Michigan Math. J. 59 (2010), 589-620

Weighted C* Estimates for a Class of
Integral Operators on Nonsmooth Domains

DARIUSH EHSANI

1. Introduction

Let X be an n-dimensional complex manifold equipped with a Hermitian metric,
andlet D CC X be a strictly pseudoconvex domain with defining function . Here
we do not assume the nonvanishing of the gradient, dr, thus allowing for the pos-
sibility of singularities in the boundary, dD, of D. We refer to such domains as
Henkin—Leiterer domains, as they were first systematically studied by Henkin and
Leiterer in [2].

We shall make the additional assumption that r is a Morse function.

Let y = |0r|. In [1] the author established an integral representation of the fol-
lowing form.

THEOREM 1.1.  There exist integral operators 7~"q: L%O’qﬂ)(D) — Lﬁqu)(D) with

0 < g < n =dim X such that, for f € Lfqu) N Dom(d) N Dom(3*), one has

vif = f‘qéf + Tq*_lé*f + (error terms) for q > 1.

Theorem 1.1 is valid under the assumption that we are working with the Levi met-
ric. With local coordinates denoted by ¢i,...,¢,, we define a Levi metric in a
neighborhood of aD by
a%r
ds* = —(2).
Z 9, 0k

Jk

A Levi metric on X is a Hermitian metric that is a Levi metric in a neighborhood
of dD. In what follows we will be working with X equipped with a Levi metric.

The author [1] then used properties of the operators in the representation to es-
tablish the following estimates.

THEOREM 1.2.  For f € L§ (D) N Dom(d) N Dom(3*) with g > 1,
Iy 2" f e S Hy2af lloo + 11728 Flloo + 11 £112-

In this paper we examine the operators in the integral representation, derive more
detailed properties of such operators under differentiation, and use the properties
to establish C¥ estimates. Our main theorem is as follows.
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THEOREM 1.3. Let f € L§ (D) N Dom(d) N Dom(d*), ¢ > 1, and a < 1/4.
Then for N (k) large enough we have

Iy O llckra S Uy *28f ek + Iy 8% F e + 1 £ 1l2-

We show that we may take any N (k) > 3(n + 6) + 8k.

Our results are consistent with those obtained by Lieb and Range in the case of
smooth strictly pseudoconvex domains [4], where we may take y = 1. In [4], an
estimate as in Theorem 1.3 with y = 1 and o < 1/2 was given.

In a separate paper we look to establish C* estimates for f € L?(D) N Dom(d),
as the functions used in the construction of the integral kernels in the case ¢ = 0
differ from those in the case ¢ > 1.

One of the difficulties in working on nonsmooth domains is the problem of the
choice of frame of vector fields with which to work. In the case of smooth do-
mains a special boundary chart is used in which " = 9r is part of an orthonormal
frame of (1, 0)-forms. When dr is allowed to vanish, the frame needs to be modi-
fied. We get around this difficulty by defining a (1, 0)-form w” by or = yw". In
the dual frame of vector fields we are then faced with factors of y in the expres-
sions of the vector fields with respect to local coordinates, and we deal with these
terms by multiplying our vector fields by a factor of y. This ensures that when
vector fields are commuted, there are no error terms that blow up at the singularity.

We organize our paper as follows. In Section 2 we define the types of operators
that make up the integral representation established in [1]. Section 3 contains the
most essential properties used to obtain our results. In Section 3 we consider the
properties of our integral operators under differentiation. Finally, in Section 4 we
apply the properties from Section 3 to obtain our C* estimates.

The author extends thanks to Ingo Lieb, with whom he shared many fruitful dis-
cussions over the ideas presented here and from whom he originally had the idea
to extend results on smooth domains to Henkin—Leiterer domains.

2. Admissible Operators

Denoting local coordinates by ¢, ..., ¢,, we define a Levi metric in a neighbor-

hood of 3D by 5

o0°r _
ds* = —(¢) dg; diy.
%j TR A
A Levi metric on X is a Hermitian metric that is a Levi metric in a neighborhood
of aD.

We thus equip X with a Levi metric, and we take p(x,y) to be a symmetric
smooth function on X x X that coincides with the geodesic distance in a neigh-
borhood of the diagonal A and is positive outside of A.

For ease of notation, in what follows we will always work with local coordi-
nates ¢ and z.

Since D is strictly pseudoconvex and r is a Morse function, we can take r, =
r + € for epsilon small enough. Then 7. will be defining functions for smooth,
strictly pseudoconvex D.. For such r. we have that all derivatives of r. are inde-
pendent of €. In particular, y.(¢) = y(¢) and p.(¢,2) = p(L,2).
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Let F be the Levi polynomial for D,:

n n
92r,

ore 1
F(t,z) = ; a—g(o(g —zj) — 5}; @@, — 2k — 20)-

We note that F'(¢, z) is independent of € since derivatives of r, are.
For € small enough we can choose § > 0 and ¢ > 0 and a patching function
(¢, z2), independent of €, on C" x C”" such that

1 for p?(f,z) <
0 for p2(¢,2) >

g,

®(¢&,2) ={

Bl |~

E.
Defining S5 = {¢ : |[r(¢)| < 6}, D_s = {¢ : r(¢) < &}, and
Ge(¢,2) = (£, ) (Fe(L,2) — 1 () + (1 — 9(£,2) (¢, 2),

we have the following result.
LEMMA 2.1. On D, x D. NS5 x D_s,
el 2 [(0r(2), ¢ — 2)| + (&, 2),

where the constants in the inequalities are independent of €.
We at times have to be precise and keep track of factors of y that occur in our in-

tegral kernels. We shall write €; (¢, z) for those double forms on open sets U C
D x D such that ; ; is smooth on U and satisfies

&jx(8,2) S E (DI — 2l (1)
where & is a smooth function in D with the property
ly*Dakil S v*
for D, a differential operator of order «, and such that
Ar&jk = Ej1k + k-1,

where A, is a first-order differential operator in .
We shall write &; for those double forms on open sets U C X x X such that &;
is smooth on U, can be extended smoothly to D x D, and satisfies

&i(x,y) < p/(x,y);

€7 will denote forms that can be written as &; (z, ¢).
For N > 0, we let Ry denote an N-fold product, or a sum of such products, of
first derivatives of r(z), with the notation Ry = 1. Here
re($) re(2)
r(©) v(2)

P(£,2) = p*(¢,2) +

DEFINITION 2.2. A double differential form A€ (¢, z) on D, x D, is an admissi-
ble kernel if it has the following properties.
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(i) A€ is smooth on D, x D, — A..
(ii) For each poin_t (¢0,%0) € Ac there is a neighborhood U x U of (¢, &p) on
which A€ or A€ has the representation

RNR 8105815 to¢t1¢t2¢*n¢*t4rl *m @)

with N, M, «, B, j, k, to, ..., m integers and j, k,tg,l,m > 0, —t =
4+ -4+1t3<0,NM >0,andwith N +a >0and M 4+ 8 > 0.

This representation is of smooth type s for
s=2n+j4+min{2,t = —m} —2(tg+t — [ —m).
We define the fype of A€ (¢, z) to be
=5 —max{0,2 - N —-—M —a — B}.

We say that A€ has smooth type > s if at each point (g, ¢o) there is a represen-
tation (2) of smooth type > s; A€ has type > 7 if at each point (o, {o) there is a
representation (2) of type > 7. We shall also refer to the double type of an operator
(z, s) if the operator is of type t and of smooth type s.

The definition of smooth type just given is taken from [5]. In this paper, (r.(x))* =
re(y), where the asterisk has a similar meaning for other functions of one variable.

Let Aj be kernels of type j. We denote by Aj the pointwise limit as € — 0 of
A5 and define the double type of A to be the double type of the A; of whichitisa
limit. We also denote by A§ those operators with kernels of the form A$; A; will
denote the operators with kernels A;. We use the notation A{; ;) (resp. A x)) to
denote kernels of double type (j, k).

We let 8; 2.(¢, 2) be a kernel of the form
m,0(§7 Z) .
j 2n(§ ) 2k 5 > 1,
(¢,2)

wherem —2k > j—2n. We denote by E;_», the corresponding isotropic operator.
From [1], we have our next theorem.

THEOREM 2.3. For f € L(o )(D) N Dom(d) N Dom(3*), there exist integral op-
erators Ty, S4, and P, such that

Y@ (2) =y T3 f) + v S0 (V) + v Py (V1)
The operators T,, S;, and P, have the form
T, = E12, + Ay,
Sy = E1_2q + Ay,
1 1

Py = _Aifl,l) + A? L-
14
3. Estimates

We begin with estimates on the kernels of a certain type. In [1] we proved the fol-
lowing statement.
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PROPOSITION 3.1.  Let A; be an operator of type j > 0. Then

Aj: LP(D) - L*(D), -> ——
S

We describe what we shall call tangential derivatives on the Henkin-Leiterer do-
main D. A nonvanishing vector field 7 in R?" will be called tangential if Tr = 0
onr = 0. Near a boundary point we choose a coordinate patch on which we have
an orthonormal frame o', ..., " of (1,0)-forms with 3r = yw”. Let Ly,....L,
denote the dual frame. Then Ll, oL, Ll, .. Ln LandY =L, —L are tan-
gential vector fieldsand N = L, + l_,,l is anormal vector field. We say that a given
vector field X is a smooth tangential vector field if it is a tangential field and if,
near each boundary point, X is a combination of such vector fields Ly,...,L,_i,
Li,... L,, 1, Y, and rN with coefficients in C °°(D) We make the important re-
mark here that, in the coordinate patch of a critical point, the smooth tangential
vector fields are not smooth combinations of derivatives with respect to the coordi-
nate system described in Lemma 3.9. In fact, they are combinations of derivatives
with respect to the coordinates of Lemma 3.9 with coefficients only in C°(D)
owing to factors of y that occur in the denominators of such coefficients. In gen-
eral, a kth-order derivative of such coefficients is in €, _¢. Thus, when integrating
by parts, special attention has to be paid to these nonsmooth terms.

DEFINITION 3.2.  We say an operator with kernel, A, is of commutator type j if
A is of type j and if, in the representation of A in (2), we have #,t3 > 0, t,14 > 0,
and (11 +13)(t, +t4) < 0.

DEFINITION 3.3. Let W be a smooth tangential vector field on D. We call W
allowable if, for all ¢ € 9D,

Wt eT, D) @& T'(3D).

The following theorem is obtained by a modification of Theorem 2.20 in [4] (see
also [3]). The new details, which arise because here we do not assume |0r| # 0,
require careful consideration and so we shall work out the calculations explicitly.

THEOREM 3.4. Let A; be an admissible operator of commutator type > 1 and X
a smooth tangential vector field. Then

!
YXA = —A XYy +AD+ ) AV Wy,
v=1
where X is the adjoint of X, the W, are allowable vector fields, and the A;”) are
admissible operators of commutator type > j.

Proof. We use a partition of unity and suppose that X has arbitrarily small sup-
port on a coordinate patch near a boundary point in which we have an orthonormal
frame w',...,w" of (1,0)-forms with 9r = yw”, as described previously, with
Ly,....,L, constltutmg the dual frame. We have Ly,...;Ly—y, Li,....,L,_1, and
Y = L, — L, astangential vector fieldsand N = L, + L, as anormal vector field.
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We have the following decomposition of the tangential vector field X :

n—1 n—1
X = Z Clej + Z bjij + (lY + brN,
j=0 j=0

where the a;, b, a, and b are smooth with compact support. We shall prove the
theorem for each term in the decomposition.

Casel: X =a;L; or bjij, Jj <n—1,o0raY. We write
VXA = —yX A1+ (PXE + XD AL
Then an integration by parts gives
VXALS = =AXYf) + (f, (rXE + 7" XA,

‘We now use the following relations:

VX' + Y X)Eja = &jas

(rXE +y*X)E =&y,

rr¥*

vy*
=E&p,0P + €20,

(YXE + v X = &1+ Eap.

(YX' +y*XHP =&+ €0,0 3)

Any type-1 kernel
A1(82) = Ry R} €ju€) s P09 ¢ ¢ 4 r r 4)
can be decomposed into terms
A=A+ As,

where A is of pure type—meaning that it has a representation as in (4) but with
t3 = t4, = 0 and t1¢, < 0 [4]. From the relations (3) we have

(YX° +y* XA, = yA; + As.

In calculating (yX*¢ + y*X%).A/, we find the term that is not immediately seen
to be of type A is the one resulting from the operator yX* + y*X? falling on ¢!,
in which case we obtain the term of double type (0, 0),

B = RNRL€j+17a+18};/3P_to¢tl_lq_5t2rlr*ms

where N + « > 2, plus a term that is A;. We follow [3] in re_ducing to the case
where B can be written as a sum of terms B, such that B, or B, is of the form

¢ + é)T]HZﬂRNRLSjH,a—13;,/3Pi"’rlr*m,

where 71 + 70 < —3 andeithert; <o <11+ 10r72 <0 < 11+ 12.
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We fix a point z and choose local coordinates ¢ such that
dgj(z) = wj(2).

Working in a neighborhood of a singularity in the boundary (where we can use
a coordinate system as in (13) to follow), we see that d/9¢, is a combination of
derivatives with coefficients of the form &,(z) and that L, is a combination of
derivatives with coefficients of the form &,(¢), where & is defined in (1). We have
that A, — 9/0dz, is a sum of terms of the form

E1,14,

where A is a first-order differential operator.
Using these special coordinates, we note that

Yo=y+E 0+ &y,
Yp=—y+Eo+ &1,

S
YP =¢&0+ %(P +&2.0)
and write
B, = )/2¢“(¢ + &)rﬂrrzfaRNRngH’a_lEZ,ﬂszorlr*m

=7Y@" ¢+ d;)nHrGRNR;ﬁjH,a—lEi,ﬁpftorlr*m)
+ 799+ ‘73)T1+TZ_GRNR1T48j+2,a—182,3 Py lpm
+y9°(¢+ )T RN R €130 28F s PO
+ vt @+ )T T RN Ry €201 EF g PTIOP I
+ V¢U+1(¢ + ¢)T1+127071RNRLSJ+3,Q,2€z,ﬂP71()VIF*m
+ V¢U+1(¢ —+ d_))TI+T2*O'RN_1R1T48j+1’a_189];/3Pft()rlr*m
+yo' P+ ‘7_’)T1+127GRNR;T45]‘,05_18;/3P*’Or’r*m
+ V¢U+l(¢> + (5)TI+T2_URNR;I€].+2‘“_18;[3P—to—lrlr*m
+ @7 (@ + )T TORN R E 1,01 EF g PTIOP
+ 7P+ ) TR R 301 E5 g PTOT I

Thus
Ba‘ = VY-A(I,Z) +.A/1

By the strict pseudoconvexity of D there exist allowable vector fields Wy, W,, W3
and a function ¢, smooth on the interior of D, that satisfies

k
Q"9 = Eo,1-ks
where & is a first-order differential operator, such that ¥ can be written as

Y = o[W, W] + Ws.
Thus
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YYAp ) =yelWi, WalAq, + yWsAu
= y[Wi,WalpAq,) + Aj

with A} of commutator type > 1.
An integration by parts gives

(oYW, Wal(pA2)) = (Wipf, Wa(pAa2)) — (Wayf, Wi(p A 2).

Here Wl and Wz are allowable vector fields and both W, (¢ A (1,2)) and Wi(p A1 2))
are of the form A, where A is of commutator type. This proves the theorem for
Case 1.

Case 2: X = EqrN. We use
(ryN® 4+ r*y*N)Ej oy = &ja,

rr*
(ryN¢ +r*y* NP = €304+ — —E&pp
Yy

Q)
=E&z0+ PEoos
(ryN® +r*y*N9) ¢ = r€o.0 +1r*Eo0-
Thus
)/*XAlf = (Eor*f,y*szll)

= (=&orf, YN A1) + (f.Eo(ryN* + r*y*N9) Ay)

= (=N@Eoryf), AD + (f, &o(ryN® + ry* N Ay).
We have

Ne(&oryf) = €o,0f + EorNeyf,
and &,rN¢ is an allowable vector field. The relations in (5) show that
(ryN® +r*y "N Ay

is of commutator type > 1. Case 2 therefore follows. UJ

We will use a criterion for Holder continuity given by Schmalz.

LEMmA 3.5 [6, Lemma4.1]. Let D € R™ (m > 1) be an open set, and let B(D)
denote the space of bounded functions on D. Suppose r is a C* function on R,
m > 1, such that D := {r < 0} C R™. Then there exists a constant C < o0 such
that the following statement holds: If a function u € B(D) satisfies for some 0 <
o < 1/2 and for all z,w € D the estimate

V — 1/24a
lu(z) —u(w)| < |z — w|* + max [Vr)llz — w|
y=z,w Ir(y)|1/2

s

then
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lu(z) —u(w)| < Clz —w|*
forall z,we D.

We will also refer to another lemma of Schmalz [6, Lemma 3.2] that provides a
useful coordinate system in which to prove estimates.

LEMMA 3.6.  Define x; by {j = xj +ixj4, for 1 < j <n. Let Es(z) :={¢ e€D:
¢ — z| < 8y (2)} for § > 0. Then there exist a constant ¢ and numbers l,m €
{1,...,2n} such that, forall z € D,

{_r(g),lm(ﬁ(',z),)ﬂ, ceefom -‘-’x2n},

where x; and x,, are omitted, forms a coordinate system in E.(z). We have the
estimate

1
av g ) ldr(Q) AdIme(-,2) Adxy A== p - Adxau| on Ec(2),

y(2)?

where dV is the Euclidean volume form on R*",
We next define the function spaces with which we will be working.
DEFINITION 3.7. Let 0 < 8 and 0 < §. We define

1l ssmy = Sggv(c)wﬂ(ov(c)r‘.

DEFINITION 3.8. For(0 < a < 1 we set

Ao(D) = {f €L®(D) : I flla, = I fllLe + sup

1 f(&) — f(I }
—_— < 0f.
¢ —z|¢

We also define the spaces A, g by
Nap = A{f 1 fllawy = 1¥"fla, < 00}

From [1], we have the following lemma.

LEMMA 3.9. r
~eC'(De)
Y

with C! estimates independent of €.
For our C* estimates later, we will need the following properties.

THEOREM 3.10. Let T be a smooth first-order tangential differential operator on
D. For A an operator of type 1, we have:
(i) A: L®?9%D) - Ay o (D) withO < €,6' anda + € + €' < 1/4;
(i) y*TA: L% D) — L>€"3(D) with 1/2<8<lande <€ <1,
(iii) A: L2€%(D) — L% %D) withe < €' and § <1/2+ (¢ —€)/2.

Proof. (i) We will prove part (i) of the theorem in the cases that A, the kernel of
A, is of double type (1, 1) satisfying the inequality
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v (©)?
<77
S i g BE

and A is of double type (1, 2) satisfying

Al < Y (@)
~ Pn—l—p.|¢|pt+l’

All other cases are handled by the same methods.
Case A: A, the kernel of A, is of double type (1,1). We estimate
/ ! ‘ v _ y ()<
p YO (@) PG, )12 (P (g w) PG w)n 12k
Then the integral in (6) is bounded by
/ 1 ‘ y (2> (@ w)" ! — y ()< (&, )"
p Y@  (@CGw)HTp (L, )P, )2

+[ A P, )" V2 — P(gw)n 2R
p YQ) | (@, w)rHIP(g, )1 2=1p (L, w)n—1/2—n
=1+1I

dv(Q).
(©6)

av(¢)

av(g)

In I we use

"
@@ w)* ! = (BN =) (PEw) (&2 (@G w) — ¢(E,2)

=0
and
¢ w) — ¢, 2) = Oy () +1¢ —zD|z — wl.
Therefore,
y (2 (y@ +1¢ —zDlz — wl
1< dv
~ ;fa @ 6@l IgEwH — o VO

dv(¢)

N / 1 Iy (2)27¢ — y(w)>|
D

Y@ |p(c,w) |+ e — z|2n-1-21

s 3—¢’
< (@) |z — w| v
- ;}:/D Ye@) 19, )@ (0, w) | e — z|2n—1-2m ©)

H 2—¢’
v (2) |z — w|
+ dv
;/D Y@ 1@ ) F (g w) | g — z|Pnm22m ©

/ L ly@ —y@?|

b V(0 |p (g, w)|[HH|g — z|2n—1-2u
=I,+1,+ 1.

For the integral I, we break the region of integration into two parts, {| — w| <

|¢ —z|}and {|¢ — z| < |¢ — w]|}. By symmetry, we need only consider the region

{1t —zl =15 —wl}.

dv(g)
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We first consider the region E., where c is chosen as in Lemma 3.5. Without
loss of generality we can choose ¢ sufficiently small so that y (z) < y(¢) holds in
E.(z). We thus estimate

y(Z)S—e’—e

|z —w|
av@). a
o2l | (¢, )M (C, w) | g — z|2n=1=2m ©. @

Weuse y(z) < y(w) + |z — w| and
lz—wl? S1¢ =2 + 1t —wlf

S —wlf ®)
for § > 0 to bound the integral in (7) by a constant times
2 _1/2—a
b4 w w
|Z_w|1/2+a/ )1/(1) 4 )lf 1 | 2n—1-2 7dV(©)
D 1@ DI GG w) g -zl 2ntee
o Y (e — w[*
e [y T e VO
[ —zI=Ig—w]
©
We use a coordinate system sy, §2, ¢, ...,2,—2 as given by Lemma 3.6 with s; =

—r(¢) and s, = Im ¢, and we use the estimate from that lemma on the volume

element 3

t
dv(¢) <
O

wheret = v/ t12 4+ t%n_z; the second line follows from y (¢) < y(z) on E.(z).
We have the estimates

|dS]dS2dl‘|, (10)

$(5.2) Z 51+ [s2l + 1%,
Pw) 2 —r(w) + s+ 17
After redefining s, to be positive, we bound the first integral of (9) by

IZ _ w|l/2+ot
- y(w
oz 7
& —w|'/> 2n-3
/v (51 + 52 + t2)rH=1(s; + | — w|2)l+l/2t2n—1—2u+e+e’t dsyds dt
|z — w|1/2+a t2u—2—e—e’
<7
STl 7 Gt iy + e e d
|z — w|'/2+e / 1
< ——vy(w) - ds ds, dt
|r(w)|1/2 v SZ/S(SI + Sz)t3/4+a+e+e
|Z _ w|1/2+(x 1
S e Y@ SI5/165 157163/ atcre dsidsz dt
|Z _ w|1/2+a
y(w), (11)

T lrw)]v?

where V is a bounded subset of R.
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The second integral of (9) can be bounded by a constant times

| |a |§ - w|27a t2n73d ds, dt
I—w S1dS)
v (Sl + 50+ t2);1-ﬁ-l—l(s1 + |§ _ w|2)l+1t2n—l—2u+6+€/
t2[472767€’
<lz—wl|® dsyds, dt
v (814 59 + t2)uHI=l(g) 4 ¢ 2)Ha/2
Slz—wl

where again V is a bounded subset of R3. The last line follows by the estimates
in (11).
In estimating the integrals of 7, over the region D \ E., we write

1 |z — w|
-dV
/ D Y@ p@ I gl — e ¢V

Slz—w|®

/ ! & —w|'~ o
DB ye©) 19 PTG w) g — 2P

Slz—w|®

1 1
Vv
[D\Ef V) 196, 1M1 (g, w)|HI/2Hel2| g — g[2n—d-2ute e

[g—z|=IE—w]|
Sle—we [ v (12
Slz—w - .
Dp\E. VE(Q) | — z|?n-THate
We denote the critical points of r by py,..., p; and take ¢ small enough so that,
in each

Use(pj) ={¢ : DN — pj| < 2e},
for j = 1,...,k there are (by the Morse lemma) coordinates u;,,...,u;,, v,
., Vj,, such that

—r@Q) =uj 4 dui —v; == (13)

Jm Jm+1 J2n

w1th uj,(pj) = vj,(p;)) =0foralll <o <mandm+1=< B < 2n. Let U
U iz U,(pj). We break the problem of estimating (12) into subcases dependlng
on whether z € U,.

Subcase a: z € U,(p;). Define wy, ..., w,, by

. - (14)

uj, for 1<a <m,
w, =
* for m+1<a <2n.

Uj

o

Let x1,...,x;, be defined by {, = x4 + ix,4+,. By the Morse lemma, the Jaco-
bian of the transformation from coordinates xi, ..., x, to wy, ..., w,, is bounded
from below and above; thus we have
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1€ —z| = [w(@) —w(2)]

for ¢,z € Use(pj).
From (13) we have y(z) 2 |w(z)| and thus

lw(@) —w(2)| = ¢ -zl
2 v()
2 lw(2)]
= [w(@)] — lw(§) —w(2)],
S0 we obtain
lw(@)] < w(@) —w(z)]
~ ¢ —z|.

Using |w(¢)| < y(¢), we use the preceding coordinates to estimate

! 1
— o v
|Z wl /US\EC ye(é-) |§- — Z|2n_]+o‘+5/ (C)

um—lUZn—m—]
<|z—w|“f v — du dv
v (M + v) n—l+oa+e'+e

<z —wl4,
where weuse u = Vu? +---+u? andv=+vv? +---+v2 and where V is
J1 Jm Jm+1 J2n

a bounded set.
In integrating over the region D \ U, we have

1 1
Iz—wI“/ dv(z)
(

D\UNE. Y€(©) |§ — z|PnTHate

1
5|z—w|”/ V) <z —wl,
(D\UNE. V(O

which follows by using the coordinates wy, ..., w,.
Subcase b: 7 ¢ U,. We have | — z| 2 y(2), but y(z) is bounded from below
since z ¢ U,. We therefore have to estimate

1
—dV(0),
/D ye(©) ©

which is easily done by working with the coordinates wy, ..., wz,.

The region in which |{ — w| < |¢ — z| is handled in the same manner, and thus
we are finished bounding 7,,.

We now estimate [, and again we consider only the region |[¢ — z| < | — w|.
We first estimate the integrals of I, over the region E.(z), where c is chosen as
in Lemma 3.6 and sufficiently small so that [¢ — z| < y(¢). As we chose coordi-
nates for the integrals in /,, we choose a coordinate system in which s; = —r(¢)
and s, = Im ¢, and we use the estimate on the volume element given by (10). We
thus write
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2 |Z — U)|
Y (2) ;- dV(¢)
/f;“fl;,;w, 6@ OPFIG@ W)z — o2 2uree
Slz—wl®
(2)° ! dv (o)
@Qﬁilc—wl 7 | (5, ) [FH1=1p (¢, w) |1 H1/2Fel2|g — z|2n=2=2utete! ¢
2n-3
<lz—wl|* i dsds, dt
~ v (51 + 5 + £2)HHI=I(s, + 12)l+1/2+0/2 202 2ute+e 1652
M N f2u—l—e—e’
Slz—w ”‘/ / dsy dt
Sl | o Jo (514 1D)r—I(s) + 12)F1/2+a/z !
M N 1
< |z —wl|® -
Slz—wl A /0 s?/8t1/4+a+e+5’ ds dt
Slz—wl® (15)

where we have redefined the coordinate s, to be positive, V is a bounded subset
of R3, and M, N > 0 are constants. The integrals of I, over the region D \ E, are
estimated by (12).
For the integral I, we use
ly )™ =y I Sz —wlly ) + (')

and estimate

/ 1 z—wlyw)' < +y@'")

Y@ (G w)HHg — z|Pn—1=2m

Let us first consider the case y (w) < y(z) and integrate (16) over the region E,.

av(z). (16)

D
[¢—zl<|t—w

We use a coordinate system s, , ..., ,—1 with s = —r and the estimate
t2n72
av(e) < ds dt
y(2)

fort = vt2 +---+13 _,. We thus bound (16) by

|z —wly(2)' ¢
/DHEC |¢(§’w)|u+1|§ _ Z|2n7172u+e dV(é‘)

[E—zl<l¢—w]

v(2)
< _ o
sl /ﬁfﬁ;;_w, | (G, w)|wH1/2He/2|g — z|2n=1=2ptete! v

2n—2
<z —wl|® a ds dt
~ v (s + 12)u+l/2+e/2 2n—1-2p+e+e’
1

< lz—wl® —————dsdt
~ v §3/4¢1/24e+e+a/2
Slz—wl%, (17)

where V is here a bounded region of R2.
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Over the complement of E., (16) is bounded by

., 1 1
|z — w| fD - ‘ Ve(é-) |¢(§,w)|“+‘/2+°‘/2|§ _ Z|2n—2—2u+e, dV(;)
=zl=lg—w
< | I“/ 1 1 av(¢)
Sl w 7
D )/6(;) |§- _ Z|2n—l+e +a
Slz—wl%

which follows from the estimates of (12).
For the case y(z) < y(w) we estimate (16) over the region E., using coordi-
nates as before, by

/ 1 |z — wly ()~ V)
DO V@) @G w)HE — zprmim2n
|z — w|1/2+a/2
S T e y(w)
/ 1 : dav(¢)
DB YQ) [$(Ew)|rR ]y — z P2k
_ 1/24a/2 2n—2
= %y(w) v (s + t2)u+1/i+a/2t2n72u+€+6’ ds dt
|z — w|1/2+0¢/2
S Y (w), (18)

T w2

where the last line follows as before. Over the complement of E., we use y (w) <
|¢ — w] to bound (16) by

1 1
2 — w]® / , v (©)
R N e
1
5|z—w|‘*/ v
D ye(;-) |é— _ Z|2n71+6 +a
< lz—wl®

We are now done with integral /.

For 11 we again break the integral into regions |{ —z| < |{ —w]| and [ —w| <
|¢ — z|, again considering only the region |{ — z| < |{ — w]| since the other case
is handled similarly.

We write

(P(5,2)!/2)2 1720 — (P(g,w) /2?2
2n—2u—2

= Y (PP, w) ) (P, ) = Pgw)?)

=0
and use
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|P(g,2) = P(L,w)|
/2 172 —
[P = PG ol = e T )12

B Ir@l

< 16—zl + v ()

ST eoa |z —w|
_ [r(w)|

<|§ wl+ 0 e w

~ -1 ’

which follows from Lemma 3.9.
We thus estimate

y (w)>~¢
Ilf)lef\{*wl ye(é‘)
2n—2p—2
DY
=0 2—¢' rw
f rolz = wl(1z — 2l + )
D g (£, w)|HL(P (¢, 2) V) HI(P (¢, w)1/2)2n=1-2u—1|¢ — ]
y (w)>¢ |z — wl
~ Jp yeQ) g (g w)|rtl — z[2n-2m

g —zI=<[¢—w]

P(;, Z)n—l/Z—pL _ P(é., w)n—l/Z—p,

(@ (G, w)HHIP(L, )= V2=1P (g, w)r—1/2—n av()

dv(z)

[E—z|=It—w]

av(z)

y(w)'=¢ lr(w)|lz — wl
+ dVv
Do YO 1@ )L — g ©

=11, + II.

For 11,, we break the integral into the regions E.(z) and its complement. We
first consider

2—¢’ _
fD ) y (w) |z — w AV (@)

e Y@ @G — P
< |z—w|“/ 1 L 4V (@)
D\E_ Q) B VR
<le—wle [ — S
< b 7o) 1§ — g
<z —wl (19)

where we use Y (w) < |¢ — w| and the estimates for (12).
We then bound the integral 71, over the region E.(z) by considering the differ-
ent cases y(w) < y(z) and y(z) < y(w). In the case y(w) < y(z), we use a

coordinate system, s, f|, ..., fy,—; in which s = —r(Z); then, using the estimate
t2n—2
dav(e) < ds dt, (20)
v(2)

we have
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y(w)*=¢ |z — wl
fD E € +1 2n—2p dv(e)
prE Q) e w)EHe — 2P
|Z _ w|l/2+ot
<
iz 7
y(2)'~¢ ! dv(¢)
DNE, pn+1/4+a/21F — ~|12n—2p+e€
DoE ¢ (5 w)] ¢~z
lz — w|1/2+oz t2p.—2—e—e’
<z - B
~ |r(w)|1/2 V(w) v (s—|—t2)l‘«+1/4+01/2 dsdt
|Z _ w|1/2+a 1
|7 (w)[1/2 V(w)/v §7/843/4+atete’ ds dt
|Z _ w|1/2+u¢
<= 71
[r(w)|!/? v (w). @)
In the case y (z) < y(w) we estimate, as before,
y(w)*=¢ |z — wl
DNE € u+1 2n—2 dV(C)
g v @) rtlg — 2P
|Z _ w|1/2+a
oz 7
1
av
o VO gy e VO
ClrzwlPre (y(@) +1¢ — w)) W
~ 1/2 yiw DNE, pn+1/4+a/21F _ 512n—2p+e+e€’ o
()] pE 19Qw)l & —zl

The integral involving y (z) is estimated exactly as before. We thus have to deal with

|z — w|V/2He i — wl
|V(U))|1/2 y(w) gQZE‘;M_w‘ |¢(§’ w)llu+1/4+a/2|§- _ Z|2n72”’+6+€/ dV(C),

which we estimate using the coordinates s, t1,...,#,_1 as

|Z_w|1/2+a (w) |§—w| (g)
)z " DL (G w)[F A2 — g R
¢—z|=|l¢—w
|z — w2t (212
[r(w)|1/2 y(w) v (s t2)u-1/44a/2(g 4 £)2n—2pt1tete’ dsdt
|z — w|V/2+e |
[r(w)|1/? V(w)/v §3/4+a/2ete+841-8 ds dt
|Z — w|1/2+01
raoyiz 7

where 0 < 8 < 1/4 — (a/2 + € +€).
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For 11, we first estimate

y ()~ ()12 — w
dv
g\—i\cslc—w\ @) |o(C, w)|rHe — z]2nt1-2n ©)
1 ¢ —w[ree
szl av
i |Z w| /@\—ic?lz—uq yE(f) |¢(§,w)|l‘|§ _Z|2n+1—2ﬂ (C)
1

<lemwl dv

~ |Z w| /; ye(é-) |§ _ Z|2n71+o¢+g’ ({)

Slz—wl,

where c is chosen as in Lemma 3.6 and we use y(w) < |¢ — w|on D \ E.(z).
‘We now finish the estimates for /1;,. We have

y (w)! = Ir@©llz — wl
DNE, Y 1o w)|H g — g2 WO
[t —zl<|z—wl ’
! 1
< _ o 1—¢
~ |Z wl fDﬂEL- y(w) |¢(§-’w)|pl.—]/2+0l/2|§- _ Z|2n+l—2u+e dV(C).
¢ —zl<|¢—wl (22)
We again consider the different cases y (w) < y(z) and y(z) < y(w) separately.
With y (w) < y(z), we use coordinates s, 11, ...,#2,—; as before with the volume
estimate (20) to estimate (22) as
th—Z
|z —w] /‘; (s + t2)“_1/2+0‘/2(s + t)2n+1—2#+6+e’ dsdt

1
< _ o
Slz—wl /v sl/24a/2tete+op1-8 ds dt

S |Z - wl“?

where 0 < 8§ < 1/2— (a/2+ € +¢€’) and V again denotes a bounded subset of R?.
In the case y (z) < y(w), we write y (w) < y(z) + |¢ — w| and estimate (22) as

|Z_w|(¥/DnEC V(Z)+|§_w| dv(é_)

D |¢(é-, w)|u71/2+o¢/2|§ _ Z|2n+172u+e+e’

The integral involving y (z) is handled exactly as before, so we estimate

¢ —w]
|z — wl|® / V)
DNE, U—1/24a/2 7 _ ,|2ntl—2ptete’
0 12 G ¢ —z|
1
< _ o
~ |Z wl DNE, |¢(;’,w)|u71+a/2|§ —Z|2"+172M+€+€/ dV({)

[E—zl=[t—w]|
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The case of u = 1 is trivial, so we assume w > 2 and use the coordinates
S,t, ..., 2,1 to estimate

z‘2n—2
o
|Z w| /; (S + t2)u71+a/2(s + t)2n+272u+e+e’ ds dt
<lz—w | ———
Slz—wl /v $3/Ata/2rete (12 ds dt
Slz—wl®

Case B: A is of double type (1,2). Following the previous arguments, we see
that we need to estimate

/ 1 |y (@7 (@@ w) ! — y(w)> < (¢ (g, 2)# ! V@
p YOl (@G w)H (L, 2))HP (g, 7)1k
y ()2 P(g,2)" 17 — PG w)"IH
+/D O | Gyt PE, o rp i | 4@

=1l +1V.

Following the calculations for integral / in Case A, we estimate [/ by the
integrals

H 2—¢’
y(2) |z — w]
1A%
;fn Y (< 1o DHH (g, w) | — 7|20 ©

M 2—¢’
v(2) |z — w|
+ dv
,2(;/0 YOI (@ (g, )M (g, w) g — z?n=32m ©

1 Iy ()¢ — y(w)?¢|
/D YOI |p (g, w)|H|g — z|2n—2-2m dv(¢)

=1, + 11, + 111..

Estimates for the integral 171, are given by I, in Case A.

For the integrals of 111, we consider separately the regions E.(z) and its com-
plement. We again consider only the case |[¢ — z| < [ — w].

In the region D N E.(z), we use a coordinate system in which s = —r(¢) is a
coordinate, and we use the estimate on the volume element in E.(z) given by (20).
We can also assume that c is sufficiently small to guarantee that | — z| < Y (&)
in E..

The integrals

y(2)>¢ |z — wl

Pt YO g @) @) Hg - PR

dv(¢)

can thus be bounded by
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|Z _ w|l/2+rx
oz 7
& —wl® e 122 ds dt
o 12\utl/2—1 12+l s _ S2n—2—2utete S
v (s +1¢—z%) (s +1¢ —wlH)™¢ —z
|Z _ w|l/2+a t2n72
< (z)/ ds dt
|r(Z)|l/2 4 v (S + |§' _ Z|2)“+5/4+°‘/2|§ _ ZlZn—2—2u+e+e
|Z _ w|l/2+a tz,_[,—e—e/
S T r@E y(2) G T e ds dt
|Z _ w|1/2+a 1
ST Y@ ) dEpmaaree dsdt
|2 — |/
Y (2),

o r@lv?

where V is a bounded subset of R2.
‘We now estimate

y(2)>¢ |z — w]
dVv
ff;\’;};,{w, YOI [¢ (g, D) (g, w) | — z]2n=3-2 ©

1 1
< _ o
S lz—wl /D\EC Y(O)F | (L, w)| IV 2Ha/2| g — 7|2n=3-20+€ dv ().
[g—zl=l¢—w]
We use coordinates uj,, ..., u;,,Vj,.---»Vj,, as in (13) and the neighborhoods
U,¢(pj) defined previously. We break the problem into subcases depending on
whether z € U,.

Subcase a: z € U.(p;). As we did before, define wy, ..., w,, by
uj, forl<oa<m,
Wy =
v;,, form+1=<a=<2n,

and let xy, ..., xp, be defined by ¢, = x4 + ix,+4. Recall that we have |w(¢)| <
| —z| and |lw(¢)| < v (¢). Thus we estimate, using the coordinates just defined,

o 1 1
2wl / DVE L YOI @G w)|H2Tal2g — g prmamalie e
z|=E—w|
< o ! ! dv
~ |Z - w| D\E. y(§)1+€ |€ _ Z|2n72+a¢+e’ ({)

[ —z|=|¢—w|

—1,2n—m—1
um v
<lz—wl|® - du dv
v (u + v)2n—l+a+s+e

1
< — o -
Slz—wl /‘/u1/2U1/2+a+€+6’ du dv

S lz—wl’, (23)
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whereweuseu:x/u]zl—i—-u—i—ufm and v = Vv?2 +~-~+vj22n and where V is

Jm+1
a bounded set. '
Subcase b: 7 ¢ U.. We have | — z| 2 y(2), but y(z) is bounded from below
since z ¢ U,. We therefore have to estimate

1

which is easily done by working with the coordinates wy, ..., ws,.
We now estimate integral ///.. We use

ly (27 —y )1 Sz — wl(y ()™ 4+ yw)'=)
to write

Y@ + y )= |z — wl

I, <
y(§)te | (¢, w)|[#F1|g — z|2n=2=20

av(z).
le—zl=l¢—w]

We first assume y (w) < y(z). Then we estimate

y()'=¢ |z — wl
/ Dy YOI 1@ w) | E — g2 v 4

by breaking the integral into the regions E. and D \ E.. In E_, again assuming ¢
is sufficiently small so that | — z| < y(¢), we see that (24) is bounded by

|z — w|

1—€’
v (2) | (C,w)|#H1|e — z|2n—1-2n+e

) av (@),

[ —zl=[—w]|

which we showed to be bounded by |z — w|* in (17). In the region D \ E., we
estimate

y(2)'=¢ |z — wl
/D E. Z|2n—2—2u dV({)

\ I+e pntl s —
My YO B G L
1 1
5|Z_w|a/ T 1/2+a/2 3z AV
DAE ) YOI w) [ lZHar2|g — g|2nm3m2ue
S |Z - w|a5

where the last line follows from (23).
We therefore now consider the case y(z) < y (w) so that

y(w)!=¢ |z — wl
1. < dv().
/ D YO 1D — g2 ©

In the region E., we estimate
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y (w)'=¢ |z — wl
dv
/gﬂgg,wl YOI |p (¢, w)|rH g — z|2n=2-2 ©

lz — w|
< fme Y (w) av(o)

R 1 _Z2n7172p,+e+e/
ke e w) s —

|Z _ w|1/2+a

N Wy(w)

1
/DQEL. | |¢(§-’w)|u+1/4+a/2|§- _ Z|2n—l—2u+e+e’ dV(é’)
[t —z|=I¢—w]

Using the coordinate system s = —r({), t1 ..., t2,—» With volume estimate (20),

as before we can estimate

|Z_w|l/2+ot z‘2n—2 |Z_w|l/2+a

—y(w dsdt < ———y(w
I (w)]1/2 y (W) v (s + t2)uHl/A+a/242n-2p+ete’ ~ o r(w)| /2 y (W)

by (21).
In the region D \ E., we use y (w) < | — w| to estimate

y(w' |z —wl
dv
/f;\_’g;flg_wl y @ i@ — g

</ ! ¢ —wl'"“lz — wl

ToE V@I w) | — g
" 1 1

<lz—wl av(e)

D\E. I+e ute/2+a/2|F _ ,2n—2—2p
D\E Y@ g w)] &l

1 1
Sle-wl” —av(©
@lilrflg_wl V(§)1+€ |§ _ Z|2n—2+€ +o
um71v2n717m
Slz—wl® — du dv
v (I/t + v)Zn—l+€+E +o

S lz—wl (25)

dv(¢)

where the coordinates 1 and v are defined as in (23) and where the last line follows
from (23). We have finished estimating integral /71 and now turn to /V.
As in Case A for integral 11, we estimate I'V by the integrals

y(w)27€/ |Z — w|
dv
/|l§—z|<|;_w| YO (@, w)|# g — z]2n=1=20 @
y)><  r©llz — wl
+ dv
J Y@ TpGmg —zpran

[¢—zl<|t—w]|
=1V, +1V,.
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To estimate /V,, we break the region of integration into E,. and D \ E.. In the
region D \ E. we use y (w) < |¢ — w| and estimate

/ 1 vl av(e)
DiE Y@ G — 2
<lz- w|“f : — V(o)
D\E Y@ [ w) T VR —
5|z—w|“/ ! L v
DB ()T g 2 dera

le—zl<lg—wl
Slz—wl®

where the last line follows from (25).
In the region E., we consider the different cases y(w) < y(z) and y(z) <
y (w) separately. In the case y (w) < y(z) we write

f y ()< |z — wl V)
gy (O g w)[#HIfe — 2Pt
y(2) |z — w]
Syw) ;dV(¢)
P YOI (PG w)[ g — iR
|Z _ w|l/2+a
S T Y (w)
1
P e —wl 7 | (¢, w)|#F1/4+a/2|g — z|2n=2utete! V.
We choose a coordinate system in which s = —r(¢), and we use the estimate on
the volume element given by (20) to reduce the estimate to
lz — w|l/2+a t2,u_—2—e—e’ |z — w|l/2+ot
_ — —dsdt < ———— ,
raoz 7 [, Gy © 48 g )
which follows from (21).
In the case y(z) < y(w), we have
y (W) |z = wl AV
pEc @ [p@m e~z
c—zl<lc—uwl ¥ ’ :
|Z _ w|1/2+a
S T y(w)
1
DNE, y(w) |¢(§-’ w)|“+1/4+°‘/2|§ _ Z|2n72u+€+e’ dV(C)'

[¢—z|=[¢—w]
We then write y (w) < y(z) 4+ [ — w|. We bound
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|z — w|/2+e 1
Wy(w) ksl 7 | (¢, w)|Hl/atal2|g — z|2n=2utere! v
|z — w|1/2+[x i
< Wy(w)
by (18) and then consider
— anl1/24a
L%?fngVE_'y(uo @Qfﬂqg_w||¢(C,u0|”_v4+a/;§ —-ZP”—2M+6+4‘1V(i26)

The case u = 1 is trivial, so we assume @ > 2. Here we use coordinates s =
—r(¢),t,...,t2,—1 and bound (26) by

1/24a t2p.—3—e—e’

y(w) ; W ds dt

|z — w2+ |
i) | e s

1/2+a

|z — w|
[r(w)|1/?

< |z — w]
[r(w)|!/?

To estimate 1V}, we use

y(w).

r@l _
y@)? "~

which follows by working in the coordinates of (13) near a critical point; thus
we have

y(w)>=< 1z — wl
1V, < dv (o). 27
“‘ézgzw y(©)F 19 w)|rH | — z[2n—2n ©. @

We break the regions of integration in (27) into E. and D \ E.. The estimates for
1V}, in the region E. are handled in the same manner as for /V,. In the region
D\ E;,weuse y(w) < |¢ — w| to bound (27) by

)2—5’

y(w |z — w|
D\E € +1 2n—2 dv(¢)
D\E_ o V(O [g(Gw)ig — g
1 1
Sle—wl® : dv ()
l[{)lii;‘{iwl )/({)6 |¢(§',w)|/‘_1/2+6 /2+a/2|§ _ Z|2"_2“
S V/ 1 1 dv()
Z—w
~ D\E. € _ o|2n—14+€'+a
D\E Y@L~z
Slz—wl™

This completes the proof of part (i) of Theorem 3.10.
(ii) For T* a smooth, first-order tangential differential operator on D with re-
spect to the z variable, we have
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T*r =0,

Tr* = 8070}’,

TP =gy oteh, "
=cC1,0+ 0’0;(7/—*)2

*

€0,0
= &0+ F(P +€2,0),

T¢ = Ep1+ Ev0.

We consider first the case in which the kernel of A is of double type (1, 3) and
of the form A 3(¢, z), where the subscript (3) refers to the smooth type. Thus
we write

Y T Az =y Any + v Ae +Ap (28)

and estimate integrals involving the various forms that the integral kernels of dif-
ferent types assume.
We insert (28) into

V*TA@)f=/;f(()V*TZAG)(LZ)dV(C),

and we change the factors of y* through the equality y (z) = y(£) + &1,o. Part (ii)
will then follow in this case by the estimates

y<(2) 1
—A ) dV 5 i
/D LA DY) S

/ P& @ V) <
D

Y1) Ir(2)1®°
r<(2) 1
[A3) (&, DdV(E) S . (29)
—/D Y2 Ir(2)[°
We will prove the case of (29) in which A3 satisfies
< - .
Azl < P H > 1
the other cases are handled similarly.
Using the notation from part (i), we choose coordinates u;,, . . ., 1}, , Vj,. .1 - - - > Vs,
such that
Q) = e, =, =,

and let U, = | jkzl U,(pj). We break the problem into subcases depending on
whether z € U,.
Subcase a: z € U;(p;). We estimate

y€(2) 1
/UMm Javer) igrrrpn w4V (30)

and
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r<(2) 1
/DE\UZS N s dv (o). 31)

We break up the integral in (30) into integrals over E.(z) and its complement,
where ¢ is as in Lemma 3.6. We also choose ¢ < 1 so that we also have the esti-
mate | — z| S y(¢). Wesetd = —r(2).

In the case U, (p;) N E.(z), we use a coordinate system s = —7(£), t1, ..., 2,1
and estimate

y<(2) 1
/ 2 +1pn—-3/2— dV(é‘)
Use(ppNEe(z) Y2TE(C) |@I#TP K

t2n72
S ds dt
~ ‘/‘./ ylff/(z)(e + s+ t2)"+1(s + t)2n7172/4+€ S

t2u72+e’7e
S / ————dsdt
y O +s+ 12t
1 t2//,—2+e’—e

S5 )y Grmes e

LMo o el
< & L ~
~ g fO §3/2-6 ds/o (1 + 52)u+1—5 dt

1
<
where M > 0 is some constant and we have made the substitution 7 = s'/7.
We now estimate the integral

y€(2) 1
dav (). (32)
/UzS(p_,»\Ec(z) yIre(g) lgntipn=3/2—r

Defining u = v ”121 +- 4 ufm andv = Uj2m+1 +- 4 vjzz" and then using the
estimates

lw@| < 1¢ -z and  [w(O)] < y(©),
where w(¢) is defined as in (14), we can bound the integral in (32) by

y<(2) 1
/ 2 +1pn-3/2— dv(¢)
Use(p\Ee(z) YETE(E) |@|*FIP "

um71v2n7m71
S / - du dv
v (u + U)Zn—l+e—e (9 + u2 + UZ)

1
S / - du dv
v ()0 +u? +0?)

1 1
ﬁfvmdudv
I
65

N

; (33)

A
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where V is a bounded region. We have therefore bounded (30), and we turn now
to (31).
In D \ U, we have that [¢ — z| and y (¢) are bounded from below, so

(@) 1
av(¢) < 1.
/D\Uzs y2re(Q) |p|ntipn=3/2=n

This finishes Subcase a.

Subcase b: 7 ¢ U,. We divide D into the regions DN E.(z) and D \ E.(z). In
D N E.(z) the same coordinates and estimates work here as when we established
the estimates for the integral in (33).

In D\ E.(z) we have | — z| = y(2), but y(z) is bounded from below since
z ¢ U,. We therefore have to estimate

1
dv(¢),
/oy”f(C) «

which is easily done by working with the coordinates wy, ..., ws,.
(iii) The proof of Theorem 3.10(iii) follows the same steps as those in the proof
of part (ii); we leave the details to the reader. O

THEOREM 3.11.  Let X be a smooth tangential vector field. Then

i
)/*XZEl_zn = —El_zn)}g)/ + El((i)Zn + Z El(i)z;«l’
v=1

where X is the adjoint of X and the E 1(1)2,1 are isotropic operators.

Proof. The proof follows the line of argument used in proving Case 1 of Theo-
rem 3.4 and makes use of (yX* + y*X?)& , =&, . O

THEOREM 3.12.  Let T be a smooth tangential vector field. Set E to be an oper-
ator with kernel of the form €\ _, (¢, 2)Ri(¢) or €5 5 (£, 7). Then, for any 1 <
p <s <oowithl/s > 1/p —1/2n, we have the following properties:

(i) Ei—2x: LP(D) — L(D);

(ii) E: L®2S%D) — Ay o (D) withO < €,¢’ and a + € + €' < 1;
(iti) Y*TE: Ay24e(D) — L%O(D) withe < €’;

(iv) E: L®¢%(D) — L€ %D) withe < €' and § < 1/2+ (¢ — €)/2.

Proof. Part (i) is proved in [3]. The proof of (ii) follows that of Theorem 3.10(i).
For (iii), we let £(¢, z) be the kernel of E and calculate

(J/*)HG/TEf:/ F@y T EE,2)dV(5)

g
/ ) 2+Ef(§)¢ v (o)

/(7/ ¥ Q) - (S ))ﬁdV(C)

€
+ (S f (") %dvm (34)
D
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We use Theorem 3.11 in the last integral to bound the last term of (34) by

o1 &1
(> f(2) f €1-20,0(y ") <y1_+ + y2+e> ave) £ (D £
D
S I fllzsozteo,
5 ||f||Aav2+€’

where the first inequality can be proved by breaking the integrals into the regions
U, and D \ U,, and by using, in the region D \ U,,, the same coordinates as in
the proof of Theorem 3.10(ii).

For the first integral in (34), we note that if f € A, then y>*¢f € A,. We have

€
/(7/ ¥ NTFQ) = (P ))—@Z) av()
*Tz
SIS, [ 16 =2t LT 2ED ave
Y
Sy flia,
The proof of part (iv) follows as in the case of Theorem 3.10(iii). O

4. C* Estimates

We define Z; operators to be those that take the form

Zi=Aqny+ Ei—2, 0,
and we write Theorem 2.3 as

vf = Ziy*8f + Ziy*8f + Zu f. (35)
We define Z; operators to be those operators of the form
Z,‘:Z]O”~OZ].
' —
J times

We establish mapping properties for Z; operators as follows.
LEMMA 4.1. For0 <€’ <e,

1Z;fllzoeco S ALF Il poosveto- (36)
The proof follows arguments similar to those used to prove Theorem 3.10.

LEmMMA 4.2. Let T be a tangential vector field and ¢ > 0. For € > 0 sufficiently
small, we have:

(i) Zpi2: L*(D) — L>(D);

(i) IyTZafllcvae S NS lpsosseo.

Proof. For part (i), apply Corollary 3.1 and Theorem 3.12(i) n + 2 times.

For part (ii) we let o < 1/4, apply the commutator theorem (Theorem 3.4), and
consider the two compositions Z; o Zyo yTAjo Zyand Zy0 Zy o yTE o Z,. From
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Theorems 3.10 and 3.12 we can find €y, ..., €4 such that 0 < €;4; < €; and such
that in the first composition we have
1Z10ZyoyTAy0 Zi flia, SN Z10oyTA10 Zy fllpseao Sl YTAL0 Zy fllpxeas

SNZyfllpso2teso Sf Il poos+eno
and, in the second,

1Zy0 Zi o yTE o Zi flla, S 1Zi o yTE o Zi fllzman S IYTE o Zi fllpmisero
SNZflagare S 1 lpmareso.

The second and third inequalities are proved in the same way as in parts (ii) and
(iii) of Theorem 3.12. 0

We now iterate (35) to get
vIf = (Zw U0 4 2y Uy ij2)5f
H (2R 2oy 2y + 2 (BT)
Then we can prove the following statement.

THEOREM 4.3. For f € L%’q(D) N Dom(d) N Dom(3*), g > 1, and & > 0,

13"l cr-e SNY2af lloo + 11720*F lloo + | £1I2-

Proof. Use Theorems 3.10(i) and 3.12(ii) and Lemma 4.2(i) in (37) with j =
n+ 3. O

We use DF to denote a kth-order differential operator, which is a sum of terms that
are composites of k vector fields.
We define

k k
Qk(f) =Y Iy DIof o + Y Iy 2D/ flloo + 1 £ l2-
j=0 j=0

We shall use T* to denote a kth-order tangential differential operator, which is
a sum of terms that are composites of k tangential vector fields.

LEMMA 4.4. Let T* be a tangential operator of order k. For &,€ > 0,
ly 3O s S Qu(f)
Proof. We first prove
ly EEEEET L e S Qi) (38)

The proof is by induction in which the first step is proved as was Theorem 4.3. We
choose j = 3 in (37) and then apply (37) to y3"+2+7kf to get

J/3(n+2)+9+7kf — anzéf + Zlyzé*f 4 Z3)/3(n+2)+7kf.

We then apply ¥ (yT)¥, where T is a tangential operator. We use the commutator
theorem, Theorem 3.4, to show that
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J/3(n+2)-i—9-+—8k-+—e ka
k—1
— ye Z Z3y3(n+2)+7k+jij + J/GJ/TZ3)/3(’1+2)+8k71Tk71f
j=0
k k
+y Y ZwITTIOf + vy 2y PTG (39)
j=0 j=0

By Lemma 4.1 and the induction hypothesis, we conclude that the L°° norm of the
first term on the right-hand side of (39) is bounded by Qi_1(f).
In the same way that we proved Lemma 4.2 we have

J/TZ3Z LOO,3+€/,O(D) — LOO,E,O(D)
for some 0 < €’ < €, so the L®™ norm of the second term is bounded by
” y 3(n+2)+8k+2+€/Tk71f ||Loo < ” y3(n+2)+9+8(k71) Tk*lf ||Loo < Qk—l(f)~
The last two terms on the right-hand side of (39) are obviously bounded by Q. (f),
and thus we are done with the proof of (38).
To finish the proof of the lemma, we follow the proof of (38) and choose k = 4

in (37). We then apply (37) to y 3" *2+7k £ and again apply the operators y<(y T),
where T is a tangential operator. In this way, we show that

y3(ﬂ+2)+12+8k+6 ka
k—1
— yé Z Z4y3(n+2)+7k+jij + yeyTz4y3(ﬂ+2)+8k71Tk71f
j=0
k k
+y Y ZwITPTIOf + Y 2y PTG (40)
j=0 j=0

By Theorems 3.10(i) and 3.12(ii), for some €’ > 0 the first sum on the right-hand
side of (40) has its C'/4~¢ norm bounded by

1Z3y 3O DHFTREEHRITI || oo < Opi ().

We can use Lemma 4.2(ii) to show that the C/4~¢ norm of the second term is
bounded by
ly 3 RHORSEDRETE L < Qi (f)

~

as before.
The last two terms on the right-hand side of (40) are easily seen to be bounded
by Ok (f), and this finishes the proof of Lemma 4.4. O

In order to generalize Lemma 4.4 to include nontangential operators, we use the fa-
miliar argument of utilizing the ellipticity of d @ 8* to express a normal derivative
of a component of a (0, g)-form f in terms of tangential operators acting on com-
ponents of f and on components of 3f and 3*f. With the (0, ¢)-form f written as

/= Z fr’

I/1=q
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locally, we have the decomposition in the following form:

yNfs =Y ayxyTifx + Y bt

JjK L
+ Y emy@)u+ Y dipy @ f)p, (41)

M P
where N = L, + L, is the normal vector field and T}, ..., T»,,_ are the tangential

fields described in Section 3. The coefficients a ik, by, ¢ ju, and d;p are all of the
form €y,0, and the index sets are strictly ordered with J, K, L, M, P C {1,...,n},
[JI=IK|=I|Ll=¢q, M| =q+1,|Pl=g—1,and j =1,...,2n — 1. The
decomposition is well known in the smooth case (see [3]), and to verify (41) in
a neighborhood of y = 0 one may use the coordinates u;,, ..., %, ,Vj, s ---»Vjs,
as in (13). For instance, integrating by parts to compute 8*f leads to terms of the
form &€y _; f;, where multiplication by y allows us to absorb these terms into by,

It is then straightforward to generalize Lemma 4.4. Suppose DF is a kth-order
differential operator that contains the normal field at least once. In y*D* we com-
mute yN with terms of the form y 7, where T is tangential, and consider the op-
erator D¥ = D*~' o yN, where D*~! is of order k — 1. The error terms due to
the commutation involve differential operators of order < k — 1. By (41) we need
only consider D*~'yTf, D*~'9f, and D*~'9*f. The last two terms are bounded
by Qi_1(f), and we repeat the process with D¥~!y Tf until we are left with k tan-
gential operators for which we can apply Lemma 4.4.

We thus obtain the weighted C* estimates described in the following theorem.

THEOREM 4.5. Let f € L§ (D) N Dom(d) N Dom(3*), ¢ = 1, a < 1/4, and
€ > 0. Then
ly 2O L crra S Qi ().

As an immediate consequence we obtain weighted C* estimates for the canonical
solution to the 9-equation.

COROLLARY 4.6. Let g > 2 and let N, denote the d-Neumann operator for
(0,g)-forms. Let f be a d-closed (0, q)-form. Then, for a < 1/4 and € > 0, the
canonical solution u = 3*N, f to du = f satisfies

3 6)+8k k+2
Iy 2Oy crve S MY 2 Fller + 11 F Il

Using more efficient definitions and notation developed by Lieb and the author,
one can show that the left-hand side of the relation may be replaced with y2f. This
would imply an improvement for the estimates in Theorem 4.5 as well, with the
3(n + 6) term being replaced by 2(n + 6).
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