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1. Introduction

A CAT(0) metric space is a proper complete geodesic metric space in which each
geodesic triangle with side lengths a, b, and c is “at least as thin” as the Euclidean
triangle with side lengths a, b, and c (see [5] for details). We say that a finitely
generated group G is a CAT(0) group if G may be realized as a cocompact and
properly discontinuous subgroup of the isometry group of a CAT(0) metric space
X. Equivalently, G is a CAT(0) group if there exists a CAT(0) metric space X and
a faithful geometric action of G on X. It is perhaps not standard to require that the
group action be faithful, a point we address in Remark 1.

For each integer n ≥ 2, we write Fn for the free group of rank n and Bn for the
braid group on n strands.

In [3], Brady exhibited a subgroup H ≤ Aut(F2) of index 24 that acts faithfully
and geometrically on a CAT(0) 2-complex. In subsequent work [4], the same au-
thor showed that B4 acts faithfully and geometrically on a CAT(0) 3-complex. It
follows that Inn(B4) acts faithfully and geometrically on a CAT(0) 2-complex X0

(this fact is explained explicitly by Crisp and Paoluzzi in [8]). Now, Inn(Bn) has
index 2 in Aut(Bn) [10], and Aut(F2) is isomorphic to Aut(B4) [16, 10]; thus the
result in the title of this paper is proved if we exhibit an extra isometry of X0 that
extends the faithful geometric action of Inn(B4) to a faithful geometric action of
Aut(B4). We do this in Section 2.

In the language of [14], X0 is a systolic simplicial complex. By [14, Thm. 13.1],
a group that acts simplicially, properly discontinuously, and cocompactly on such
a space is biautomatic. Since the action of Aut(F2) provided here is of this type,
it follows that Aut(F2) is biautomatic.

Our results reinforce the striking contrast between those properties enjoyed by
Aut(F2) and those enjoyed by the automorphism groups of finitely generated free
groups of higher ranks. We can now say that Aut(F2) is a CAT(0) group, that it is
a biautomatic group, and that it has a faithful linear representation [9; 16]; while
Aut(Fn) is neither a CAT(0) group [12] nor a biautomatic group [6], and it does
not have a faithful linear representation [11] whenever n ≥ 3.
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We regard the CAT(0) 2-complex X0 as a geometric companion to the Auter
space (of rank 2) [13], a topological construction equipped with a group action
by Aut(F2).

Let W3 denote the universal Coxeter group of rank 3—that is, W3 is the free
product of three copies of the group of order 2. Since Aut(F2) is isomorphic to
Aut(W3) (see Remark 2), we also learn that Aut(W3) is a CAT(0) group.

Remark 1. As pointed out in the opening paragraph, our definition of a CAT(0)
group is perhaps not standard because of the requirement that the group action
be faithful. We note that such a requirement is redundant when giving an analo-
gous definition of a word hyperbolic group. This follows from the fact that word
hyperbolicity is an invariant of the quasi-isometry class of a group. In contrast,
the CAT(0) property is not an invariant of the quasi-isometry class of a group. Ex-
amples are known of two quasi-isometric groups, one of which is CAT(0) and the
other of which is not. Examples of this type may be constructed using the fun-
damental groups of graph manifolds [15] and the fundamental groups of Seifert
fibre spaces [1; 5, p. 258]. So the adjective “faithful” is not so easily discarded in
our definition of a CAT(0) group. We do not know of two abstractly commensu-
rable groups, one of which is CAT(0) and the other of which is not. We pose the
following question.

Question 1. Is the property of being a CAT(0) group an invariant of the ab-
stract commensurability class of a group?

Some relevant results in the literature show that two natural approaches to this
question do not work in general. If G acts geometrically on a CAT(0) space X

and G′ is a finite extension with [G′ : G] = n, then G′ acts properly and isomet-
rically on the CAT(0) space Xn with the product metric [7, p. 190; 18]. However,
proving that this action is cocompact is either difficult or impossible in general.
In [2], the authors give examples of the following type: G is a group acting faith-
fully and geometrically on a CAT(0) space X, G′ is a finite extension of G, yet
G′ does not act faithfully and geometrically on X. However, G′ may act faithfully
and geometrically on some other CAT(0) space.

Remark 2. The fact that Aut(F2) is isomorphic to Aut(W3) appears to be well
known in certain mathematical circles, but it is rarely recorded explicitly. We now
outline a proof: The subgroup E ≤ W3 of even-length elements is isomorphic to
F2 and characteristic in W3, and CW3(E) = {1}; it follows from [17, Lemma 1.1]
that the induced homomorphism π : Aut(W3) → Aut(E) is injective. One easily
confirms that the image of π contains a set of generators for Aut(E), and hence
π is an isomorphism. A topological proof may also be constructed using the fact
that the subgroup E of even-length words inW3 corresponds to the 2-fold orbifold
cover of the the orbifold S 2(2, 2, 2, ∞) by the once-punctured torus.

The authors would like to thank Jason Behrstock and Martin Bridson for pointing
out the examples in [1; 5, p. 258; 15] and Luisa Paoluzzi for discussions regard-
ing [8].
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2. Aut(B4) Is a CAT(0) Group

We shall describe an apt presentation of B4, give a concise combinatorial descrip-
tion of Brady’s space X0, describe the faithful geometric action of Inn(B4) on X0,
and, finally, introduce an isometry of X0 to extend the action of Inn(B4) to a faith-
ful geometric action of Aut(B4).

The interested reader will find an informative, and rather more geometric, ac-
count of X0 and the associated action of Inn(B4) in [8].

An Apt Presentation of B4. A standard presentation of the group B4 is

〈a, b, c | aba = bab, bcb = cbc, ac = ca〉. (1)

Introducing generators d = (ac)−1b(ac), e = a−1ba, and f = c−1bc, one may
verify that B4 is also presented by

〈a, b, c, d, e, f | ba = ae = eb, de = ec = cd, bc = cf = fb,

df = fa = ad, ca = ac, ef = fe〉. (2)

We set x = bac and write 〈x〉 ⊂ B4 for the infinite cyclic subgroup generated by
x. The center of B4 is the infinite cyclic subgroup generated by x4.

The Space X0. Consider the 2-dimensional piecewise Euclidean CW-complex
X0 constructed as follows:

(0-S) the vertices of X0 are in one-to-one correspondence with the left cosets of
〈x〉 in B4—we write vg〈x〉 for the vertex corresponding to the coset g〈x〉;

(1-S) distinct vertices vg1〈x〉 and vg2〈x〉 are connected by an edge of unit length if
and only if there exists an element �∈ {a, b, c, d, e, f }±1 such that g−1

2 g1�∈
〈x〉;

(2-S) three vertices vg1〈x〉, vg2〈x〉, and vg3〈x〉 are the vertices of a Euclidean (equi-
lateral) triangle if and only if the vertices are pairwise adjacent.

The link of the vertex v〈x〉 in X0, just like the link of each vertex in X0, con-
sists of twelve vertices (one for each of the cosets represented by elements in
{a, b, c, d, e, f }±1) and sixteen edges (one for each of the distinct ways to spell x
as a word of length 3 in the alphabet {a, b, c, d, e, f }—see [8] for more details). It
can be viewed as the 1-skeleton of a Möbius strip. In Figure 1 we depict the infinite
cyclic cover of the link of v〈x〉. Each vertex with label g in the figure lies above
the vertex vg〈x〉 in the link of v〈x〉. The link is formed by identifying identically
labeled vertices and identifying edges with the same start and end points.

Figure 1 A covering of the link of v〈x〉 in X0
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That X0 is CAT(0) follows most naturally from the alternative construction of
X0 described in detail in [8]. Alternatively, a complex constructed from isomet-
ric Euclidean triangles is CAT(0) if and only if it is simply connected and satisfies
the “link condition” [5, Thm. II.5.4, p. 206]. For a 2-dimensional complex, the
link condition requires that each injective loop in the link of a vertex have length
at least 2π, where edges in a link are assigned the length of the angle they sub-
tend [5, Lemma II.5.6, p. 207]. It is easily seen that X0 satisfies the link condition
because each injective loop in Figure 1 crosses at least six edges and each edge
has length π/3. Thus one might show that X0 is CAT(0) by showing that it is
simply connected. We shall not digress from the task at hand to provide such an
argument.

Brady’s Faithful Geometric Action of Inn(B4) on X0. We shall describe
Brady’s faithful geometric action of Inn(B4) on X0. We shall do so by describing
an isometric action ρ : B4 → Isom(X0) such that the image of ρ is a properly dis-
continuous and cocompact subgroup of Isom(X0) that is isomorphic to Inn(B4).

It follows immediately from (1-S) that, for each g ∈B4, the “left-multiplication
by g” map on the 0-skeleton of X0, g1〈x〉 �→ gg1〈x〉, extends to a simplicial isom-
etry of the 1-skeleton of X0. It follows immediately from (2-S) that any simplicial
isometry of the 1-skeleton of X0 extends to a simplicial isometry of X0. We write
φg for the isometry of X0 determined by g in this way, and we write ρ : B4 →
Isom(X0) for the map g �→ φg. We compute that ρ(g1g2)(vg〈x〉) = vg1g2g〈x〉 =
ρ(g1)ρ(g2)(vg〈x〉) for each g1, g2, g ∈ B4, so ρ is a homomorphism. Further,
φg(v〈x〉) = vg〈x〉 for each g ∈ B4, so the vertices of X0 are contained in a single
ρ-orbit. It follows that ρ is a cocompact isometric action of B4 on X0.

To show that the image of ρ is isomorphic to Inn(B4), it suffices to show that
the kernel of ρ is exactly the center of B4. One easily computes that ρ(x4) is the
identity isometry of X0. Thus the kernel of ρ contains the center of B4. It is also
clear that the stabilizer of v〈x〉, which contains the kernel of ρ, is the infinite sub-
group 〈x〉. So to establish that the kernel of ρ is exactly the center of B4, it suffices
to show that φx , φx 2 , and φx3 are nontrivial and distinct isometries of X0. We
achieve this by showing that these elements act nontrivially and distinctly on the
link of v〈x〉 in X0. We compute that x acts as follows on the cosets corresponding
to vertices in the link of v〈x〉, where δ = ±1:

aδ〈x〉 �→ eδ〈x〉 �→ cδ〈x〉 �→ f δ〈x〉 �→ aδ〈x〉 and bδ〈x〉 ↔ d δ〈x〉.
Thus the restriction of φx to the link of v〈x〉 may be understood, with reference to
Figure 2, as translation two units to the right followed by reflection across the hori-
zontal dotted line. It follows that φx ,φx 2 ,φx3 are nontrivial and distinct isometries
of X0, as required.

We next show that the image of ρ is a properly discontinuous subgroup of
Isom(X0). Now, the action ρ is not properly discontinuous because, as noted
above, the ρ-stabilizer of v〈x〉 is the infinite subgroup 〈x〉 (so infinitely many ele-
ments of B4 fail to move the unit ball about v〈x〉 off itself ). But the image of 〈x〉
under the map B4 → Inn(B4) has order 4. It follows that the image of ρ is a prop-
erly discontinuous subgroup of Isom(X).



The Automorphism Group of the Free Group of Rank 2 Is a CAT(0) Group 301

Figure 2 A covering of the link of the vertex v〈x〉 and the fixed point sets of some reflections

Thus we have that the image of ρ is a properly discontinuous and cocompact
subgroup of Isom(X0) that is isomorphic to Inn(B4).

Extending ρ by Finding One More Isometry. It was shown in [10] that the
unique nontrivial outer automorphism of Bn is represented by the automorphism
that inverts each of the generators in presentation (1). Consider the automorphism
τ ∈Aut(B4) determined by

a �→ a−1, b �→ d−1, c �→ c−1, d �→ b−1, e �→ f −1, f �→ e−1.

Note that τ is achieved by first applying the automorphism that inverts each
of the generators a, b, and c and then applying the inner automorphism w �→
(ac)−1w(ac) for each w ∈B4. It follows that τ is an involution that represents the
unique nontrivial outer automorphism of B4. Writing J := B4 �τ Z2, we have
Aut(B4) ∼= J/〈x4〉. We identify B4 with its image in J.

The automorphism τ ∈Aut(B4) permutes the elements of {a, b, c, d, e, f }±1 and
maps the subgroup 〈x〉 to itself (in fact, τ(x) = x−1). It follows from (1-S) that
the map vg1〈x〉 �→ vτ(g1)〈x〉 on the 0-skeleton of X0 extends to a simplicial isom-
etry of the 1-skeleton of X0 and hence also to a simplicial isometry θ of X0. We
compute that θφgθ = φτ(g) for each g ∈ B4. Thus we have an isometric action
ρ ′ : J → Isom(X0) given by

g �→ φg for each g ∈B4 and τ �→ θ.

We also compute that the restriction of θ to the link of v〈x〉 may be understood as
reflection across the vertical dotted line shown in Figure 2. It follows that θ is a
nontrivial isometry of X0 that is distinct from φx , φx 2 , and φx3 . Thus the kernel
of ρ ′ is still the center of B4, and the image of ρ ′ is a properly discontinuous and
cocompact subgroup of Isom(X0) that is isomorphic to Aut(B4). Hence we have
a faithful geometric action of Aut(B4) on X0, as required.
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