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Spectral Characteristics and Stable Ranks
for the Sarason Algebra H∞ + C

Raymond Mortini & Brett D. Wick

0. Introduction

We prove a corona-type theorem with bounds for the Sarason algebra H∞ + C

and determine its spectral characteristics, thus continuing a line of research initi-
ated by N. Nikolski. We also determine the Bass, the dense, and the topological
stable ranks of H∞ + C.

To fix our setting, let A be a commutative unital Banach algebra with unit e
and let M(A) be its maximal ideal space. The following concept of spectral char-
acteristics was introduced by Nikolski [15]. For a ∈ A, let â denote the Gelfand
transform of a. We let

δ(a) = min
t∈M(A)

|â(t)|.

Note that δ(a) ≤ ‖â‖∞ ≤ ‖a‖A. When a = (a1, . . . , an)∈An we define

δn(a) = min
t∈M(A)

|â(t)|,

where |â(t)| = ∑n
j=1|âj (t)| for t ∈M(A), and we let

‖a‖An = max{‖a1‖A, . . . , ‖an‖A}.
Typically, one defines |â(t)| = |â(t)|2 := (∑n

j=1|âj (t)|2
)1/2

and ‖a‖An =‖a‖2 :=(∑n
j=1‖aj‖2

A

)1/2
. Our later calculations will be easier, though, with the present

definition.
Let δ be a real number satisfying 0 < δ ≤ 1. We are interested in finding, or

bounding, the functions

c1(δ,A) = sup{‖a−1‖A : ‖a‖A ≤ 1, δ(a) ≥ δ}
and

cn(δ,A) = sup

{
inf

{
‖b‖An :

n∑
j=1

ajbj = e

}
, ‖a‖An ≤ 1, δn(a) ≥ δ

}
(0.1)

whenA is the Sarason algebraH∞+C. If a is not invertible, we define ‖a−1‖=∞.
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It should be clear that 1 ≤ cn(δ,A) ≤ cn+1(δ,A) and, if 0 < δ ′ ≤ δ ≤ 1, then
cn(δ,A) ≤ cn(δ

′,A). This implies the existence of a critical constant, denoted
here by δn(A), such that

cn(δ,A) = ∞ for 0 < δ < δn(A) and cn(δ,A) < ∞ for δn(A) < δ ≤ 1.

It is clear that if A is a uniform algebra, then δ1(A) = 0 and c1(δ,A) = 1/δ. It
is not known for which uniform algebras δn(A) > 0.

If A = H∞, the algebra of bounded holomorphic functions in the unit disk
D, then the famous Carleson corona theorem tells us that δn(H∞) = 0 for each
n. Estimates for cn(δ,H∞) were given by (among others) Nikolski [14], Rosen-
blum [17], and Tolokonnikov [25]. The best-known estimate today seems to appear
in [27] and [28]; see also [29]. Here, for the lower bound, δ is close to 0 and κ is
a universal constant:

κδ−2 log log

(
1

δ

)
≤ c(2)n (δ,H∞) ≤ 1

δ
+ 17

δ2
log

1

δ
,

where c(2)n (δ,A) denotes the spectral characteristic cn(δ,A) described previously
whenever defined with the Euclidean norms |·|2 and ‖·‖2.

The structure of the paper is as follows. In Section 1 we consider the problem
of solving Bezout equations in the Sarason algebra H∞ + C. Indeed, we prove
that the corona theorem with bounds holds in H∞+C (i.e., δn(H∞+C) = 0 for
each n). We also give explicit estimates of the associated spectral characteristics.

In Section 2 we present different notions of stable ranks that are relevant to the
topic of this paper. We also show the relationships between these various notions
of stable ranks.

In Section 3 we determine the Bass and topological stable ranks of H∞ + C.

These results can be considered as a generalization of the corona theorem for H∞.
In particular, we investigate whether any Bezout equation af +bg = 1 in H∞+C

admits a solution where a itself is invertible. We also show that, on (H∞ + C)-
convex sets in M(H∞ + C), zero-free functions admit (H∞ + C)-invertible ap-
proximants. This will be used to determine the dense stable rank of H∞ + C.

1. Spectral Characteristics of the
Sarason Algebra H∞ + C

Since we are dealing only with uniform algebras A, we shall identify the elements
in A with their Gelfand transform f̂ .

Let L∞(T) denote the algebra of essentially bounded, Lebesgue measurable
functions on the unit circle T. Then a Douglas algebra is a uniformly closed sub-
algebra of L∞(T) that properly contains the algebra, H∞, of (boundary values
of ) bounded analytic functions in the open unit disk D = {z ∈ C : |z| < 1}. We
refer the reader to the book by Garnett [7] for items and results not explicitly de-
fined here.

The simplest example of a Douglas algebra is the algebra H∞ + C of sums of
(boundary values of ) bounded analytic functions and complex-valued continuous
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functions on T. This algebra is frequently called the Sarason algebra because it
was first shown by Sarason that this space is a closed subalgebra of L∞(T); see
[22]. He showed that (on T) H∞+C is the uniform closure of the set of functions
{f z̄n : f ∈H∞, n∈N}. Thus, H∞ + C = [H∞, z̄], the closed algebra generated
by H∞ and the monomials z̄n.

Let M(H∞) denote the maximal ideal space of H∞. It is well known that the
spectrum of M(H∞ + C) can be identified with the corona of H∞—namely, the
set M(H∞) \ D; see [7, p. 377]. We denote by

Z(f ) = {m∈M(H∞) : f(m) = 0}
the zero set of a function inH∞. We will also need the notion of pseudo-hyperbolic
distance, ρ(x,m), of two points m, x ∈M(H∞). Recall that

ρ(x,m) = sup{|f(m)| : ‖f ‖∞ ≤ 1, f(x) = 0}
and that for z,w ∈ D we obtain ρ(z,w) = ∣∣ z−w

1−wz

∣∣, where we identify the point
evaluation functional f �→ f(z) with the point z itself.

Also, for a set E in M(H∞), we let ρ(E, x) = inf{ρ(e, x) : e ∈ E} be the
pseudo-hyperbolic distance of E to a point x ∈ M(H∞). Similarly, ρ(E,U) =
inf{ρ(E, u) : u ∈ U} = inf{ρ(e, u) : e ∈ E, u ∈ U}. It is well known that for
closed sets E the distance functions ρ(·, ·) and ρ(·,E) are lower semicontinuous
on M(H∞); see [8] and [9]. In particular, if ρ(E, x) > η > 0 then there exists an
open set U containing x such that ρ(E,U) > η.

Finally, for a point m ∈M(H∞), let P(m) = {x ∈M(H∞) : ρ(x,m) < 1} de-
note the Gleason part associated with m. For example, D itself is the Gleason part
asociated with the origin. By Hoffman’s theory, there exists a map Lm of D onto
P(m) such that f̂ �Lm is analytic for all f ∈H∞. If (aβ) is any net in D that con-
verges to m, then Lm is given by Lm(z) = lim

aβ+z

1+aβz
, where the limit is taken in

the topological product space M(H∞)D.

1.1. The Corona Property for H∞ + C

Our first theorem is based on Axler’s result that any function u∈L∞ can be multi-
plied by a Blaschke product into H∞+C. See [1]. Using this result, it is possible
to prove the following assertion.

Theorem 1.1. The corona theorem with bounds holds on H∞ + C.

Proof.

Step 1. We first consider H∞-corona data on M(H∞ +C). The goal is to find
H∞ + C solutions.

Let f1, . . . , fn ∈ H∞ satisfy ‖fj‖∞ ≤ 1 and |f1| + · · · + |fn| ≥ δ > 0 on
M(H∞ + C). In particular, |f1| + · · · + |fn| ≥ δ > 0 a.e. on T. Hence

1 =
n∑

j=1

fj
fj∑n

k=1|fk|2
a.e. on T.
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Note that the functions fj/
∑

k|fk|2 belong to L∞(T). By the Axler multiplier
theorem [1], there exists a Blaschke product B such that for all j ∈ {1, . . . , n}

%j := B
fj∑
k|fk|2

∈H∞ + C.

So, a.e. on T, we have B = ∑
j %jfj . Moreover, ‖%j‖∞ ≤ n/δ2.

We know that, by continuity, there exists an annulus Ar := {r ≤ |z| < 1} such
that |f1| + · · · + |fn| ≥ δ/2 on Ar. Choose a tail B1 of B such that |B1| ≥ δ/2
on {|z| ≤ r}. Let b1 = B/B1. Note that b̄1, viewed as a function on T, belongs to
H∞ + C.

Now consider the ideal I(f1, . . . , fn,B1) in H∞. We obviously have that
|f1| + · · · + |fn| + |B1| ≥ δ/2 on D. Hence, by the H∞-corona theorem, there
exists a constant depending on δ, C(δ), and functions x1, . . . , xn, t ∈H∞ with

‖x1‖∞ + · · · + ‖xn‖∞ + ‖t‖∞ ≤ C(δ)

such that 1 = ∑n
j=1 xjfj + tB1 on D, and thus almost everywhere on T we have

1 = ∑n
j=1 xjfj + tB1. Switching again to H∞ + C, we see that a.e. on T

B1 = b̄1B =
n∑

j=1

(b̄1%j)fj .

Hence

1 =
n∑

j=1

xjfj + t

( n∑
j=1

(b̄1%j)fj

)
=

n∑
j=1

fj(xj + t b̄1%j),

where
∑n

j=1‖xj + t b̄1%j‖∞ ≤ C(δ)(1 + n2/δ2) =: χ(δ). Since H∞ + C is an
algebra, the functions ϕj := xj + t b̄1%j belong to H∞ +C. Thus, we have found
a solution with bounds to the Bezout equation

∑n
j=1ϕjfj = 1 a.e. on T or, equiv-

alently, on M(H∞ + C).

Step 2. We now look at general H∞ + C corona data.
Let F1, . . . ,Fn ∈ H∞ + C satisfy ‖Fj‖∞ ≤ 1 and

∑n
j=1|Fj | ≥ δ > 0 on

M(H∞ + C). Let χ(δ) be the function described previously. We uniformly ap-
proximate Fj by functions of the form z̄Njfj ; say

n∑
j=1

‖Fj − z̄Njfj‖∞ ≤ ε = ε(δ) := min{δ/4, [4χ(δ/2)]−1},

where fj ∈H∞ and ‖fj‖∞ ≤ 1.
Then

∑n
j=1|fj | ≥ δ/2 on M(H∞ + C). We apply Step 1 to the functions fj

and find H∞ + C functions ϕj and a constant χ(δ/2) that bounds the sum of the
norms of these functions and such that 1 = ∑n

j=1ϕjfj . Now

u :=
n∑

j=1

zNjϕjFj =
n∑

j=1

zNjϕj(Fj − z̄Njfj )+
n∑

j=1

ϕjfj

= γ + 1,
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where γ := ∑n
j=1 z

Njϕj(Fj − z̄Njfj )∈H∞ + C is majorized by ε
∑n

j=1‖ϕj‖∞ ≤
εχ(δ/2) ≤ 1/2. Thus |u| ≥ 1/2 on M(H∞+C); hence u is invertible in H∞+C

with ‖u−1‖∞ ≤ 2. We conclude that

1 =
n∑

j=1

(u−1zNjϕj )Fj ,

where the coefficients are bounded by 2χ(δ/2).

An immediate corollary (at least for the upper bound) is the following.

Corollary 1.2. For every integer n we have δn(H∞ +C) = 0 and, for δ close
to 0,

κδ−2 log

(
log

(
1

δ

))
≤ cn(δ,H∞ + C) ≤ 2χ

(
δ

2

)
,

where χ(δ) = (1 + n2/δ2)C(δ) with C(δ) the best constant in the H∞-corona
problem and where κ is an absolute constant.

Proof. It remains to verify the lower estimate. Here we use a result of Treil [27,
p. 484] that tells us that there exist two finite Blaschke products B1 and B2 sat-
isfying |B1| + |B2| ≥ δ > 0 on D such that for any solution (g1, g2) ∈ (H∞)2

of the Bezout equation g1B1 + g2B2 = 1 we have ‖g1‖∞ ≥ κδ−2 log(log(1/δ))
whenever δ > 0 is close to 0. Now, of course, this does not give us an example in
H∞ + C, since 1 = B̄1B1 + 0B2 is a solution with coefficients bounded by 1. We
proceed to the following modification.

Let m be a thin point in M(H∞ + C)—that is, a point lying in the closure
of a thin interpolating sequence, say (zn) = (1 − 1/n!). Since the associated
Blaschke product b satisfies (1 − |zn|2)|b ′(zn)| → 1, Schwarz’s lemma implies
that (b � Lm)(z) = eiθz for every z∈D. Now consider the functions

f1 = B1 � (e−iθb) and f2 = B2 � (e−iθb).
Clearly |f1| + |f2| ≥ δ on D and hence, viewed as functions in H∞ + C, we
have |f1| + |f2| ≥ δ on M(H∞ + C). Let (h1,h2) ∈ (H∞ + C)2 be a solu-
tion of h1f1 + h2f2 = 1 in H∞ + C. Since fj � Lm = Bj , we get that 1 =
(h1 � Lm)B1 + (h2 � Lm)B2 in D. Thus, by Treil’s result mentioned before,

‖h1‖∞ ≥ ‖h1 � Lm‖∞ ≥ κδ−2 log(log(1/δ)).
Thus,

cn(δ,H∞ + C) ≥ c2(δ,H∞ + C) ≥ κδ−2 log(log(1/δ)).

2. Several Notions of Stable Ranks

Let A be a commutative unital ring. An n-tuple (a1, . . . , an) ∈ An is said to be
invertible (or unimodular) if there is a solution (x1, . . . , xn) ∈ An of the Bezout
equation

∑n
j=1 aj xj = 1. Of course, this is equivalent to saying that the ideal gen-

erated by the aj is the whole ring. The set of all invertible n-tuples in A is denoted
by Un(A).
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An (n+ 1)-tuple (a1, . . . , an, an+1)∈Un+1(A) is said to be n-reducible (or sim-
ply reducible) in A if there exists (x1, . . . , xn) ∈ An such that (a1 + x1an+1, . . . ,
an+ xnan+1) is an invertible n-tuple in An. It can be shown that if every invertible
n-tuple in A is reducible, then every invertible (n+ 1)-tuple is reducible (see e.g.
[30]). The smallest integer n∈ {1, 2, . . . } for which every invertible (n+ 1)-tuple
is reducible is called the Bass stable rank of A and is denoted by bsr(A). This
notion was introduced in K-theory.

For algebras of continuous or analytic functions, this has been studied for ex-
ample by Corach and Larotonda [3], Rupp [18; 19; 20; 21], Suárez [23; 24], and
Vasershtein [30]. It was shown by Jones, Marshall, and Wolff [10] that the Bass
stable rank of the disk algebra A(D) is 1. Later, simpler proofs were given by
Corach, Suárez [4], and Rupp [18; 19]. Treil [26] later showed that the Bass stable
rank of H∞ is 1.

A notion related to the Bass stable rank is that of the topological stable rank.
Let A be a commutative unital Banach algebra. The smallest integer n for which
the set Un(A) of invertible n-tuples is dense in An is called the topological stable
rank of A, denoted by tsr(A). This notion was introduced by Rieffel [16] in the
study of C∗-algebras.

Finally, we recall two additional notions of stable ranks. Let B be the class of
all commutative unital Banach algebras over a field K. We will always assume
that algebra homomorphisms f between members of B are continuous and sat-
isfy f(1A) = 1B. Also, if f : A → B is an algebra homomorphism, then f will
denote the associated map given by f : (a1, . . . , an) �→ (f(a1), . . . , f(an)) from
An to Bn.

By [6, p. 542], the dense stable rank dsr(A) of A ∈B is the smallest integer n
such that for every B ∈ B and every algebra homomorphism f : A → B with
dense image the induced map Un(A) → Un(B) has dense image. If there is no
such n, we write dsr(A) = ∞. We note that if for some n ∈ N, all B ∈ B and
all homomorphisms f : A → B with dense image the set f(Un(A)) is dense in
Un(B), then f(Un+1(A)) is dense in Un+1(B) (see [6, p. 543]).

The surjective stable rank ssr(A) of A ∈ B is the smallest integer n such that
for every B ∈B and every surjective algebra homomorphism f : A → B the in-
duced map of Un(A) → Un(B) is surjective, too. Again, if there is no such n, then
we write ssr(A) = ∞. Let us point out that the assumption f(Un(A)) = Un(B)

for some n, all B ∈B, and all surjective homomorphisms f : A → B implies that
f(Un+1(A)) = Un+1(B). This works similarly to the proof for the corresponding
statement for denseness in [6, p. 543].

In fact, let b := (b1, . . . , bn+1)∈Un+1(B). Consider for I = (bn+1) (the closure
of the principal ideal generated by bn+1) the quotient algebra B̃ := B/I and the
quotient mapping π : B → B̃. Then

(b1 + I, . . . , bn + I )∈Un(B̃).

By our hypothesis, since πf is surjective, there exists a := (a1, . . . , an) ∈ Un(A)

such that πf(aj ) = πbj for 1 ≤ j ≤ n. Choose ε > 0 so that every perturba-
tion (a1 − r1, . . . , an − rn) of a with ‖rj‖A < ε is in Un(A) again. Using the open
mapping theorem, let η = η(ε) be such that
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{y ∈B : ‖y‖B < η} ⊆ f({x ∈A : ‖x‖A < ε}).
Since f(aj ) − bj ∈ I, there exist kj ∈ B such that ‖f(aj ) − bj − kjbn+1‖B < η

(j = 1, . . . , n). Since f is surjective, we may choose rj , xj ∈ A, ‖rj‖A < ε, and
an+1∈A such that f(rj ) = yj := f(aj )− bj − kjbn+1, f(xj ) = kj (j = 1, . . . , n),
and f(an+1) = bn+1. Then

(a1 − r1, . . . , an − rn)∈Un(A)

and so

(a ′1, . . . , a ′n+1) := (a1 − r1 − x1an+1, . . . , an − rn − xnan+1, an+1)∈Un+1(A).

Moreover, f(a ′j ) = f(aj ) − f(xj )f(an+1) − f(rj ) = f(aj ) − kjbn+1 − yj = bj

for 1 ≤ j ≤ n and f(a ′n+1) = bn+1. Hence f(Un+1(A)) = Un+1(B).

Next, we present relations between these notions of stable rank. Most of these
relations are known and can be found in the papers of Corach and Larotonda [3]
and Suárez [23; 24]. Many of the proofs in these papers are based on far-reaching
concepts and techniques from algebraic geometry, such as Serre fibrations and ho-
motopy classes. For the reader’s convenience we present short direct proofs of
some of these facts.

Proposition 2.1 [3, p. 293]. Suppose that Un(A) is dense in An. Then the stable
rank of A is less than n. Namely, bsr(A) ≤ tsr(A).

Proof. Let (f1, . . . , fn,h)∈Un+1(A). Then there exist xj ∈A and x ∈A such that
1 = ∑n

j=1 xjfj + xh. Since Un(A) is dense in An, for every ε > 0 there exists
(u1, . . . , un) ∈ Un(A) such that ‖uj − xj‖A < ε. Also, x = ∑n

j=1 hjuj for some
hj ∈A because (u1, . . . , un) is invertible. Hence

n∑
j=1

uj(fj + hj h) =
n∑

j=1

ujfj + xh

=
( n∑

j=1

xjfj + xh

)
+

n∑
j=1

(uj − xj )fj = 1+ u,

where we have defined u := ∑n
j=1(uj − xj )fj . Moreover, we have ‖u‖A ≤

ε
∑n

j=1‖fj‖A. Hence, for ε > 0 small enough, 1 + u is invertible in A and so
(f1 + h1h, . . . , fn + hnh)∈Un(A).

The following lemma is due to Corach and Suárez [4; 5].

Lemma 2.2 [4, p. 636; 5, p. 608]. Let A be a commutative unital Banach alge-
bra. Then, for g ∈A, the set

Rn(g) = {(f1, . . . , fn)∈An : (f1, . . . , fn, g) is reducible}
is open-closed inside

In(g) = {(f1, . . . , fn)∈An : (f1, . . . , fn, g)∈Un+1(A)}.
In particular, for n = 1, if ϕ : [0,1] → I1(g) is a continuous curve and (ϕ(0), g)
is reducible, then (ϕ(1), g) is reducible.



402 Raymond Mortini & Brett D. Wick

A very useful characterization of the Bass stable rank is the following. Here the
equivalence of items (2) and (3) was known (see [3]).

Theorem 2.3. Let A be a commutative unital Banach algebra. The following
assertions are equivalent:

(1) π(Un(A)) is dense in Un(A/I ) for every closed ideal I in A;
(2) bsr(A) ≤ n;
(3) π(Un(A)) = Un(A/I ) for every closed ideal I in A.

Here π : A → A/I is the canonical quotient mapping and π the associated map
on An.

Proof. (1) ⇒ (2): Let (a1, . . . , an, an+1)∈Un+1(A). Consider the closure I of the
ideal generated by an+1. ThenA/I is a Banach algebra under the quotient norm and
(a1 + I, . . . , an + I ) ∈ Un(A/I ). By (1), there exists a sequence (b

(k)
1 , . . . , b(k)n ) ∈

Un(A) such that ‖π(b(k)j ) − π(aj )‖A/I → 0 as k → ∞ for j = 1, . . . , n. Hence
there are x(k)j ∈A such that

‖aj − b
(k)
j + x

(k)
j an+1‖A → 0.

Now for every k we have that the (n+ 1)-tuples

(b
(k)
1 − x

(k)
1 an+1, . . . , b

(k)
n − x(k)n an+1, an+1)

are invertible and reducible, since

(b
(k)
j − x

(k)
j an+1)+ x

(k)
j an+1 = b

(k)
j and (b

(k)
1 , . . . , b(k)n )∈Un(A).

Using Lemma 2.2, which tells us thatRn(an+1) is closed inside In(an+1), and notic-
ing that b(k)j − x

(k)
j an+1 → aj for j = 1, . . . , n, we see that (a1, . . . , an, an+1) is

reducible and so bsr(A) ≤ n.

(2) ⇒ (3): This appears in [3, p. 296]. For the reader’s convenience we present
the argument. Let (a1 + I, . . . , an + I ) ∈ Un(A/I ). Then there exist y1, . . . , yn ∈
A and b ∈ I such that

∑n
j=1 yj aj = 1+ b. Hence (a1, . . . , an, b) ∈ Un+1(A) and

so, by (2), there exist x1, . . . , xn ∈A such that

(a1 + x1b, . . . , an + xnb)∈Un(A).

It is clear that π(aj + xjb) = aj + I. Hence π(Un(A)) = Un(A/I ).

(3) ⇒ (1): This is immediate.

Parts of the following result appear without proof in [6, p. 542].

Theorem 2.4. If A is a commutative unital Banach algebra, then

bsr(A) = ssr(A) ≤ dsr(A) ≤ tsr(A).

Proof. The assertion that bsr(A) = ssr(A) follows from Theorem 2.3. Indeed, let
n = ssr(A) < ∞. Since for any closed ideal I the canonical map π : A → A/I

is surjective, ssr(A) = n implies that π(Un(A)) = Un(A/I ). Hence, by Theo-
rem 2.3, m := bsr(A) ≤ n. To show that n ≤ m, let f : A → B be a surjective
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homomorphism. Then the canonical injection f̌ : Ã = A/Ker f �→ B is an alge-
bra isomorphism and so Um(Ã) is mapped onto Um(B) by f̌ . Since m = bsr(A),
by Theorem 2.3, π(Um(A)) = Um(A/Ker f ). Thus f(Um(A)) = Um(B). This
means that ssr(A) ≤ m. Altogether we have shown that bsr(A) = ssr(A).

Now suppose that dsr(A) = n. Consider the algebra B := A/I, where I is any
closed ideal in A. Then the assertion that bsr(A) ≤ dsr(A) follows from Theo-
rem 2.3 when applied to the epimorphism f = π.

Next we suppose that tsr(A) = n. To show that dsr(A) ≤ tsr(A), we note that
if f : A → B has dense image then f : An → Bn has dense image as well. Now,
the continuity of f and the density of Un(A) in An imply that

f(Un(A)) ⊇ f(Un(A)) = f(An).

Therefore,
Un(B) ⊆ Bn = f(An) ⊆ f(Un(A)).

Since f(Un(A)) ⊆ Un(B), we finally obtain that f(Un(A)) is dense in Un(B).

Therefore dsr(A) ≤ n = tsr(A).

It is not known whether always bsr(A) = dsr(A). For A = H∞, for instance, we
have bsr(H∞) = dsr(H∞) = 1 (see [13; 23; 26]) and tsr(H∞) = 2 (see [24]);
for A = H∞

R
= {f ∈ H∞ : f(z̄) = f(z)} we have bsr(H∞

R
) = dsr(H∞

R
) =

tsr(H∞
R
) = 2 (see [12]).

Our next result, which seems to be new, gives a version of Lemma 2.2 with
bounds.

Proposition 2.5. Let (f , g) be an invertible pair in the commutative unital Ba-
nach algebra A. Suppose that fn converges to f and that there exist a constant
K ≥ 1 and un ∈A such that fn + ung is invertible with

‖un‖A + ‖fn + ung‖A + ‖(fn + ung)
−1‖A ≤ K.

Then there is an h∈A such that f + hg is invertible and

‖h‖A + ‖f + hg‖A + ‖(f + hg)−1‖A ≤ 8K.

Proof. Let (x, y)∈A2 be such that 1 = xf + yg. Then

fn + ung = f(xfn + yg)+ (y(fn − f )+ un)g.

Since ‖fn − f ‖A → 0 we may choose n0 so big that for all n ≥ n0 the elements
xfn + yg are invertible in A, such that

‖xfn + yg‖A ≤ 2 and ‖(xfn + yg)−1‖A ≤ 2,

and such that
‖f − fn‖A ≤ min{1, ‖y‖−1

A }.
If we let

h = (y(fn − f )+ un)(xfn + yg)−1,

then f + hg is invertible. Noticing that by hypothesis ‖un‖A ≤ K, we get
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‖h‖A ≤ 2(1+K),

‖(fn + ung)(xfn + yg)−1‖A ≤ 2K,

and
‖(xfn + yg)(fn + ung)

−1‖A ≤ 2K.

Since K ≥ 1,

‖h‖A + ‖f + hg‖A + ‖(f + hg)−1‖A ≤ 8K.

3. The Stable Ranks of H∞ + C

It is the aim of this section to determine the stable ranks defined previously for the
Sarason algebra H∞ + C. Toward this end let us recall the following theorem of
Treil [26], which tells us in particular that bsr(H∞) = 1.

Theorem 3.1. There exists a constant C(δ) depending only on δ ∈ ]0,1[ such
that for every pair (f , g) of elements in the unit ball of H∞ satisfying |f | + |g| ≥
δ > 0 in D there are functions u,h ∈H∞ with u invertible in H∞ satisfying 1 =
uf + hg and ‖u‖∞ + ‖u−1‖∞ + ‖h‖∞ ≤ C(δ).

The following well-known result can easily be deduced from Treil’s theorem.

Proposition 3.2. There exists a constant C(δ) depending only on δ such that,
for every f1, . . . , fn in H∞ satisfying 1 ≥ ∑n

j=1|fj | ≥ δ > 0 in D, there exist
aj , tj ∈H∞ bounded by C(δ) such that

1 =
n−1∑
j=1

aj(fj + tjfn).

Proof. By the H∞-corona theorem [2], there is a constant C1(δ) such that the
Bezout equation

∑n
j=1 xjfj = 1 admits a solution (x1, . . . , xn)∈ (H∞)n with

n∑
j=1

‖xj‖∞ ≤ C1(δ).

We may assume that C1(δ) ≥ 1. Now

1 ≤ ‖x1‖∞|f1| +
∣∣∣∣

n∑
j=2

xjfj

∣∣∣∣ ≤ C1(δ)

(
|f1| +

∣∣∣∣
n∑

j=2

xjfj

∣∣∣∣
)
;

hence

2 + C1(δ) ≥ |f1| +
∣∣∣∣

n∑
j=2

xjfj

∣∣∣∣ ≥ 1

C1(δ)
:= ε > 0.

By Treil’s theorem there is a constant C2(ε) and u, v ∈H∞ such that u is invert-
ible in H∞ and ‖u‖∞ + ‖u−1‖∞ + ‖v‖∞ ≤ C2(ε) with

1 = uf1 + v

( n∑
j=2

xjfj

)
.
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The latter equation can be rewritten as

1 = u(f1 + u−1vxnfn)+
n−1∑
j=2

vxj(fj + 0 · fn).

It is clear that the functions a1 := u, t1 := u−1vxn, aj := vxj , and tj := 0 for
j = 2, . . . , n− 1 are bounded by a constant C(δ) depending only on δ.

The following theorem, given by Laroco [11, p. 819], will be essential for our de-
termination of the stable rank of H∞ + C.

Theorem 3.3. Let f ∈H∞. Then, for every ε > 0, there exist a Blaschke prod-
uct B and an outer function v, invertible in H∞, such that

‖f − Bv‖∞ < ε and |v| ≥ ε/4 on ∂D

as well as ‖v‖∞ ≤ 1+ ‖f ‖∞.

We note that, because v is invertible, we actually have |v| ≥ ε/4 on D. We addi-
tionally need the following lemma.

Lemma 3.4. Let B be a Blaschke product and g ∈H∞ with ‖g‖∞ ≤ 1. Suppose
that |B| + |g| ≥ δ > 0 on M(H∞ + C). Then there exists a constant C(δ), de-
pending only on δ, and functions h and u in H∞+C with u invertible in H∞+C

such that ‖u‖∞, ‖u−1‖∞, and ‖h‖∞ are bounded by C(δ) and such that

1 = uB + hg.

Proof. By continuity, there exists an r > 0 such that on {r ≤ |z| < 1}
|B| + |g| ≥ δ/2.

Let B∗ be a tail of B such that |B∗| ≥ δ/2 on {|z| ≤ r}. Hence

|B∗| + |g| ≥ δ/2 on M(H∞).

Let b = B/B∗. Note that b is a finite Blaschke product and hence b̄ ∈H∞+C. By
Treil’s result [26] (here Theorem 3.1), there is a constant C(δ) and two functions
R,h∈H∞, R invertible in H∞, such that

1 = RB∗ + hg

and
‖R‖∞ + ‖R−1‖∞ + ‖h‖∞ ≤ C(δ/2).

Therefore, as (H∞ + C)-functions,

1 = (Rb̄)B + hg.

Theorem 3.5. The Bass stable rank of H∞ + C equals 1.

Proof. Let (ϕ,ψ) be an invertible pair inH∞+C. We may assume that ‖ϕ‖∞ ≤ 1
and ‖ψ‖∞ ≤ 1. Since H∞ + C is the uniform closure of the set of functions
{z̄nf : f ∈ H∞, n ∈ N} (see [7]), there exist n ∈ N and f ∈ H∞ such that
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‖ϕ − f z̄n‖∞ < ε. By Theorem 3.3, there is a Blaschke product B and a func-
tion v invertible in H∞ such that ‖f − vB‖∞ < ε. Hence the set of functions

{z̄nvB : n∈N, B Blaschke, v invertible in H∞}
is dense in H∞ + C. By Lemma 2.2 and the fact that the factors z̄nv are invert-
ible in H∞ + C, it suffices to show the reducibility of the pairs (B,ψ), where B

is any Blaschke product such that |B| + |ψ | ≥ δ > 0 on M(H∞ + C).

To do this, we shall use Lemma 3.4. Choose n ∈ N and g ∈ H∞, ‖g‖∞ ≤ 1,
such that

‖z̄ng − ψ‖∞ < min

{
δ

2
,

1

2C(δ/2)

}
,

where C(δ) is the constant from Lemma 3.4. Now consider the pair (B, g). We
obviously have (on M(H∞ + C))

|B| + |g| = |B| + |z̄ng| ≥ |B| + |ψ | − |ψ − z̄ng| ≥ δ/2.

By Lemma 3.4, there exists u ∈ H∞ + C, u invertible, and h ∈ H∞ + C with
‖u‖∞ + ‖u−1‖∞ + ‖h‖∞ ≤ C(δ/2) such that

1 = uB + hg.

Hence

|uB + (hzn)ψ | = |uB + hg + h(znψ − g)|
≥ 1− ‖h‖∞‖ψ − z̄ng‖∞ ≥ 1− ‖h‖∞ 1

2C(δ/2)
≥ 1

2
.

Thus uB + (hzn)ψ is invertible in H∞ + C. Hence 1 = xB + yψ, where x ∈
H∞ + C is invertible and

max{‖x‖∞, ‖y‖∞} ≤ 2C(δ/2) and ‖x−1‖∞ ≤ 2C2(δ/2).

This shows that the pair (B,ψ) is reducible in H∞ + C.

Combining Proposition 2.5 with the proof just given, we get the following exten-
sion of Theorem 3.5.

Theorem 3.6. There exists a constant C(δ) depending only on δ ∈ ]0,1[ such
that for every pair (ϕ,ψ) of functions in the unit ball of H∞ + C satisfying
|ϕ| + |ψ | ≥ δ on M(H∞ + C) there is a solution (u, v) ∈ (H∞ + C)2 of the
Bezout equation uϕ + vψ = 1, where u is invertible in H∞ + C and such that
‖u‖∞ + ‖u−1‖∞ + ‖v‖∞ ≤ C(δ).

Proof. According to Theorem 1.1, let (x, y) be a solution in H∞+C of the Bezout
equation xϕ + yψ = 1 with ‖x‖∞ + ‖y‖∞ ≤ χ̃(δ). Using Theorem 3.3, we may
choose a Blaschke product B and a function h invertible in H∞ such that

‖ϕ − z̄νBh‖∞ < σ(δ) := min{δ/2, (2χ̃(δ))−1}
and 2 ≥ |h| > σ(δ)/4. Since |B| + |ψ | ≥ δ/4 on M(H∞ + C), there exists by
the proof of Theorem 3.5 a constant C1(δ) and a function q ∈H∞ + C such that
F := B + qψ is invertible in H∞ + C and such that
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‖q‖∞ + ‖F‖∞ + ‖F −1‖∞ ≤ C1(δ).

Let f ∗ := z̄νhB and u∗ := z̄νhq. Then we have that v∗ := f ∗ + u∗ψ is invert-
ible in H∞ + C and

‖u∗‖∞ + ‖v∗‖∞ + ‖(v∗)−1‖∞ ≤ C2(δ) := 6C1(δ)+ 4

σ(δ)
C1(δ).

Now, as in the proof of Proposition 2.5, we see from

f ∗ + u∗ψ = ϕ(xf ∗ + yψ)+ (y(f ∗ − ϕ)+ u∗)ψ

that 1 = uϕ + vψ with

‖u‖∞ + ‖u−1‖∞ + ‖v‖∞ ≤ C3(δ).

In [24], Suárez showed that tsr(H∞) = 2. Using this result, we deduce the topo-
logical stable rank for H∞ + C.

Theorem 3.7. The topological stable rank of H∞ + C is 2.

Proof. First we show that the topological stable rank of H∞+C is at most 2. Let
(ϕ1,ϕ2)∈ (H∞+C)2. Approximate ϕj by functions of the form znjfj , where fj ∈
H∞, say ‖znjfj − ϕj‖∞ < ε, j = 1, 2.

Since the topological stable rank of H∞ is 2, there exist gj ∈ H∞ such that
‖gj−fj‖∞ ≤ ε and (g1, g2)∈U2(H

∞). Obviously, (zn1g1, zn2g2)∈U2(H
∞+C)

and ‖znjgj − ϕj‖∞ < 2ε. Thus tsr(H∞ + C) ≤ 2.
Let b be an (infinite) interpolating Blaschke product. Note that b is not invert-

ible in H∞+C. Let m∈M(H∞+C) be a zero of b and let Lm be the associated
Hoffman map. Since b �Lm is analytic but not identically zero, we see that b can-
not be uniformly approximated on M(H∞ + C) by invertibles in H∞ + C, say
un, since otherwise ‖b �Lm− un �Lm‖∞ → 0—a contradiction to Rouché’s the-
orem. Thus tsr(H∞ + C) ≥ 2.

Next we deal with the dense stable rank of H∞ +C. Recall that if A is a commu-
tative unital Banach algebra, then E is an A-convex subset of M(A) if

∀x /∈E ∃f ∈A : |f(x)| > supE|f |.
We let Ê denote the A-convex hull of a closed set E ⊆ M(A). This is given by

Ê = {m∈M(A) : |f(m)| ≤ supE|f | ∀f ∈A}.
Note that E is A-convex if and only if E = Ê. We say that E is a proper A-convex
set if E = Ê and Ê �= M(A).

Theorem 3.8. The dense stable rank of H∞ + C is 1.

Proof. Let E be an (H∞ + C)-convex subset of M(H∞ + C). By [13] it is suf-
ficient to prove that any function ϕ ∈H∞ + C that does not vanish on E can be
uniformly approximated on E by invertible functions in H∞ + C. Toward this
end, we first approximate ϕ on T (hence on M(H∞ + C)) by a function of the
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form z̄nf , where n ∈ N and f ∈ H∞, say ‖ϕ − z̄nf ‖∞ < ε/2. By choosing ε

sufficiently small, we see that f does not vanish on E, too. Let

Ě = {m∈M(H∞) : |h(m)| ≤ supE|h| ∀h∈H∞}
be the H∞-convex hull of E. We show that Ě ∩M(H∞ + C) = E. Toward this
end, let m0 ∈M(H∞+C)\E. Since E is (H∞+C)-convex, there exists a func-
tion ψ ∈H∞ +C such that |ψ(m0)| > supE|ψ |. Uniformly approximating ψ by
a function of the form z̄ng shows that |g(m0)| > supE|g| for some g ∈H∞. Thus
m0 /∈ Ě, the H∞-convex hull of E. This shows that Ě ∩M(H∞ + C) = E.

Now Ě can be written as Ě = E∪S, where S = Ě∩D. We probably have S =
∅; however, this isn’t necessary for the rest of the proof. Note that Ě is closed and
S̄ \ D ⊆ E. Recall that our function f described previously does not vanish on
E; hence f can have only finitely many zeros in S. Write f = qF, where q is the
finite Blaschke product formed with the zeros of f in S. Thus F does not vanish
on Ě. By [13], for every ε > 0 there is an invertible function h ∈ H∞ such that
supĚ|F − h| < ε/2. Hence, by noticing that |q| = 1 on M(H∞ + C), we have
|qh− f | = |qh− qF | < ε/2 on E. Therefore, on E,

‖z̄nqh− ϕ‖∞ ≤ ‖z̄n(qh− f )‖∞ + ‖ϕ − z̄nf ‖∞ < ε.

Since z̄nqh does not vanish onM(H∞+C), that function is invertible inH∞+C.

Remark. Using Theorem 2.4 and Theorem 3.8 we get a second proof of the fact
that bsr(H∞ + C) = 1 (see Theorem 3.5).
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