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1. Introduction

Many communication channels accept as input binary strings and return output
strings of the same length that have been altered in an unpredictable way. To com-
pensate for these “errors”, redundant data is added to messages before they enter
the channel. The task of a decoding algorithm is to reconstruct sent message(s)
(i.e., to decode) the channel output.

There are several critical attributes of a decoding algorithm. The design com-
plexity is a measure of the effort required to design and implement an instance
of the algorithm. The implementation cost is a measure of the time and space re-
sources required to decode received sequences once the algorithm is implemented.
The apparent accuracy of an algorithm is a measure of its ability to actually iden-
tify all most likely sent messages (codewords) for a given received sequence in
practice. The proven accuracy is a measure of the algorithm’s certified ability to
correctly move from received sequence to nearest codeword without failure of any
kind. A decoding algorithm is optimal if it correctly identifies the most likely chan-
nel error for each possible received sequence for which there is a unique such error.

Error correcting codes have uses beyond communication channels, and different
applications have different decoding accuracy requirements. An important chal-
lenge is to find methods of proven accuracy that perform optimal decoding and
have implementation cost low enough to be practical with codes that include very
long words.

As the foundations of coding theory developed in the 1950s, there arose a method
called syndrome decoding that is provably optimal but possibly costly to design and
implement. Starting with “turbo” codes and then with low-density parity check
(LDPC) codes, iterative decoding has attracted wide interest in the past 15 years.
In each case, these terms refer to both encoding and decoding algorithms. The
chief advantage of these new methods is their simplicity of decoding implementa-
tion. By Shannon’s fundamental work, communication at rates approaching chan-
nel capacity requires long codes, which are practical only with low-complexity
decoding. Just such communication has been achieved in practice by turbo codes
and proven by extensive simulation under strong decoder assumptions for LDPC
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codes [9]. Unfortunately, a theoretical understanding of the reasons for the suc-
cess of these algorithms has been elusive. In fact, it has been said that iterative
decoding has “moved coding theory toward an experimental science” [3].

However, Richardson and Urbanke [10] have recently given an excellent read-
able analysis of “belief propagation” decoding performance for the binary erasure
channel (the simplest nontrivial channel). There has also developed a theoreti-
cal understanding of why LDPC decoding sometimes fails to converge. A LDPC
decoder comes equipped with a specific parity check matrix, the construction of
which seems to be an art form involving substantial choice beyond the underlying
code. There are many examples of the same code having different parity check
matrices that yield very different iterative decoding success. The Tanner graph as-
sociated to a given parity check matrix is bipartite, with vertices labeled by rows
(positions in the received sequence) and columns (syndrome positions). Edges of
the Tanner graph are determined by the Is in the parity check matrix.

It is now understood that when the Tanner graph has a graph covering that corre-
sponds to a different code, the message passing decoding algorithm “becomes con-
fused” because it cannot distinguish authentic codewords from pseudo-codewords
that arise from the (graph-theoretic) cover [6]. Put another way, pseudo-codewords
interfere with convergence because the decoding algorithm is “local” and doesn’t
distinguish between the Tanner graph and a covering graph. Any exclusively local
algorithm faces this difficulty.

This study began with two questions: “Exactly what information, if any, does
LDPC decoding use that classical syndrome decoding does not?”” and “What is a
reasonable global measure of decoding progress that could be used to avoid pseudo-
codewords?” Very simple answers have emerged. Iterative decoding makes sys-
tematic use of “characteristic crossing” maps whereas classical texts have only
one such map. It also leads to an answer for the second question—but in a new
way, different from its role in classical syndrome decoding algorithms. Hamming
weight counts the number of 1s in a binary sequence; thus it is a function whose
domain has characteristic 2 but whose range is the natural numbers.

In this paper it is shown how to construct a gradient function for any linear code
on a binary symmetric channel (BSC). (However, the basic ideas are more widely
applicable.) There results an optimal iterative decoding algorithm with proven
accuracy. Not surprisingly, this explicit construction has no implementation com-
plexity advantage over classical syndrome decoding for an arbitrary code.

There are, however, many specific examples where the construction can be
greatly simplified without sacrificing proven accuracy. In particular, it is possible
to reduce the implementation cost of some highly geometric codes. In all cases the
algorithm design includes construction of a function that increases with respect to
(but does not necessarily coincide with) most likely error Hamming weight (coset-
leader Hamming weight).

All of this leads a bigger question, for which there is currently no clear answer.
What attributes of a code contribute to it having an easily recognized and simply
implemented gradient function for coset-leader Hamming weight? My personal
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inclination is to follow Professor Higman’s interest in highly symmetric codes
associated with rich combinatorial structures and hope that they are more easily
analyzed.

The merits of gradient descent decoding have been recognized by others. For
example, Lucas, Bossert, and Breitbach [8] give a similar algorithm and even a
similarly constructed function, but the actual functions used are not monotonic
with respect to Hamming weight and decoding convergence is uncertain. More
recently, Justesen, Hgrholdt, and Hjaltason [4] give a closely related algorithm
based on a function they call “syndrome weight”; they show that it does have
the critical monotonicity property for the [73,45] code arising from the projective
plane of order 8, but they have no general construction. Kelley and Sridhara [5]
explore how the nonuniqueness of the parity check matrix might be exploited to
improve performance of bit-flip decoding.

The “gradient-like decoding” algorithm of Ashikhmin and Barg [2] is similar
to ours in some ways but is actually quite different. It stays entirely in one coset
of the code and systematically seeks out a coset leader. For us, the sequence {kth
coset leader’s Hamming weight} forms a strictly decreasing sequence of nonneg-
ative integers. Thus, the complexity of our algorithm is a linear function of most
likely error weight.

This paper ends with an example for which “belief propagation” is ineffective
[6]. Details are given for constructing a new (weighted) parity check matrix whose
syndrome weight equals twice the coset-leader Hamming weight. This example
is somewhat independent of the earlier material and could be a starting point for
some readers.

Judy Walker’s helpful questions and patient encouragement is gratefully ac-
knowledged.

2. Gradient Function Construction

A binary [n,k]-code C < F} is an additive subgroup of order 2* in the row space
F7. The matrix H € Mat, ,(F,) is a parity check matrix for C provided mH T —
0 if and only if m € C. (In particular, s > n — k is allowed.) Parity check ma-
trices represent a triumph of classical decoding because they effectively separate
the encoded message from the channel error. Indeed if m = ¢ + e with ¢ € C then
the syndrome mHT = (c +e)H? = eH is independent of ¢ € C and depends
only on e. The C-coset m := {m : m'H” = mH7’} determined by the syndrome
mH7 is an element of the additive group F}/C.

Within each C-coset, the sequences having minimal weight are called coset
leaders. Define wt(m) to be the Hamming weight of (any) coset leader of m.
The task of an optimal decoder is to decide, based on the syndrome mH7 only,
whether the associated coset m has a unique coset leader e and, if so, to return ¢ =
m — e (= m + e) € C. The classical syndrome decoder is essentially a table that
matches syndromes to the associated coset leaders. For fixed rate k/n, the size of
such a table grows exponentially as a function of codeword length n.
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One feature that separates “gradient descent” from other decoding methods is
that this task is broken into smaller steps. The gradient function allows the decoder
to first find a Hamming neighbor m’ of m (Hamming distance d (m’, m) = 1) such
that wt(m’) < wt(m). Then one replaces m with m’ and iterates until wt(m) =
0. Thus there is no need to identify the actual error e.

Of course, this method requires a gradient function y : F}/C — 7Z such that
y (m) is a strictly increasing function of wt(m), and such functions have not been
widely available. In fact, this paper’s main contribution is to present the first such
construction method. We begin by ignoring efficiency and only later investigate
what is really necessary for this kind decoding algorithm to be efficient.

The argument uses the characteristic-0 properties of a certain incidence matrix.
Let P be the set of points of the projective space PG(F}/C) (which can be identi-
fied with the set of nonzero elements of F}/C since the field here is I, ), and let H
be the set of hyperplanes of PG(IF;/C). Also let N be the incidence matrix of the
relation N' C P x H for which (p, h) € N exactly when p is not contained in the
hyperplane /. Note that the rows of N are indexed by P and the columns by .
Thus the (p, g)-entry of NNT is the number of hyperplanes containing neither p
nor g:

N'N =x(I+1J)=NN", (1)

where A = 2"%=3 [ is the identity matrix, and J is the all-1 matrix of size(s)
2n=k 1,

Cautiously introduce (these need not associate with other maps) “characteris-
tic crossing” functions A: F; — Z® and ¥: Z* — IF;, where s is determined by
context and the spaces may also be matrix spaces. The map V¥ is reduction mod-
ulo 2, but the map A replaces binary 0 and 1 by the same symbols regarded as
integers; both maps act coordinate-wise. These maps will be used with matrices
and vectors, themselves regarded as maps, acting on the right. For example, the
binary matrix (ANT)V with rows indexed by all 2"~¥ — 1 points and columns is
indexed by all 2"~% — 1 hyperplanes of PG(F3/C). For each hyperplane & there
is unique nonzero ht € C*+ = {x € F5 | cx” = 0 for all ¢ € C} such that

1T _ T
mh _N(ﬁ,h)

(mod2) forall meF;.

In other words, the Ath column of N7 ¥ is the rable of values of the F,-linear func-
tional mapping F4/C to F, determined by h* € C+ \ {0}.

Let HT € Matyn—«_; ,(IF2) have the same column labels as NT and have as en-
tries in its hth column the coordinates of A+ € C*+ C FJ. Observe that H” is the
widest possible parity check matrix for C that does not have repeated columns.

Suppose m € F} has coset leadere # 0,som = € € P. ThenmH” = eH” and
so (mHT)A = (eH”)A has hth coordinate 1 € Z if and only if the hyperplane h
does not contain €. Therefore (mH7) A is the eth row of N7. Thus

mH")A = x(€)N”,

where x(€) denotes the (integer-valued) characteristic function of €: the row with
1 in the eth position and 0 elsewhere.
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THEOREM 1. Let wt be vector with coordinates labeled by ‘P having mth coor-
dinate equal to the Hamming weight wt(m) of a coset leader of the C-coset m =
m + C; that is,

wt = Z wt(m)m € ZP.

meP

Then the function y defined by y (m) := (mHT)A)N wt is a gradient function
for coset Hamming weight.

Proof. By equations (2) and (1),

ym) ;= (mH")A)N wt" = (x(e)N")(Nwt") = x(e)(N'N) wt”
= x(e)2" ¥ 3 (Ig + Jg) wt! = 2" %3 (wt(e) + jwt!)
= 2"k 3 wi(e) + K,

where K = 2""%=3 %" wt(€). Thus y (m) is an increasing function of wt(€).

O
It may be of theoretical interest to point out that, where the argument just given
uses Hamming weight of €, one could instead use any numerical tag. In particu-
lar, one could tag € with the number whose binary expansion is the concatenation
of all coset leaders of e. In this case, the theorem gives a complete list decoder
without any iteration.

One of many algorithms used with LDPC codes is called “bit flipping” [4; 7],
where a sparse 0,1 matrix H7 is used as a parity check matrix (among other
things). The syndrome weight of a received sequence m is defined to be §(m) :=
(mHT)AH)j". This algorithm searches the received sequence’s Hamming neigh-
bors to find argmaxyy (§(m) — §(m’); it then replaces m with m’ and iterates.

Notice that the syndrome weight function § differs from our y only in the last
two terms (N wt # HjT). These functions almost coincide when HA = N equals
the incidence matrix of points and hyperplanes of a projective geometry over F5.
In this case the code is a perfect Hamming code, and our method was once known
as “majority logic decoding”.

It is natural to ask how many of the columns of the H” in the preceding con-
struction can be omitted without destroying the gradient nature of y. All that is
necessary is that y (x) > y (y) whenever the coset-leader Hamming weight of x is
greater than that of y and x — y has Hamming weight 1. Just such functions y arise
for a variety of codes based on finite geometries, including the code of the projec-
tive plane of order 4 studied by Smarandache and Vontobel [11]. They have also
been constructed for the [85, 68, 6] and [85, 60, 8] Lander codes (associated with
incidence matrix elementary divisors) based on points of PG(3,4). It remains to
be seen how general these enticing results really are.

In order to underscore this question’s importance, we estimate the complexity
of implementing gradient descent decoding for a gradient function y as described
in Theorem 1 except that H has only m columns (and only N corresponding rows).
We also allow an arbitrary fixed integer wt vector.
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Let s and ¢ be the (maximum) row and column sums of HA, the new parity
check matrix made integral. Let o be the cost of multiplying two binary numbers
(when the result is not known in advance because one of them is 0) and then adding
the result to a third binary number. Also let 8 be the cost of adding/subtracting
two integers. The expected cost of decoding a received sequence also depends on
the (bitwise) error rate p of the channel.

The expected decoding cost has two types of terms. The cost of computing
y(m) is always present at anst + Sm. If there are no channel errors, then this
is the only cost. The expected distribution of channel errors is uniform—every
[n/np] positions—so the expected cost of locating the first channel error involves
the cost of computing the change in y (m) when m is replaced by each of its first
[1/p] Hamming neighbors. Each such computation involves adding (if the change
is to 1) or subtracting (if the change is to 0) the sum of s entries from the weight
vector N wt to y (m). Thus the average cost of finding the first error is Bs/p, and
this cost occurs with probability p. The average cost of finding the second error
is the same as the first because the sequence of positions visited while finding the
first do not need to be revisited. The total decoding cost is thus bounded above by
s(ant + B(m +T1/0 = p)]).

Since n, p,a, f are given and since f§ is surely greater than «, a sparse ma-
trix H with as few columns as possible is what is needed. In particular, linear time
complexity would require s < Kyn and m < K,,n for some fixed constants K
and K,,.

3. An Example

Koetter, Li, Vontabel, and Walker [6] provide a simple but useful example to illus-
trate how pseudo-codewords form an obstruction to standard LDPC methods.

Consider the [7, 2] code associated with the indicated Tanner graph: received se-
quence symbols are numbered, and check symbols are marked with filled squares.
This graph has the dihedral group of order 8 as symmetry group (generated by the
sequence bit permutations (17)(2536) and (23)). Orbit representatives, orbit size,
and syndrome weight of the 31 coset leaders are as follows.

1001000 2 4 n .
1000000 2 2 | 1000100 4 4 | 1001100 4 4 o’ . Sw
0100000 4 2 | 1000010 1 4 | 1001010 1 6 ¢l me W Ge
0001000 1 2 | 0101000 4 2 | 0101100 4 2 . 7@

0100100 4 4 = L]

Observe that the last sequences in the second and third column are Hamming
neighbors yet the higher-weight one has lower syndrome weight. Therefore, syn-
drome weight is not an increasing function of Hamming weight for this LDPC
code. Indeed, a bit-flipping algorithm based on this syndrome weight can fail to
converge, with indefinite oscillation about the pseudo-codeword (1112111).

‘When the construction in Theorem 1 is applied to this code, the 31 possible parity
checks are weighted 24' 20° 1624, The gradient property is unaffected by dividing
these weights by 4 and subtracting 4. The indicated Tanner multi-graph emerges.
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Syndrome weight for this parity check matrix equals 2 times the coset-leader
Hamming weight. The bit-flipping algorithm based on this syndrome always con-
verges in at most three steps. Note also that this generalized Tanner graph supports
the full symmetry group S3 : S, of the code.
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