2.2, and the H'-boundedness of the Hilbert
transform now yields

[H(Quir (fun) + Qun(Frun) + O xn D2 S Wl (2.6)
Since ”H(fN,N/);lvl,’zi/ )

(N = 1Qumat(frvw) + O (v |
< Wfwnrllzg + IHF ) e Q2.7)

< IH(fn,n")|l 114, it follows from (2.5) and (2.6) that

Combining (2.4) and (2.7), we obtain
| fin = (Quaa(fvw) + On (vt S Wfnellze + IHw v s

hence
|7y

The definitions of n and n yleld

[N+ S+ Quea v o

S vl + IH N ) e (2.8)

= H,H(fN,N’)N’N/ joa = < IHfw,n) e
and
| £y = [ £3% N goa < W fwnllona 2.9)
By Proposition 1.1 and Theorem 2.1, we have H’H( 1\(,13\,,);:]11:,, g S I fwwrllpne.
’ ’ 1

Therefore,
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ny,l

[+ QuatCvw)iol goa S 1w llzse + IHC ) la.
We note that
H(Fn + Cuaa (v n))
=H( 1\(/23\1 — On (fn,n) — QN’(f(Z) )
+ H( Qo1 (v + Qo (o) + QSN

Again using Proposition 1.1, Lemma 2.2, and the H'-boundedness of the Hilbert
transform, we obtain

ny, 1

“H(Qﬂl—l(fN,N/) + Q"l(fN,N’) =+ QN’( }\(/723\7’))]\/7’]\]/
S [H(0uFuw) + Quthun) + On (N

5 ||fN,N/||L'«h

FIO, q

‘H'

which implies
[#(fin = @ Fnnd = Cn () | oa € Wl + IH ) na-
Now, by Theorem 2.1,
| fxv = @ (fww) — Qe (Fine)
It then follows from Lemma 2.2 that
Iy S W llze + IH N v e (2.10)
So from (2.8)—(2.10) we have

Ifnnlloa S W fwnllioee + IH v ) Lia
and Theorem 1.3 follows. O

Foa S v llpee + ITH v v) .

3. The Duality of L14(R) and L7 (R)

For fy n' € L"9(R), by Remark 1.2 we may write

I fwnllpe =  max min (||f;V‘N, poa + 17 ’“IILI)
<

The maximum is actually attained when N = N and N’ = N'.

LEMMA 3.1.  For fy n' € LM(R),

I fvnllpe = min (| NN’|F0’1+” NN'”LI)

N<Ni<N'+1
Proof. We choose N < ng < N’ + 1 such that

[l goa + 13500 =, _min (173

N1,2
N<Ni<N'+1 F0‘1+||fNN

).
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no,l1

Foa = < [ £3% For

Fha-

For N < N < N’ < N’, Proposition 1.1 implies || szONl’

8(X) = Y e okez (& Vi)W (x) with [[g]lL~ < 1, we have ( NN/,g)
(f "“NZ,, g). The converse of Holder’s inequality gives | f ;01\/2’

L — ”
so the proof is completed. O

We can now apply Lemma 3.1 to prove the duality of L4(R) and L4 (R).
Proof of Theorem 1.6. For any fixed N < N/, choose N < ny < N’ + 1 such that

” 13,01;/]’ L! )

no,2

Floﬂ + “ fN N’

N1 N2
p= i (L + LA
Since {j ¢} kez i an orthonormal basis, it follows that
. 2
(SN, &) = {fun.Enn) = <anONlu g+ <.f1G7ONugN,N’)
1 1 2 2
= ) L 8
Hence the dualities (F"/(R))’ = F.2? (R) and (L'(R))’ = L®(R) yield

(SN 8 |<C(” n)Nl’ Fha Lw)

< Cllfwwlloa (|83l o

no,1

no,2
gN N’ !

”gN,N/
~)-

By the definition of L9 (R), we have llgn, N IILoo,qr < gl o0q" forany N < N'.
Then

poa + (W

0o+ IIgW

[(fvvs 8l < Clifnwliallgll o s 3.D

where C > 0 is a constant independent of N and N'.
If fe LY9(R) then, for any 0 < & < 1, there exist N, N/ such that, for all
N < N;,and N'> N/, wehave || f — fy n/llpte <€l fllp1e. Because (3.1) holds

forall N < N’, we show that || L,ll < ClIgll ;.o -
Conversely, suppose £ € (L"9(R))". We define g formally by

g(x) =Y LOVx(x).

J.keR

It suffices to show that g € L°°’q/(]R). For given N < N/, we choose N < n; <
N’ + 1 such that

|| ny,l

g ny,2
N,N’

£ +”gNN’ Vi

£ + ”gNN’

~)-

Let Vi y be the closed subspace of L“4(R) spanned by {(Yjx : N < j <N/,
k € Z}. We denote by L= £|VN - the restriction of L to the subspace Vi, y'.
Then ||£]| < ||£| and

L(f) = E aj L(WYjx) = (f”';&ugﬁg\” <fn11vzug;\l;1]5/> 3.2)
N<j<N'
kezZ

= max (leni

forall f € So(R) N Vy n. Let V(1 - and V,\(,zf\,/ be the closed subspaces of Vy y-
spanned by {y; : ny < j < N/ keZyand {¢jr : N < j < m, k € Z},
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respectively. It is easy to verify that Sp(R) N V,\(,I;\,, is dense in (V,\(,I,)\,,, -1l FIO.q)
and that So(R) N V\'r,, is dense in (Vf,)\,/, lIllz1). Thus there exist {h{},en C

So(R) NV, and (D) en € So(R) NV, with AP pos < Tand [Pl <
1 such that

ny,l ny, 1

(A5, gNjN’) - ”ngN’ Lo

Let iy = hY + h? € So(R) N Vi y: for all m € N. Then h)) = (h,,)y, and
h® = () By Lemma 3.1, [hnllzie < 1] zoa + 152 < 2. Tt follows
from (3.2) that, for all m € N,

(D, gt )+ (B2, guie ) = 1E )| < 1Ll < 21L])-

ny,2

qoa + gyl . < 21I£]. Therefore,

Lo =
coo + |ena ) <20L]1 forall N < N

Foqu’ and (hg)’gllél;’)_)”ganll\%’

asm — OQ.

Taking m — oo, we get “g;’,”l\l,,

N, 1
max  (|[gx'y:

N<Ni<N’
Taking the supremum over all N < N’ on both sides now yields || gl ;«.« < 2| L]
O

4. Proof of the Fefferman—Stein Decomposition

In this section we prove the Fefferman—Stein decomposition of Fo%’q(R), l<g<2.

Proof of Theorem 1.7. To prove “if” part, it suffices to show that H(g) € Fo?; UR)
for g € L°>9(R). We observe that (#(g),h) = —(g, H(h)) for all h € Sy(R). By
Theorems 1.6 and 2.1,

1{(g, H(M) < lIgllLoea IH (Rl 1o
< IIgIIvaaIIH(h)IIFlo,q' < CllgllLowllhllplo,q/- 4.1
Since (4.1) holds for all & € So(R), which is dense in Flo‘q/(R), we get
IH(@Il o0 < ClighLa.

Next we consider the “only if” part. By Theorem 1.3, F ]O’q/(]R) can be identi-
fied with a closed subspace of le"’(R) ® le"'(R) if we identify g with (g, H(g)).
The Hahn—Banach theorem states that any bounded linear functional on F lo’q/(R)
extends to a bounded linear functional on L7(R) @ L9 (R). For f € F2Y(R),
let £ € (" (R))' be defined by

L(g) = /Rf(X)g(x)dx.

Since the dual space of L4 (R) @ L"%(R) is equivalent to L°>9(R) & L°4(R),
there exist fy, f1 € L°9(R) such that

E(g):/Rg(x)fo(x)dx+/RH(g)(x)f1(x)dx

=ng(x)(fo(X)—H(fl)(X))dx,

which implies that f can be written as f = fo — H(f;) with fy, f1 € L(R).
O
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5. Proof of Remark 1.8

We first recall some properties of Meyer’s wavelets (see [9]). Let ¢ (x) denote the
father wavelet given in Section 1. Since ¢ (x) € S(R), we have

Y l¢p(x—k| <C for xeR. (5.1)
keZ

For j, k € Z, we write ¢; x(x) = 2//2¢(2/x — k). For j € Z, define
Pi(£)(x) =Y (f.$7.0) b4 (x).

keZ
Then fy n' = Py/(f) — Py(f) forany N < N'and, by (5.1),

125 ()l <//|f(y)IZI¢(2’y k)112/¢(27x — k)| dx dy

keZ

< c/|f(y>|2|¢<2fy ol dy

keZ
=Cllfllz- (5.2)

It sufﬁces to prove assertion (i) of the remark because the dualities (F 0 “(R)) =
E27(R) and (LM(R)) = L®9(R) for 2 < g < oo (by Theorem 1.7) imply
assertlon (ii).
Note that ¢ € L'(R). Then (5.2) gives

somin (635 ] joa + (@350 1,0) < Iéww Il < Clolu forany N < N

Taking the supremum over all N < N’ on both sides, we have ||¢| ;1. < Cll@]l11-
To show that ¢ ¢ F"“(R), let a; x = (¢, ¥; 1) for j.k € Z. Then

lajo| = ’/ CD(é)Z_j/Z{CDQ_(jH)E)z _ @(2—1‘5)2}1/26—1'2*(-"*”& dé‘
R

— il

/ (D(1/2) — D (n))/2e )2 dn’
[=2/+37/3, 2/+37/3]
>C2/? if j<-—M

for some M > 0 large enough. Therefore,

1/q 1/q
/ { > @24l —k)w} ar= [ { ) 2”/2|a,~,o|qx(zfx)} dx
R kez j<—M
1/q
> C/{ > 2qu(2fx)} dx
RU, Ty
00 aomHl o —m 1/q
ch/ { > 21'4} dx = 0o
m=M " j=—00

It now follows from Proposition 1.1 that ¢ ¢ F lo’q(R).
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