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0. Introduction

Let X = P n, and let Y ⊂ X be a hypersurface defined by a reduced polynomial f
of degree d. Set U = X \ Y. Let F and P denote, respectively, the global Hodge
and pole order filtrations on the cohomology Hn(U, C) (see [5; 6]). Locally it is
easy to calculate the difference between these two filtrations at least in the case
of isolated weighted homogeneous singularities; see (1.3.2) in the next section.
However, this is quite nontrivial globally (i.e., on the cohomology). It is impor-
tant to know when the two filtrations coincide globally, since the Hodge filtration
and especially the Kodaira–Spencer map can be calculated rather easily if they
coincide (see [9, Thm. 4.5]). It is known that they are different if Y has bad sin-
gularities (see [7] and also [9, 2.5]). In case the singularities consist of ordinary
double points, however, it was unclear whether they still differ globally. They co-
incide for n = 2 in this case [7; 9], but the calculation for the case n > 2 is quite
complicated in general. In this paper we prove the following result.

Theorem 1. Assume d = 3 with n ≥ 5 or d = 4 with n ≥ 3. Set m = [n/2], and
assume that 1+ (n+1)/d ≤ p ≤ n−m. Then, for a sufficiently general singular
hypersurface Y, we have Fp �= Pp on Hn(U, C).

Here a sufficiently general singular hypersurface is one that corresponds to a point
of a certain (sufficiently small) nonempty Zariski-open subset ofD\SingD, where
D is the parameter space of singular hypersurfaces of degree d in P n; see Sec-
tion 3.6. In particular, Sing Y consists of one ordinary double point. It is unclear
whether the two filtrations differ whenever SingY consists of one ordinary dou-
ble point. According to Theorem 1, the formula for the Kodaira–Spencer map in
[9, Thm. 4.5] is effective only for p > n − m in the ordinary double point case.
By Theorem 2, however, we can show a similar formula in the ordinary point case
that is valid also for p ≤ n − m; see Corollary 4.5. In the case of n odd, we can
also use the self-duality for the calculation of the Kodaira–Spencer map; see Re-
mark 3.9(ii).
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Theorem 1 implies that Fp �= Pp on Hn+1
Y (X, C) by the long exact sequence

associated with local cohomology. If n is odd and Y has only ordinary double
points as singularities, then Y is a Q-homology manifold and so Hn−1(Y, Q) coin-
cides with the intersection cohomology IHn−1(Y, Q) (see [2; 10]) and also with the
local cohomology Hn+1

Y (X, Q)(1). In particular, they have a pure Hodge structure
in this case. If n = 3 then we cannot directly calculate F 1 on IH2(Y, Q), but this
can be obtained from F 2 if we can calculate the intersection pairing. For exam-
ple, if (n, d) = (3, 4) then Y is a singular K3 surface—that is, its blow-up along
the singular points is a smooth K3 surface, and there is a lot of work on the lattice
and the intersection pairing.

Let R = C[x0, . . . , xn] with x0, . . . , xn the coordinates of Cn+1. Let J ⊂ R be
the Jacobian ideal of f (i.e., generated by fj := ∂f/∂xj ) and let I be the ideal
generated by homogeneous functions vanishing at the singular points of Y. Let Rk

denote the degree-k part of R, and similarly for Ik and so forth. Set q = n − p,
m = [n/2], and I j = R for j ≤ 0. Assume that SingY consists of ordinary dou-
ble points. Then Wotzlaw [23, 6.5] proposed the following.

Conjecture 1. GrpF H n(U, C) = (I q−m+1/I q−mJ )(q+1)d−n−1.

This is a generalization of the Griffiths’ theorem on rational integrals [12], but it is
quite different from the one in [9]. Indeed, the formula in [9, Thm. 1] is for the case
of general singularities, and it is not easy to calculate concrete examples because
of torsion and the inductive limit, which create infinite-dimensional vector spaces
and so make explicit calculations quite difficult. Conjecture 1 is much more ex-
plicit and algebraic (or ring theoretic). In the ordinary double point case it is much
easier to calculate concrete examples using Conjecture 1. The relation between
these two generalizations of the Griffiths’ theorem is unclear, since the results of
[9] imply only that GrpF H n(U, C) is a quotient of (I q−m+1/fI q−m)(q+1)d−n−1.

The original argument in [23] was essentially correct for p ≥ n − m (using [9;
19; 20]). Actually, Conjecture 1 holds for such p in the case of general singulari-
ties by modifying m and I appropriately; see Theorem 2.2. In the case p < n−m,
however, there are some difficulties: among others, the coincidence of the Hodge
and pole order filtrations—which is not true, as is shown in Theorem 1—was used
(in fact, this problem was rather extensively studied there using the theory of log-
arithmic forms for strongly quasi-homogeneous singularities; see e.g. a remark
after Theorem 3.14 in [23]). For other difficulties, see (2.3.1) and (2.3.4) in Sec-
tion 2.

Let I ⊂ OX be the reduced ideal of SingY ⊂ X. Set I (i)
k = �(X, I i(k)) and

I (i) = ⊕
k I

(i)
k . The difference between I i and I (i) is one of the main problems;

see the remarks after (2.3.1). We have by definition the exact sequences

0 −→ I (i)
k −→ Rk

β(i)
k−−→ ⊕

y∈SingY OX,y/m
i
X,y , (0.1)

choosing a trivialization of OX,y(k), where mX,y = Iy is the maximal ideal of
OX,y. In this paper we prove a variant of Conjecture 1 as follows.
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Theorem 2. Assume that the singular points are ordinary double points. For
q = n − p > m = [n/2], we have canonical isomorphisms

GrpF H n(U, C) = (I (q−m+1)/I (q−m)J )(q+1)d−n−1

= (I (q−m+2)/(I (q−m+2) ∩ I (q−m)J ))(q+1)d−n−1, (0.2)

if the following condition is satisfied (notation as in (0.1)):

(A) β
(i)
k is surjective for (k, i) = (qd − n, q − m + 1) and (qd − n − 1, q − m).

Moreover, condition (A) is satisfied if

(B) for e = m(d −1)−p, the image of the singular points by the e-fold Veronese
embedding consists of linearly independent points.

Note that (I (q−m)J )(q+1)d−n−1 = ∑n
j=0 fj I

(q−m)

(q+1)d−n−d . Condition (B) means that,
for each singular point y, there is a hypersurface of degree e containing the singu-
lar points other than y but not y; see (2.3.5). In order to satisfy (B), there should
hold at least the inequality |SingY | ≤ (

e+n
n

)
. By [22], this is always satisfied for n

even. For n odd, however, this is not necessarily satisfied—for example, if n = 3,
d = 4, q = 2, and Y is a Kummer surface with 16 ordinary double points where
condition (A) is not satisfied either but Conjecture 1 seems to hold. There seem
to be some examples for which condition (A) is satisfied but (B) is not; see Ex-
amples 4.7. The proof of Theorem 2 uses the theory of Brieskorn modules [3] in
the ordinary double point case by restricting to a neighborhood of each singular
point; see Section 4.

In a special case, we can deduce the following from Theorem 2 and Lemma 2.5.

Corollary 1. Conjecture 1 is true if the singular points consist of ordinary dou-
ble points and are linearly independent points in P n (in particular, in this case
|SingY | ≤ n + 1).

In general, Conjecture 1 is still open.
The rest of the paper proceeds as follows. In Section 1, we review some basic

facts from the theory of Hodge and pole order filtrations for a hypersurface of
a smooth variety. In Section 2 we study the case of hypersurfaces of projective
spaces, and in Section 3 we prove Theorem 1 by constructing examples explicitly.
In Section 4, we prove Theorem 2 and Corollary 1 after reviewing some basic facts
about Brieskorn modules in the ordinary double point case.

1. Hodge and Pole Order Filtrations

1.1. Let X be a proper smooth complex algebraic variety of dimension n ≥ 2,
and let Y be a reduced divisor on X. Set U = X \ Y. Let OX(∗Y ) be the local-
ization of the structure sheaf OX along Y. We have the Hodge filtration F on
OX(∗Y ). This is uniquely determined by using the relation with the V -filtration
of Kashiwara [14] and Malgrange [16] (see [17]). Moreover, F induces the Hodge



606 Alexandru Dimca, Morihiko Saito, & Lorenz Wotzlaw

filtration Fp of Hj(U, C) by taking the j th cohomology group of the subcomplex
Fp DR(OX(∗Y )) defined by

F−pOX(∗Y ) −→ · · · −→ Fn−pOX(∗Y ) ⊗ "n
X. (1.1.1)

Indeed, this is reduced to the normal crossing case by using a resolution of sin-
gularities together with the stability of mixed Hodge modules by the direct image
under a proper morphism. In this case the Hodge filtration F on OX(∗Y ) is given
by using the sum of the pole orders along the irreducible components, and the as-
sertion follows from [4] (as is well known).

Let P be the pole order filtration on OX(∗Y ) (see [6]); in other words,

PiOX(∗Y ) =
{ OX((i + 1)Y ) if i ≥ 0,

0 otherwise.

Note that the pole order filtration in [4, II, (3.12.2)] is by the sum of the orders of
poles along the irreducible components in the normal crossing case, and it actually
coincides with our Hodge filtration F on the de Rham complex.

If Y is smooth, then Fi = Pi on OX(∗Y ) (see also [11; 12]). So in the general
case we obtain

Fi ⊂ Pi on OX(∗Y ).

Let h be a local defining equation of Y at y ∈ Y, let bh,y(s) be the b-function of h,
and let α̃Y,y be the smallest root of bh,y(−s)/(1 − s). Then by [18] we have

Fi = Pi on OX,y(∗Y ) if i ≤ α̃Y,y − 1. (1.1.2)

If y is an ordinary double point, then bh,y(s) = (s+1)(s+n/2) and hence α̃Y,y =
n/2, as is well known. Note that (1.1.2) was first obtained by Deligne at least for
the case of h a homogenous polynomial of degree r with an isolated singularity
(where α̃Y,y = n/r) (see e.g. [18, Rem. 4.6]).

As a corollary of (1.1.2) we have

Fp = Pp on Hj(U, C) if p ≥ j − α̃Y + 1, (1.1.3)

where α̃Y = min{α̃Y,y | y ∈ SingY }. Indeed, P on Hj(U, C) is defined by the
image of the j th cohomology group of the complex Pp DR(OX(∗Y )) as in (1.1.1)
with F replaced by P, and this coincides with the image of the cohomology group
of the subcomplex σ≤jP

p DR(OX(∗Y )), where σ≤j is the filtration “bête” in [5]:

σ≤jP
p DR(OX(∗Y )) = [P−pOX(∗Y ) −→ · · · −→ Pj−pOX(∗Y ) ⊗ "

j

X]. (1.1.4)

Indeed, the kth cohomology group of the quotient complex of Pp DR(OX(∗Y ))

by (1.1.4) vanishes for k ≤ j.

If j = n = 3 or 4 and if SingY consists of ordinary double points as in Theo-
rem 1, then α̃Y = n/2, n−m = 2, and the equality in (1.1.3) holds for p �= n − m.

1.2. Local Cohomology. Because Hj(X, DR(OX(∗Y )/OX)) = H
j+1
Y (X, C),

we derive the Hodge and pole order filtrations on H
j+1
Y (X, C) in a similar way.

Moreover, we have the compatibility of the long exact sequence
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· · · −→ Hj(X, C) −→ Hj(U, C) −→ H
j+1
Y (X, C) −→ Hj+1(X, C) −→ · · · , (1.2.1)

with the pole order filtration (i.e., it is exact after taking Pp) if X = P n.

Indeed, we have a short exact sequence

0 −→ PiOX −→ PiOX(∗Y ) −→ Pi(OX(∗Y )/OX) −→ 0, (1.2.2)

where the filtration P on OX and OX(∗Y )/OX are, respectively, the induced and
quotient filtrations. This induces the long exact sequence

Hj(Pp DR(OX))
αj−→ Hj(Pp DR(OX(∗Y )))

βj−→ Hj(Pp DR(OX(∗Y )/OX)),

where the cohomology group is taken overX and where the filtrationP on DR(OX)

and DR(OX(∗Y )/OX)) is defined as in (1.1.1) with F replaced by P. Since X =
P n, the restriction morphism Hj(X, C) → Hj(U, C) vanishes for j �= 0 and the
long exact sequence splits into a family of short exact sequences. This implies that
αj = 0 for j �= 0, using F = P on DR(OX), because αj with P replaced by F

vanishes by the strictness of the Hodge filtration F on R�(X, DR(OX(∗Y ))). So
the assertion follows from the snake lemma and using the strictness of F = P on
R�(X, DR(OX)).

1.3. Semi–Weighted Homogeneous Case. Assume Y has only isolated singu-
larities that are locally semi–weighted homogeneous. In other words, Y is ana-
lytically locally defined by a holomorphic function h = ∑

α≥1 hα , where (a) the
hα for α ∈ Q are weighted homogeneous polynomials of degree α with respect to
some local coordinates x1, . . . , xn around y ∈ SingY and some positive weights
w1, . . . ,wn and (b) h−1

1 (0) (and hence Y ) has an isolated singularity at y. In this
case, it is well known that

α̃Y,y =
∑
i

wi (1.3.1)

by Kashiwara’s unpublished work (this also follows from [15] together with [3]).
Let O≥β

X,y be the ideal of OX,y generated by
∏

i x
νi
i with

∑
i wiνi ≥ β − α̃Y,y.

Let DX be the sheaf of linear differential operators with the filtration F by the
order of differential operators. Put k0 = [n − α̃Y,y] − 1. Then by [19] we have

Fp(OX,y(∗Y )) =
∑
k≥0

Fp−kDX,y(O≥k+1
X,y h−k−1)

=
k0∑
k=0

Fp−kDX,y(O≥k+1
X,y h−k−1). (1.3.2)

If wi = 1/b for any i with b ∈ N, then (1.3.2) implies for p = m := [α̃Y,y] that

Fm(OX,y(∗Y )) = O≥m+1
X,y h−m−1. (1.3.3)

This does not hold in general
(
e.g., if the weights are 1

3 , 1
3 , 1

2 with n = 3
)
.

1.4. Ordinary Double Point Case. Assume that SingY consists of ordinary
double points. Then bh,y = (s + 1)(s + n/2) and hence α̃Y,y = n/2, as is well
known (see also (1.3.1)). Set m = [n/2]. Then k0 = m−1 and O≥k+1

X,y = OX,y for
k ≤ k0. Hence (1.3.2) becomes
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Fp(OX,y(∗Y )) = Fp−m+1DX,y(OX,yh
−m) if p ≥ m − 1, (1.4.1)

where Fp(OX,y(∗Y )) = Pp(OX,y(∗Y )) if p < m − 1.
This implies the following lemma, which is compatible with (1.1.2) and was

conjectured by Wotzlaw (see [20]).

1.5. Lemma. With the preceding notation and assumption, we have

Fp(OX(∗Y )) = Ip−m+1OX((p + 1)Y ) for p ≥ 0, (1.5.1)

where I is the reduced ideal of SingY ⊂ X and Ip−m+1 = OX for p ≤ m − 1.

Proof. We reproduce here an argument in [20]. By (1.4.1) it is enough to show the
following by increasing induction on p ≥ 0:

FpDX,yh
−m = Ip

y h
−m−p. (1.5.2)

Here I is the maximal ideal at y, and we may assume h = ∑n
i=1 x

2
i (using GAGA

if necessary). We must show by increasing induction on p ≥ 0 that

u = xνh−m−p ∈FpDX,yh
−m if |ν| = p, (1.5.3)

where xν = ∏
i x

νi
i for ν = (ν1, . . . , νn) ∈ Nn. Here we may assume that νi �= 1

for any i and p > 1, because otherwise the assertion is easy. Then we have xν =
x 2
i x

µ for some i, and

∂i(xi x
µh−(m+p−1)) = ((µi + 1)h − (m + p − 1)xihi)x

µh−m−p.

Adding this over i yields (1.5.3), because |µ| + n− 2(m+ p −1) �= 0. So (1.5.2)
and hence (1.5.1) follow.

2. Projective Hypersurface Case

2.1. Hodge Filtration. With the notation of Section 1.1, assume that X = P n

with n ≥ 2. Then by [9, Prop. 2.2] we have

H k(X,FpOX(∗Y )) = 0 for k > 0. (2.1.1)

As a corollary, FpHj(U, C) is given by the j th cohomology of the complex

�(X,F−pOX(∗Y )) −→ · · · −→ �(X,Fn−pOX(∗Y ) ⊗ "n
X).

Let R = C[x0, . . . , xn], where x0, . . . , xn are the coordinates of Cn+1. Let J be
the ideal of R generated by fi := ∂f/∂xi (0 ≤ i ≤ n). Let Rk denote the degree-
k part of R so that R = ⊕

k Rk , and similarly for Jk , . . . . Let

ξ = 1

d

∑
i

xi

∂

∂xi

,

so that ξf = f. Let ιξ denote the interior product by ξ. Let "j be the vector space
of global algebraic (i.e., polynomial) j -forms on Cn+1, and let "j [f −1]k be the
degree-k part of "j [f −1], where the degrees of xi and dxi are 1. Then

ιξ ("
j+1[f −1]0) = �(U,"j

U). (2.1.2)
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This is compatible with the differential d up to a sign because

ιξ � d + d � ιξ = Lξ ,

where Lξ is the Lie derivation and Lξη = (k/d )η for η ∈ ("j [f −1])k. For g ∈R

we have
d(gf −kωi) = (−1)i(f∂ig − kgfi)f

−k−1ω, (2.1.3)

where ω = dx0 ∧ · · · ∧ dxn and ωi = dx0 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn.

Let
m = [α̃Y ].

For q ∈ N, let I(q) be the ideal of OX such that

Fq(OX(∗Y )) = I(q)OX((q + 1)Y ). (2.1.4)

Then I(q) = OX for q < m by (1.1.2). Let

Ik = �(X, I(m)(k)) ⊂ Rk , I =
⊕
k∈N

Ik ⊂ R.

Taking local coordinates y0, . . . , yn of Cn+1 \ {0} such that ∂/∂y0 = ξ, we get

ιξ (I"
n+1) = Im ιξ ∩ I"n (2.1.5)

by using the injectivity of

ιξ : "n+1[f −1] → "n[f −1].

We can also argue that, for g ∈ Rk , we have g ∈ Ik if and only if xig ∈ Ik+1 for
any i ∈ [0, n]. (This follows from the definition of I.)

Observe that m = α̃Y = +∞ if Y is smooth and that α̃Y,y = ∑n
i=0 wi if Y

is analytically locally defined by a semi–weighted homogeneous function h with
weights w0, . . . ,wn at y ∈ SingY ; see (1.3.1).

From (2.1.1)–(2.1.5) we can deduce a generalization of a theorem of Griffiths [12]
as follows (here no condition on the singularities of Y is assumed).

2.2. Theorem. With notation as before (e.g., m = [α̃Y ]), we have

Gr n−q

F H n(U, C) =
{

(R/J )(q+1)d−n−1 if q < m,

(I/J )(q+1)d−n−1 if q = m.
(2.2.1)

Proof. Since f ∈ J, the assertion immediately follows from (2.1.1)–(2.1.5).

2.3. Ordinary Double Point Case. Assume SingY consists of ordinary dou-
ble points so that m = [α̃Y ] = [n/2] as in Section 1.4. Then I(m) in (2.1.4) coin-
cides with the (reduced) ideal I of SingY ⊂ X by (1.5.1). Without our assumption
on the singularities, this claim does not hold; see (1.3.3). Using (2.1.1) and (1.5.1),
Wotzlaw obtained (2.2.1) in this case (i.e., Conjecture 1 for p ≥ n − m); see
[23, 6.5].

Let
I (i)
k = �(P n, I i(k)) ⊂ Rk , I (i) =

⊕
k

I (i)
k ⊂ R.
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Then (I i)k ⊂ I (i)
k ⊂ Rk , but it is not clear whether

(I i)k = I (i)
k . (2.3.1)

Note that (2.3.1) holds for k � 0, because the restriction to SpecR \ {0} of the
sheaf corresponding to I i coincides with that for I (i). However, (2.3.1) for an ar-
bitrary k does not hold in general if q ≥ 2. For example, let f = xyz(x + y + z)

with n = 2. In this case there is no hypersurface of degree ≤ 2 passing through
all the six singular points of Y (i.e., Ii = 0 for i ≤ 2), so g ∈ I

(2)
4 �= (I 2)4 = 0.

See also Section 2.4.
Choosing a section of OX(1) that does not vanish at y ∈ SingY, we can trivialize

OX,y(k) so that we get exact sequences

0 −−→ I
(i+1)
k −−→ I (i)

k

γ (i)
k−−→

⊕
y∈SingY

mi
X,y

mi+1
X,y

, (2.3.2)

where mX,y = Iy is the maximal ideal of OX,y. Let

I
(i),(y)

k = Ker

(
γ

(i)
k : I (i)

k −→
⊕

y ′∈SingY\{y}

mi
X,y ′

mi+1
X,y ′

)
.

If γ (i)
k is surjective, then we have the surjectivity of

γ
(i),(y)

k : I (i),(y)

k −→ mi
X,y/m

i+1
X,y , (2.3.3)

where γ
(i),(y)

k is the restriction of γ (i)
k .

By (1.5.1) and (2.1.2), we have an injection

ιξ ((I
(j−p−m+1)"j+1)(j−p+1)df

−(j−p+1)) ↪→ �(U,Fj−pOX(∗Y ) ⊗ "
j

X).

Here (I (i)"j )k = I
(i)
k−j ⊗C ("j )j because "j = R ⊗C ("j )j .

One of the main problems is whether the preceding injection is surjective—that
is, does

ιξ (I
(i′ )"j+1)k ′ = Im ιξ ∩ (I (i′ )"j )k ′ , (2.3.4)

where i ′ = j − p − m + 1 and k ′ = (j − p + 1)d. Note that (2.3.4) for j = n

holds by the same argument as in the proof of (2.1.5). However, (2.3.4) for j < n

does not hold—for example, when i ′ = k ′ − j (without assuming that i ′, k ′ are as
before).

In Sections 2.6–2.8 we will show that (2.3.4) is closely related to the surjectiv-
ity of (2.3.3) and also to the following:

(2.3.5) for each y ∈ SingY, there is a g(y) ∈ �(X, OX(e)) such that y /∈ g−1
(y)(0)

and SingY \ {y} ⊂ g−1
(y)(0), where e is a given positive integer.

This condition is satisfied for any e ′ > e if it is satisfied for e. (Indeed, it is enough
to replace g(y) with h(y)g(y), where h(y) is any section of OX(e

′ − e) such that y /∈
h−1
(y)(0).) Condition (2.3.5) means that the images of the singular points by the

e-fold Veronese embedding i(e) in Section 3.6 correspond to linearly independent
vectors in the affine space.
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2.4. Linearly Independent Case. Assume that the singular points correspond
to linearly independent vectors in Cn+1. Replacing the coordinates if necessary,
we may assume that SingY = {P0, . . . ,Ps}, where s ∈ [0, n] and the Pi are de-
fined by the ith unit vector of Cn+1. In this case I (i) ⊂ R is a monomial ideal, and
for a monomial xν := ∏

j x
νj
j we have

xν ∈ I (i) ⇐⇒ xν |xj=1 ∈ mi
j for each j ∈ [0, s], (2.4.1)

where mj is the maximal ideal generated by xl (l �= j). Let �(i) ⊂ Nn+1 such that

I (i) =
∑
ν∈�(i)

Cxν.

Set |ν|(j) = ∑
k �=j νk. Then

�(i) = {ν ∈ Nn+1 | |ν|(j) ≥ i (j ∈ [0, s])}. (2.4.2)

If |ν| = k, then the condition |ν|(j) ≥ i is equivalent to νj ≤ k − i. If i = 1, then
I is generated by xj for j > s and by xj xl for j, l ∈ [0, s] with j �= l.

In the case s = 0, we have

I (i) = I i for any i ≥ 1 if |SingY | = 1. (2.4.3)

Assume s = n for simplicity. Then I is generated by xi xj for i �= j, and I (2) is
generated by x 2

i x
2
j for i �= j and by xi xj xl for i, j, l mutually different. So we get

I
(2)
k = (I 2)k for k ≥ 4, but I (2)

3 �= (I 2)3 = 0.
More generally, we have the following statement.

2.5. Lemma. Assume that the singular points of Y correspond to linearly inde-
pendent vectors in Cn+1. Then

(I i)k = I
(i)
k if k ≥ 2i. (2.5.1)

Proof. We may assume that i ≥ 2 and s �= 0 by (2.4.3). With the notation of Sec-
tion 2.4, any xν ∈ I

(i)
k is divisible either by xj with j > s or by xj xl with j, l ∈

[0, s] (j �= l ). (Indeed, otherwise xν = xk
j for some j ∈ [0, s], but xk

j /∈ I (i).) So
we can proceed by increasing induction on i, applying the inductive hypothesis to
the case where i and k are replaced by i − 1 and k − 2, respectively.

2.6. Lemma. Assume that SingY consists of ordinary double points and that
(2.3.5) is satisfied for e = k − i(d − 1). Then γ

(i)
k in (2.3.2) is surjective and so

we have a short exact sequence

0 −−→ I
(i+1)
k −−→ I (i)

k

γ (i)
k−−→

⊕
y∈SingY

mi
X,y

mi+1
X,y

−−→ 0, (2.6.1)

where mX,y = Iy is the maximal ideal of OX,y.

Proof. For each y ∈ SingY, the fj ∈ Id−1 for j ∈ [0, n] generate Iy = mX,y , and
hence the g(y)

∏
j f

νj
j for |ν| = i generate mi

X,y/m
i+1
X,y. So the assertion follows.
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2.7. Remarks. (i) The morphism β
(j)

k in (0.1) is surjective if and only if γ
(i)
k

in (2.3.2) is surjective for any i ∈ [0, j − 1]. Thus Lemma 2.6 shows that condi-
tion (B) in Theorem 2 implies (A), since qd −n− (q −m)(d −1) = m(d −1)−p

and d ≥ 2.
(ii) Let g = ∑

|ν|=k aν x
ν ∈Rk. Then g ∈ I (i)

k if and only if

(∂µg)(y) = 0 for any y ∈ SingY and µ∈ Nn+1 with |µ| = i − 1, (2.7.1)

where ∂µg = ∏n
i=0 ∂

µi

i g. Let M = (
i−1+n

n

)|SingY | and N = (
k+n
n

)
. The aν are

viewed as coordinates of CN parameterizing the homogeneous polynomials of de-
gree k, and (2.7.1) gives M linear relations among the aν defining the subspace
I
(i)
k ⊂ Rk. Hence βi

k is surjective if and only if these M relations are linearly in-
dependent (i.e., iff the corresponding matrix of size (M,N) has rank M).

2.8. Proposition. Assume that SingY consists of ordinary double points. Then
(2.3.4) with j = n − 1 holds if γ

(i)
k in (2.3.2) is surjective for k = k ′ − n − 1 and

any i ∈ [0, i ′ − 1].

Proof. By increasing filtration on i ′ > 0, it is enough to show that

ιξ (η)∈ ιξ (I
(i′ )"n)k ′ if η ∈ (I (i′−1)"n)k ′ with ιξ (η)∈ (I (i′ )"n−1)k ′ . (2.8.1)

For each y ∈ SingY, take coordinates x
(y)

0 , . . . , x(y)
n such that y = (1, 0, . . . , 0).

With the notation of Lemma (2.6), set k = k ′ − n − 1. Then, in the notation of
(2.3.3), the hypothesis of the proposition implies the surjectivity of

γ
(i′−1),(y)
k : I (i′−1),(y)

k → mi′−1
X,y /m

i′
X,y.

So we may replace η with
∑

y x
(y)

0 η(y), where

η(y) ∈ I
(i′−1),(y)
k ⊗C ("n)n with γ

(i′−1)
k+1 (η) =

∑
y

γ
(i′−1),(y)
k+1 (x

(y)

0 η(y)).

Then, for the proof of (2.8.1) we may assume that

η ∈ x
(y)

0 I
(i′−1),(y)
k ⊗C ("n)n for some y ∈ SingY,

because g|X\{y} is a section of I (i′ )(k)|X\{y} for any g ∈ I
(i′−1),(y)
k .

Let ω(y) = dx(y)

0 ∧ · · · ∧ dx(y)
n and ω

(y)

j = dx(y)

0 ∧ · · · ∧ ̂dx(y)

j ∧ · · · ∧ dx(y)
n .

Then

η =
n∑

j=0

x
(y)

0 h
(y)

j ω
(y)

j with h
(y)

j ∈ I
(i′−1),(y)
k .

Calculating modulo I (i′ )"n−1 the coefficient of

dx(y)

1 ∧ · · · ∧ ̂dx(y)

j ∧ · · · ∧ dx(y)
n in ιξ

( n∑
j=0

x
(y)

0 h
(y)

j ω
(y)

j

)
,

which belongs to I (i′ )"n−1 by the hypothesis of (2.8.1), we see that h(y)

j ∈ I
(i′ )
k for

j �= 0. Then we may assume h
(y)

j = 0 for j �= 0, so that
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η = x
(y)

0 h
(y)

0 ω
(y)

0 .

By the definition of I (i′−1),(y)
k , we have

x
(y)

j h
(y)

0 ω
(y)

j ∈ I (i′ )"n for j �= 0,

and
n∑

j=0

(−1)jιξ (x
(y)

j h
(y)

0 ω
(y)

j ) = ιξ (ιξ (h
(y)

0 ω(y))) = 0.

Hence the assertion follows.

3. Proof of Theorem 1

3.1. Problem. Assume that X = P n and that SingY consists of ordinary dou-
ble points. One of the main problems in generalizing a theorem of Griffiths [12]
is whether the following equality holds:

FpH n(U, C) = PpH n(U, C), that is,

Im
(
ιξ (("

n+1)(q+1)df
−(q+1)) → Hn(U, C)

) ⊂ FpH n(U, C),
(3.1.1)

where q = n − p. This was rather extensively studied in [23] (see e.g. a remark
after Theorem 3.14 there). We show that (3.1.1) does not hold in general; see Sec-
tions 3.7 and 3.8. This implies that the isomorphism in Conjecture 1 for p < n−m

(i.e., q > m) cannot be deduced by the method indicated there.

3.2. Proposition. Let X and Y be as before. Assume that q = n − p > m

and that Fp+1 = Pp+1 on Hn(U, C). Then GrpF H n(U, C) is a subquotient of
(I/J )(q+1)d−n−1.

Proof. From Section 2.1 we know that Hn(U, C) is the cokernel of

d : �(X,"n−1
X (∗Y )) → �(X,"n

X(∗Y ))

and that PpH n(U, C) is the image of �(X, (OX((q + 1)Y )) ⊗ "n
X), and similarly

for F.
Let I be the reduced ideal of SingY ⊂ X and let Ik = �(X, I(k)) ⊂ Rk. By

assumption together with Lemma 1.5, it follows that

Fq(OZ(∗Y )) ⊂ IOX((q + 1)Y ) and Fp+1 = Pp+1 on Hn(U, C). (3.2.1)

Thus we obtain a commutative diagram

�(X,Fq−1OX ⊗ "n−1
X ) ⊕ �(X,Fq−1OX ⊗ "n

X)
��

��

�(X,FqOX ⊗ "n
X)

��

�(X,"n−1
X (qY )) ⊕ �(X,"n

X(qY ))
φ

�� �(X, I"n
X((q + 1)Y )).

By (2.1.2) and (2.1.3) together with the inclusion Rf ⊂ J, we have



614 Alexandru Dimca, Morihiko Saito, & Lorenz Wotzlaw

Cokerφ = (I/J )(q+1)d−n−1. (3.2.2)

Thus the assertion is reduced to

GrpF H n(U, C) is a subquotient of Cokerφ. (3.2.3)

Taking the image of the diagram by the canonical morphism to Hn(U, C) and then
adding the cokernels, we get

Fp+1Hn(U, C) �� FpH n(U, C) ��

∩
��

GrpF H n(U, C) ��

∩
��

0

Pp+1Hn(U, C)
φ̄

�� PpH n(U, C) �� Coker φ̄ �� 0,

where the image of d�(X,"n−1
X (qY )) in Hn(U, C) vanishes (considering the case

q = ∞). Moreover, Coker φ̄ is a quotient of Cokerφ by the snake lemma. So the
assertion follows.

3.3. Hodge Numbers of Smooth Hypersurfaces. Define integers C(n + 1,
d, i) by

(t + · · · + t d−1)n+1 =
(n+1)(d−1)∑

i=n+1

C(n + 1, d, i)t i, (3.3.1)

so that
C(n + 1, d, i) = C(n + 1, d, (n + 1)d − i),

where C(n + 1, d, i) = 0 unless i ∈ [n + 1, (n + 1)(d − 1)]. This is the Poincaré
polynomial of the graded vector space

"n+1/dg ∧ "n

if g is a homogeneous polynomial of degree d with an isolated singularity at the
origin

(
e.g., if g = ∑

i x
d
i

)
. For the hypersurface Z ′ ⊂ X defined by g, we have

(by Griffiths [12])

C(n + 1, d,pd) = dim Gr n−p

F H n−1
prim(Z

′, C) for p ∈ [1, n], (3.3.2)

where Hn−1
prim(Z

′, C) denotes the primitive part.

3.4. Isolated Singularity Case. Assume that Y has only isolated singulari-
ties and that

n − p > q0 := max{q | Gr qF H n−1(Fy , C) �= 0 for some y ∈ SingY }, (3.4.1)

where F is the Hodge filtration on the vanishing cohomology Hn−1(Fy , C) at y ∈
SingY (see [21]). Here Fy denotes the Milnor fiber around y. If SingY consist
of ordinary double points then q0 = m := [n/2]; see (3.5.1). In general, we have
q0 ≥ (n − 1)/2 by the Hodge symmetry.

Under the preceding assumptions, we have

dim GrpF H n(U, C) = dim GrpF H n+1
Y (X, C) = C(n + 1, d,pd). (3.4.2)
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Indeed, there is a perfect pairing of mixed Hodge structures

Hn+1
Y (X, Q) × Hn−1(Y, Q) → Q(−n), (3.4.3)

and condition (3.4.1) (together with q0 ≥ (n − 1)/2) and (3.3.2) imply

dim Gr n−p

F H n−1(Y, C) = C(n + 1, d,pd). (3.4.4)

The last assertion is reduced to the case of a smooth hypersurface by taking a
1-parameter deformation Zt =: {f + tg = 0} (t ∈ >) of Y = Z0 whose general
fibers Zt and total space Z are smooth (we assume that the hypersurface {g = 0}
does not meet SingY ). Here we use also the exact sequence of mixed Hodge
structures

0 −→ Hn−1(Y ) −→ Hn−1(Z∞)

ρ−→
⊕

Hn−1(Fy) −→ Hn(Y ) −→ Hn(Z∞) −→ 0 (3.4.5)

(see also [8, 1.9]), where Hn−1(Z∞) denotes the limit mixed Hodge structure.
Observe that Gr n−p

F H n−1(Z∞, C) = Gr n−p

F H n−1
prim(Z∞, C) because n − p >

(n − 1)/2.

3.5. Remark. Assume that the singularities of Y are ordinary double points.
Since the weight filtration on the unipotent (resp. non-unipotent) monodromy part
of Hn−1(Fy , Q) has the symmetry with center n (resp. n − 1) by definition (see
[21]) and since the monodromy on the vanishing cycles is (−1)n, it follows that

Hn−1(Fy , Q) = Q(−m), (3.5.1)

where m = [n/2]. In particular, ρ in (3.4.5) is surjective for n odd (considering
the monodromy), and by the preceding argument we have

|SingY | ≤ C(n + 1, d, (m + 1)d ) if n = 2m + 1. (3.5.2)

This is related to [22]. Note that ρ can be nonsurjective if n is even and SingY con-
sists of sufficiently many ordinary double points. Indeed, the Betti number bn(Y )

may depend on the position of the singularities (see e.g. [7, Thm. (4.5), p. 208]).
In [7] the position of singularities enters via the dimension of Imd−2m−1 (where
n = 2m). The proof of [7, Thm. (4.5)] uses an exact sequence

P m+1Hn(P n \ Y ) −→
⊕

y∈SingY

H n(By \ Y ) −→ Hn
0 (Y )(−1) −→ 0, (3.5.3)

where By ⊂ P n is a sufficiently small ball with center y. Here Hn
0 (Y ) denotes the

primitive cohomology defined by Coker(H n(P n) → Hn(Y )). Note that

Hn(By \ Y ) = Coker(N : Hn−1(Fy) → Hn−1(Fy)(−1)) = Q(−m − 1).

Using (3.4.5), (3.4.3), (1.2.1) and (2.2.1), we have also

dim Ker ρ = dim GrmF H n−1(Y, C) = dim GrmF H n+1
Y (X, C)

= dim GrmF H n(U, C) = dim(I/J )(m+1)d−2m−1.

If n is even and d = 2, then Hn−1
prim(Z∞, C) = 0 and ρ vanishes. If n is even,

d ≥ 3, and SingY consists of one ordinary double point, then Hn−1
prim(Z∞, C) �= 0
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and ρ is surjective (because ρ is nonzero by the theory of vanishing cycles). Hence
bn(Y ) = 1 (for more general singularities, see [7, Thm. (4.17), p. 214]); thus, at
the level of topology, nothing surprising may occur.

3.6. Discriminant. Let i(d ) : X = P n → P = PN be the d-fold Veronese em-
bedding defined by the line bundle OX(d ) (i.e., by using the monomials xν of
degree d), where N = (

n+d
n

) − 1. Let P∨ be the dual projective space of P pa-
rameterizing the hyperplanes of P. Let H ⊂ P × P∨ be the universal hyperplane
whose intersection with P × {z} is the hyperplane corresponding to z ∈ P∨. Let
D be the discriminant of the projection

pr : (i(d )(X) × P∨) ∩ H → P∨.

This is called the dual variety of X ⊂ P. It is well known that D is irreducible
(because D is the image of a PN−n−1-bundle over X corresponding to the hyper-
planes that are tangent to X). By the theory of Lefschetz pencils, it is also known
that SingY consists of one ordinary double point if and only if it corresponds to a
smooth point of D.

3.7. Proof of Theorem 1. By Section 3.6 it is enough to show that

Fp+1 �= Pp+1 on Hn(X \ Y, C)

for one hypersurface Y whose singularities consist of one ordinary double point,
assuming (n + 1)/d ≤ p < n − m (i.e., m < q ≤ n − (n + 1)/d ). Indeed,
F −∞/Fp+1 defines a vector bundle on the parameter space of hypersurfaces Y

whose singularities consist of one ordinary double point; and, in the notation of
Proposition 3.2, gf −qω for g ∈ Rqd−n−1 defines a section of this bundle when f

varies. Because Pp+1 is generated by these sections where q = n − p, the subset
defined by the condition Pp+1/Fp+1 �= 0 is a Zariski-open subset.

Let

f =
n∑

i=1

xd
i

d
− xd−2

0

n∑
i=1

x 2
i

2
,

so that

f0 = −1

2

3∑
i=1

x 2
i , fi = x 2

i − x0xi (1 ≤ i ≤ 3) if d = 3;

f0 = −
4∑

i=1

x0x
2
i , fi = x3

i − x 2
0xi (1 ≤ i ≤ 4) if d = 4.

Here I is generated by x1, . . . , xn so that R/I = C[x0 ]. By assumption, (3.2.1)
and (3.4.1) are satisfied (in particular, q > n/2 > p). Moreover,

C(n + 1, d,pd) �= 0;
see (3.3.1) for C(n + 1, d, k). The assumptions imply also that

p ≥ 2, n ≥ 5 if d = 3,

p ≥ 1, n ≥ 3 if d = 4.
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Since q > n/2, we obtain

r := (q + 1)d − n − 1 > d.

We will show that
dim(I/J )r < C(n + 1, d,pd), (3.7.1)

contradicting Proposition 3.2 and (3.4.2).
Take xν = ∏n

i=0 x
νi
i ∈ Ir with ν = (ν0, . . . , νn)∈ Nn+1, where

|ν| :=
n∑

i=0

νi = r, ν0 < r.

Using fi for i > 0, we can replace xν with xµ mod Jr (i.e., xν − xµ ∈ Jr) so that

µi ≤ d − 2 (i > 0), νi − µi ∈ (d − 2)Z.

So we may assume that νi ≤ d − 2 for i > 0. Let |ν|′ = ∑n
i=1 νi and

s = min{s ∈ Z | |ν|′ − s ∈ (d − 2)Z, s ≥ r − (d − 2)}.
We first show that if |ν|′ < r − (d − 2) (i.e., if ν0 > d − 2) then

xν = (−1)(|ν|
′−s)/(d−2)

∑
µ

eν,µx
µ mod Jr , (3.7.2)

where the summation is taken over µ such that |µ|′ = s and µi ≤ d − 2 for i > 0
and where the eν,µ are nonnegative numbers with eν,µ �= 0 for some µ (for each
ν). By decreasing induction on |ν|′, it is enough to show (3.7.2) with the summa-
tion taken over b such that |µ|′ = |ν|′ + (d − 2) instead of |µ|′ = s. But this
modified assertion follows from

xνx−2
0

n∑
i=1

x 2
i ∈ Jr if ν0 > d − 2, (3.7.3)

because for i > 0 we have (using fi)

xν = xνx−2
0 x 2

i mod Jr if νi > 0, ν0 ≥ 2. (3.7.4)

(For the last argument we need the assumption d = 3 or 4.)
Let Vr be the vector space with basis xµ such that |µ| = r and µi ≤ d − 2 for

i ≥ 0. Let Vr,k be the vector subspace of Vr generated by xµ such that µ0 = k

(i.e., |µ|′ = r − k). Then the preceding argument implies that (I/J )r is spanned
by Vr = ∑d−2

k=0 Vr,k and, moreover, that xr−2
0

∑n
i=1 x

2
i ∈ Jr gives a nontrivial re-

lation in Vr,r−s . Thus we get (3.7.1); that is,

dim(I/J )r < dimVr = C(n + 1, d, (q + 1)d ) = C(n + 1, d,pd).

Therefore, the assertion follows.

3.8. Other Examples. (i) It is not easy to extend the argument just given to the
case d ≥ 5. Let n = 4, d = 5, and
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f = x3
0(x1x4 + x2x3) −

4∑
i=1

x 5
i

5
,

so that f0 = 3x 2
0 (x1x4 + x2x3) and fi = x3

0x5−i − x4
i (1 ≤ i ≤ 4). Then

F 2H 4(U, C) �= P 2H 4(U, C) for this hypersurface and hence for a sufficiently
general singular hypersurface.

(ii) In the previous examples, SingY consists of one point. Let n = 3 and
d = 4; let

f =
∑

0≤i<j≤3

x 2
i x

2
j

2
, fi = xi

∑
k �=i

x 2
k .

Then SingY consists of four points corresponding to the unit vectors of C4. For
this hypersurface, F 2H 3(U, C) �= P 2H 3(U, C).

3.9. Remarks. (i) In [9, Thm. 4.5], two of the authors gave this formula for the
Kodaira–Spencer map:

GrF ∇ξ : Grp+1
F H n(Us , C) → GrpF H n(Us , C), (3.9.1)

where {Ys} is an equisingular family of hypersurfaces (see [9]). When the Ys have
only ordinary double points, Theorem 1 implies that the formula is useful only
for p > n − m. In this case, however, (3.9.1) is given by the multiplication by
−(n−p)(ξf )s for any p under the isomorphisms of Theorem 2 and Theorem 2.2;
see Theorem 4.5.

(ii) In case n is odd, Y is a Q-homology manifold and so

Hn(Us , C) = Hn+1
Ys

(X, C)prim = Hn−1
prim(Ys , C)(−1).

Then the Kodaira–Spencer map for p ≤ n − m can be calculated using duality,
because the horizontality of the canonical pairing on Hn−1

prim(Ys , C) implies that the
Kodaira–Spencer map is self-dual up to a sign.

4. Proof of Theorem 2

4.1. Brieskorn Modules for Ordinary Double Points. We first review some
basic facts about algebraic Brieskorn modules. Let z1, . . . , zn be the coordinates
of Z = Cn and let h = ∑n

i=1 z
2
i . We denote by ("•

Z , d) the complex of algebraic
differential forms on Z. Let (A•

h, d) be the subcomplex defined by

Ai
h = Ker(dh∧ : "i

Z → "i+1
Z ).

Since ("•
Z , dh∧) is the Koszul complex associated to the regular sequence hi =

2zi for i ∈ [0, n], we have

H i("•
Z , dh∧) = 0 for i �= n. (4.1.1)

This implies that the cohomology group H iA•
h is a left C[t]〈∂t〉-module for i �= n

and that the action of ∂−1
t is well-defined on the algebraic Brieskorn module
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HnA•
h = "n

Z/dh ∧ d"n−2
Z .

Here ∂t [η] = [φ] for η,φ ∈Ai
h if there is a σ ∈Ai−1

h such that

[η] = [dh ∧ σ], [φ] = [dσ], (4.1.2)

where [η] denotes the class of η in H iA•
h (see [3]). The action of t is defined by

the multiplication by h. We have the finiteness of H iA•
h over C[t] by using the

canonical compactification of the morphism h. (The argument is essentially the
same as in the analytic case in [3].) Then H iA•

h is t-torsion free for i < n, and by
the theory of Milnor fibration it follows that

H iA•
h = 0 for i �= 1, n. (4.1.3)

We have the graded structure such that deg zi = deg dzi = 1. This is compatible
with d and dh∧ (up to a shift of degree) and defines a graded structure on HnA•

h.

Let HnA•
h,k denote the degree-k part of HnA•

h, so that

HnA•
h =

⊕
k≥n

H nA•
h,k.

Using the relation
∑

i zihi = 2h yields a well-known formula:

2t∂t [φ] = (k − 2)[φ] for [φ] ∈HnA•
h,k. (4.1.4)

This implies the t-torsion-freeness of HnA•
h (because we may assume k ≥ n).

For i = 1, H1A•
h is a free C[t]-module of rank 1 generated by [dh]. Since

A0
h = 0, this implies that

H1A•
h = C[h]dh = Ker(d: A1

h → A2
h). (4.1.5)

Define D ′
q : "i

Z → "i+1
Z for q ∈ Z by

D ′
qη = hdη − qdh ∧ η.

This is compatible with the graded structure up to the shift by degh = 2, and we
have D ′

q � D ′
q−1 = 0. We will denote by "i

Z,j the degree-j part of "i
Z.

The following lemma will be used in the proof of Theorem 2 in Section 4.3.

4.2. Lemma. Assume that j �= 2q �= 0. Then the following statements hold.

(i) D ′
q : "n−1

Z,j → "n
Z,j+2 is surjective if j + 2 > n.

(ii) Im(D ′
q−1 : "n−2

Z,j−2 → "n−1
Z,j ) = Ker(D ′

q : "n−1
Z,j → "n

Z,j+2) if q �= 1.

Proof. Letφ ∈"n
Z,j+2. There is an η ∈"n−1

Z,j such that dh∧η = φ since j +2 > n.

Then (4.1.2) and (4.1.4) imply that

[D ′
qη] = t∂t [φ] − q[φ] = (j/2 − q)[φ].

So, replacing φ with φ − αD ′
qη where α = (j/2 − q)−1, we may assume that

[φ] = 0 (i.e., φ ∈ dh ∧ d"n−2
Z ). Take σ ∈ "n−2

Z,j such that φ = dh ∧ dσ. Then
D ′

q(−q−1dσ) = φ, and assertion (i) follows.
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For assertion (ii), let η ∈"n−1
Z,j be such that D ′

qη = 0. Set

φ = qdh ∧ η = hdη.

Then t∂t [φ] = q[φ] by (4.1.2) and so [φ] = 0 by (4.1.4) (using j �= 2q). Since
HnA•

h is t-torsion-free, we have [dη] = 0; that is, dη = dh ∧ dσ with σ ∈"n−2
Z,j .

Then
d(D ′

q−1σ) = qdh ∧ dσ = qdη;
replacing η by η−q−1D ′

q−1(σ), we may assume that dη = 0 and hence dh∧η = 0.
If n > 2, then this together with (4.1.3) and (4.1.1) implies

η = dσ ′ = −dh ∧ dσ ′′ with σ ′ = dh ∧ σ ′′ ∈An−2
h,j , σ ′′ ∈"n−3

h,j−2

and hence η = (q − 1)−1D ′
q−1(dσ

′′). Thus the assertion follows in this case.
For the case n = 2, by (4.1.5) we have η = βhidh with β ∈ C if j is even and

positive (where j = 2i + 2) and η = 0 otherwise. If j = 2i + 2, then

D ′
q−1h

i = (i − q + 1)hidh

and i − q + 1 �= 0 by j �= 2q. The assertion follows.

4.3. Proof of Theorem 2. Let q = n − p, i = q − m + 1, and k = (q + 1)d
where q > m. By Lemma 2.6 and Remark 2.7(i), it is enough to treat the case
where condition (A) is satisfied. With the notation of Section 2.3, consider the
commutative diagram

0 �� (I (i)"n)k−d
��

ψ ′
a

��

(I (i−1)"n)k−d
��

ψa

��

(I (i−1)"n)k−d

(I (i)"n)k−d

��

ψ ′′
a

��

0

0 ��
(I (i+1)"n+1)k

(fI (i−1)"n+1)k

��
(I (i)"n+1)k

(fI (i−1)"n+1)k

��
(I (i)"n+1)k

(I (i+1)"n+1)k

�� 0,

where ψ ′
a ,ψa ,ψ ′′

a are induced by

Dq :=
{

fd − qdf∧ if a = 1,

df∧ if a = 2.

Note that Dq is closely related to (2.1.3). Using coordinates x0, . . . , xn, we have

(I (i−1)"n)k−d =
n⊕

j=0

I
(i−1)
k−n−dωj , (I (i)"n+1)k = I

(i)
k−n−1ω,

and so forth, where ω = dx0 ∧ · · · ∧ dxn and ωj = dx0 ∧ · · · ∧ d̂xj ∧ · · · ∧ dxn.

Then we get

Cokerψ1 = GrpF H n(U, C), Cokerψ2 = (I i/JI i−1)k. (4.3.1)

Indeed, the first isomorphism of (4.3.1) follows from Section 2.1 together with
Proposition 2.8, and the second is trivial because f ∈ J. Observe that the assump-
tion of Proposition 2.8 is satisfied by condition (A) for (k, i) = (qd−n−1, q−m),
because i ′ = q − m and k ′ = qd in (2.3.4) with j = n − 1.
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Because ∂j I
(i) ⊂ I (i−1), we see that fd in ψ ′

1 vanishes, and hence

Cokerψ ′
1 = Cokerψ ′

2.

We will show that ψ ′′
a is surjective for a = 1, 2 by identifying it with

⊕
y∈SingY

n⊕
j=0

(
mi−1

X,y

mi
X,y

)
ω

(y)

j →
⊕

y∈SingY

(
mi

X,y

mi+1
X,y

)
ω(y), (4.3.2)

where ω
(y)

j and ω(y) are associated to some coordinates x
(y)

0 , . . . , x(y)
n depending

on y ∈ SingY. By the snake lemma, we then have an exact sequence

Kerψ ′′
a

ρa−→ Cokerψ ′
a −→ Cokerψa −→ 0. (4.3.3)

For a = 1 this implies the last isomorphism of the formula in Theorem 2. For the
first isomorphism of the formula, we will further show that

Im ρ1 = Im ρ2. (4.3.4)

We start with the proof of the surjectivity of ψ ′′
a . For each y ∈ SingY, choose

appropriate coordinates x
(y)

0 , . . . , x(y)
n such that y is given by (1, 0, . . . , 0) and

h(z
(y)

1 , . . . , z(y)n ) := f

(x
(y)

0 )d
=

n∑
j=1

(z
(y)

j )2 + higher terms,

where z
(y)

j = x
(y)

j /x
(y)

0 . (The last condition is satisfied by using a linear transfor-

mation of z(y)1 , . . . , z(y)n .) We trivialize OX,y(1) by using x
(y)

0 . Then γ
(i)
k in (2.3.2)

is induced by substituting x
(y)

0 = 1 and x
(y)

j = z
(y)

j for j > 0. So z
(y)

j is identi-

fied with x
(y)

j /x
(y)

0 . Since f0/(x
(y)

0 )d−1 ∈ m2
X,y and since fj/(x

(y)

0 )d−1 = 2z(y)j in
mX,y/m

2
X,y for j �= 0, we see that ψ ′′

a is identified with (4.3.2). Indeed, the asser-
tion is equivalent to the surjectivity of γ (i−1)

k−n−d and γ
(i)
k−n−1 in (2.3.2). But the first

surjectivity follows from condition (A) for (k, i) = (qd − n, q − m + 1), and the
second is reduced to the first by using a commutative diagram as before together
with the surjectivity of the morphism (4.3.2) induced by df∧; see (4.1.1). So ψ ′′

a

is identified with (4.3.2), and we also get the surjectivity of ψ ′′
2 .

The morphisms (4.3.2) induced by Dq and df∧ are compatible with the direct
sum over y ∈ SingY (using the pull-back by the surjection γ

(i−1),(y)
k−n−d ; see (2.3.3)).

Moreover, the restriction of ψ ′′
1 ,

n⊕
j=1

(
mi−1

X,y

mi
X,y

)
ω

(y)

j →
(

mi
X,y

mi+1
X,y

)
ω(y), (4.3.5)

is identified with D ′
q in Lemma 4.2. Here j := i + n − 2 �= 2q since q > m. So

ψ ′′
1 is also surjective, and the kernel of (4.3.5) does not contribute to Im ρ1 by us-

ing
Dq−1 : (I i−2"n/I i−1"n)k−2d → (I i−1"n/I i"n)k−d

because it lifts D ′
q−1 in Lemma 4.2 and satisfies Dq � Dq−1 = 0. For a = 2, the

kernel of (4.3.5) induced by df∧ does not contribute to Im ρ2 by a similar argu-
ment using (4.1.1).
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Hence it is enough to consider the contribution to Im ρa of (mi−1
X,y/m

i
X,y)ω

(y)

0 ,
which is contained in the kernel of (4.3.2) for a = 1, 2. Because ∂/∂x

(y)

0 preserves
the maximal ideal of R generated by x

(y)

j (j �= 0), it does not contribute to Im ρ1

using the pull-back by the surjection γ
(i),(y)

k−n−1 in (2.3.3). Then the contributions to
Im ρa for a = 1, 2 are both given by using the pull-back by the surjection γ

(i),(y)

k−n−1
together with the multiplication by ∂f/∂x

(y)

0 . Thus we obtain (4.3.4). (Note that
the assertion (4.3.4) is independent of the choice of coordinates and that the iso-
morphism derived in the formula of Theorem 2 is well-defined.) This completes
the proof of Theorem 2.

4.4. Proof of Corollary 1. Let q = n−p, i = q −m+1, and k = (q +1)d.
Since q > m ≥ 1, the condition in (2.5.1) for d ≥ 3 is satisfied when k and i in
(2.5.1) are k − n−1 and i or k − n− d and i −1 (i.e., we have k − n−1 ≥ 2i and
k − n − d ≥ 2i − 2); see (2.4.3) for the case d = 2. Moreover, m(d − 1) − p >

0 when d ≥ 3, because n − p > m ≥ 1. If d = 2, then |SingY | = 1 and (2.3.5)
is satisfied for e = 0. So the assertion follows from Theorem 2 and Lemma 2.5.

From Theorem 2 we can deduce the following.

4.5. Corollary. Let Ys be an equisingular family of hypersurfaces in P n that
are parameterized by a smooth variety S and whose singularities are ordinary
double points. Assume condition (A) for q in Theorem 2 is satisfied for any s ∈ S

if q > m, and assume the same with q replaced by q − 1 if q − 1 > m. Set Us =
P n \ Ys. Then, for a vector field θ on S, we have a commutative diagram

Gr n−q+1
F H n(Us , P)

GrF ∇θ �� Gr n−q

F H n(Us , P)

(I
(q−m)
s /I

(q−m−1)
s Js)qd−n−1

−q(θf )s �� (I
(q−m+1)
s /I

(q−m)
s Js)(q+1)d−n−1,

where the vertical isomorphisms are given by Theorem 2 and Theorem 2.2.

Proof. The action of θ on the relative de Rham cohomology can be calculated by
ιθ � d. Hence the assertion follows from Theorem 2 (using ιξ � d + d � ιξ = Lξ

and ιθ � ιξ = −ιξ � ιθ ), because the cohomology class is represented using the first
isomorphism in (0.2).

4.6. Remarks. (i) By Varchenko [22] (conjectured by Arnold) and [13], we have

|SingY | ≤
∑

(n−2)/2+1<i≤nd/2

C(n, d, i) = C(n + 1, d, [nd/2] + 1)

=
∑
i≥0

(
n + 1

i

)(
[nd/2] − i(d − 1)

n

)
<

(
[nd/2]

n

)
, (4.6.1)

where C(n, d, i) is as in (3.3.1). (This also follows from (3.5.2) applied to a hyper-
surface in P n+1 or P n+2 defined by f + xd

n+1 or f + xd
n+1 + xd

n+2.)
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If n is even (i.e., if n = 2m), then (4.6.1) implies(
e + n

n

)
≥

(
md + 1

n

)
>

(
[nd/2]

n

)
> |SingY | for q ≥ m + 1, (4.6.2)

and it is possible that condition (B) in Theorem 2 is satisfied. However, if n is
odd (i.e., if n = 2m + 1), then (4.6.2) does not hold and condition (B) cannot be
satisfied—for example, if n = 3, q = 2, and Y is a Kummer surface with six-
teen ordinary double points where d = 4, e = 2, and

(
e+n
n

) = 10 (see Example
4.7(ii)) or if Y has 65 ordinary double points with d = 6 as in [1] where e = 4
and

(
e+n
n

) = 35.
(ii) For condition (A), we have matrices of size (M,N) with

M =
(
i − 1 + n

n

)
|SingY | and N =

(
k + n

n

)
,

where (k, i) = (qd − n, q −m+1) and (qd − n−1, q −m). See Remark 2.7(ii).

4.7. Examples. (i) Assume that n = 3, d = 4, and

f =
3∑

i=0

x4
i −

∑
0≤i<j≤3

2x 2
i x

2
j so that fj = 4xj

(
x 2
j −

∑
i �=j

x 2
i

)
.

This has twelve ordinary double points. Indeed, there are two singular points de-
fined by x 2

i = x 2
j and x 2

k = 0 (k ∈ [0, 3]\{i, j}) for each {i, j} ⊂ [0, 3] with i �= j.

Hence condition (B) cannot be satisfied for q = 2 because 12 >
(
e+n
n

) = 10 in the
notation of Remark 4.6. However, condition (A) seems to be satisfied for q = 2
when, in the notation of Remark 4.6(ii), (M,N) = (48, 56) and (12, 35).

(ii) Assume that Y is a singular Kummer surface defined by

f =
3∑

i=0

x4
i −

∑
0≤i<j≤3

x 2
i x

2
j so that fj = 2xj

(
2x 2

j −
∑
i �=j

x 2
i

)
.

This has sixteen ordinary double points. Indeed, there are four singular points
defined by xk = 0 and x 2

i = 1 (i �= k) for each k = 0, . . . , 3. Condition (A)
for q = 2 cannot be satisfied because (M,N) can be (64, 56) in the notation of
Remark 4.6(ii). However, it seems that

dim I
(2)
8 = dim(I 2)8 =

(
8 + 3

3

)
− 4|SingY | = 101, dim(IJ )8 = 100;

hence at least a noncanonical isomorphism still holds in Conjecture 1 for q = 2.
(iii) It would be difficult to calculate the right-hand side of Conjecture 1 for the

Barth surface [1], so we consider the case where Y is defined by

f =
( 3∑

i=0

x 2
i

)3

−
3∑

i=0

x6
i so that fj = 6xj

(( 3∑
i=0

x 2
i

)2

− x4
j

)
.

This has 52 ordinary double points. Indeed, there are four singular points defined
by xi = 1 and xk = 0 (k �= i) for i = 0, . . . , 3 as well as four singular points
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defined by xi = 1, xj = 0, and x 2
k = −1 (k ∈ [0, 3] \ {i, j}) for each (i, j) ∈

[0, 3]2 \ {diagonal}. Condition (B) cannot be satisfied because
(
e+n
n

) = 35 < 52,
but it is not clear whether condition (A) is satisfied where (M,N) = (208, 220)
and (52,165). It seems that

dim I
(2)
14 = dim(I 2)14 =

(
14 + 3

3

)
− 4|SingY | = 472, dim(IJ )14 = 462;

hence at least a noncanonical isomorphism still holds in Conjecture 1 for q = 2.
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