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1. Introduction

Coherent configurations were introduced by D. G. Higman, initially in a 1970
paper [5] and then in a pair of papers [6; 7] that developed the theory. The defini-
tion was based on combinatorial properties of the orbitals of a group acting on a
finite set, with the intention that the structure would be useful both in group theory
and in combinatorics. Some later work (see e.g. [8; 9]) focused on combinatorial
aspects, and this paper is in that spirit.

Coherent configurations are a generalization of association schemes, and much
of the theory carries over or can be modified. One association scheme idea that has
not been considered is Delsarte’s theory of subsets. Schrijver [10] has found new
bounds on codes by considering subsets of the Terwilliger algebra of the Hamming
scheme. Essentially, the bounds use a subset of the coherent configuration whose
fibers are the weight of the words. This motivated our investigation of subsets of
general coherent configurations.

We begin by defining coherent configurations. We use the notation of [8]; see
that paper for more details than are given here.

LetX be a finite set, and let {fi}i∈I be a set of relations onX partitioningX × X

so that:

(1) fi ∩ diag(X × X) �= ∅ implies fi ⊆ diag(X × X);
(2) given i ∈ I, (fi)t = fi∗ for some i∗ ∈ I, where (fi)t = {(y, x) : (x, y)∈ fi};
(3) given (x, y) ∈ fk , |{z : (x, z) ∈ fi, (z, y) ∈ fj}| is a constant pk

ij depending
only on i, j, and k.

Then C = (X, (fi)i∈I ) is said to be a coherent configuration.
If instead of (1) and (2) we have

(1′) fi = diag(X × X) for some i ∈ I and
(2′) (fi)

t = fi for all i ∈ I,

then (X, (fi)i∈I ) is a (symmetric) association scheme.
In an association scheme, the identity is one of the relations defining the scheme,

whereas in a coherent configuration the identity is a union of relations. Let � =
{α ∈ I : fα ⊆ diag(X × X)}. The relations {fα}α∈� determine a partition of X
into fibers Xα with fα = diag(Xα × Xα). For each i ∈ I, we have fi ⊆ Xα × Xβ

for some α,β ∈�.
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Let n = |X| andmi = |fi |. Each relation fi defines a (0,1)-matrixAi ∈Mn(C).

These matrices satisfy equations

AiAj =
∑
k∈I

pk
ijAk ,

and hence form a basis for an |I |-dimensional algebra A over C, called the ad-
jacency algebra of the configuration. The algebra A is closed both under usual
matrix multiplication and under Hadamard (entrywise) multiplication.

Since A is semisimple, it follows that A = ∑m
s=1Bs , a direct sum of simple two-

sided ideals; hereBs � Mes(C) for some positive integer es. Let�1, . . . ,�m be the
inequivalent absolutely irreducible representations of A with �s : A → Mes(C).

We choose the representations so that �s(A
∗) = (�s(A))

∗ for all A∈ A , where ∗
denotes (as usual) the conjugate transpose operator. Then �s(Ai∗) = �s(Ai)

∗.
Let zs be the multiplicity of �s in the standard module. One way of looking at

the representations is that there exists a unitary matrix U such that, for all A∈ A ,

U ∗AU = diag(�1(A), . . . ,�m(A)), (1.1)

a block diagonal matrix with �s(A) repeated zs times.
The representations determine a basis E s

ij of A such that E s
ijE t

kl = δjk δstE s
il and

�t(E s
ij ) = δstE

s
ij , where Es

ij is the es × es matrix with (i, j)-entry 1 and all other
entries 0. There are linear functionals asij such that, for A∈ A , we have �s(A) =∑

i,j a
s
ij(A)E

s
ij . To simplify notation, choose a set L of symbols so that {aλ}λ∈L

are these linear functionals. If aλ = asij , define λ̄ to be the element of L such that
aλ̄ = asji . Let Eλ = E s

ij and zλ = zs. Note that Eλ̄ = E s
ji = (E s

ij )
∗ = E ∗

λ and
zλ̄ = zλ.

We will require the following results from [8, Sec. 7]:

Ai =
∑
λ

aλ(Ai)Eλ, (1.2)

Eλ = zλ
∑
i∈I

1

mi

aλ(Ai)Ai, (1.3)

∑
i∈I

1

mi

aλ(Ai)aµ(Ai) = 1

zλ
δλµ. (1.4)

2. Bounds on Subsets

Throughout this section, let C = (X, (fi)i∈I ) be a coherent configuration with
parameters and matrices denoted as in Section 1. We wish to investigate subsets
Y ⊆ X.

The adjacency algebra A acts onV = C
X via matrix multiplication. Let {ex}x∈X

be the standard basis forV. For Y ⊆ X, let y be the characteristic vector
∑

x∈Y ex.
Let bi = |{Y × Y ∩ fi}|. Then clearly bi = bi∗ and bi = y∗Aiy = y∗Ai∗y.

Let
D(Y ) =

∑
i∈I

bi

mi

Ai =
∑
i∈I

y∗Ai∗y
mi

Ai.
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This matrix is analogous to the outer distribution for a subset of an association
scheme, and we will refer to it as the distribution matrix for the set Y.

Our main result (Theorem 2.3) is that D(Y ) is positive semidefinite. The proof
is somewhat indirect. It begins by expressing the matrix in terms of the second
basis {Eλ} and then considers its image under the irreducible representations.

Lemma 2.1.

D(Y ) =
∑
λ

y∗Eλ̄y
zλ

Eλ.

Proof.

D(Y ) =
∑
i∈I

y∗Ai∗y
mi

Ai

=
∑
i

1

mi

y∗
(∑

λ

aλ(Ai∗)Eλ
)

y
(∑

µ

aµ(Ai)Eµ
)

by (1.2)

=
∑
i

∑
λ,µ

1

mi

(y∗Eλy)aλ̄(Ai)aµ(Ai)Eµ

=
∑
λ,µ

y∗Eλy
(∑

i

1

mi

aλ̄(Ai)aµ(Ai)

)
Eµ

=
∑
λ,µ

y∗Ey
(
δλ̄µ

1

zµ

)
Eµ by (1.4)

=
∑
λ

1

zλ̄
y∗EλyEλ̄ =

∑
λ

1

zλ
y∗Eλ̄yEλ.

Theorem 2.2. The matrix �s(D(Y )) is positive semidefinite.

Proof. Let Ms = �s(D(Y )).

By Lemma 2.1,

Ms = �s

(∑
λ

y∗Eλ̄y
zλ

Eλ
)

=
∑
λ

1

zλ
y∗Eλ̄y�s(Eλ).

Observe that �s(Eλ) is nonzero only when Eλ = E s
ij , in which case Eλ̄ = E s

ji and
zλ = zs. Therefore,

Ms = 1

zs

∑
i,j

y∗E s
jiyE

s
ij .

Now

M ∗
s = 1

zs

∑
i,j

(y∗E s
jiy)

∗(Es
ij )

∗ = 1

zs

∑
i,j

y∗E s
ijyEs

ji = Ms ,

so Ms is hermitian.
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Let x = (xi) be any vector in C
es. We will show that x∗(zsMs)x ≥ 0.

Consider the matrix T = ∑es
i=1 xiE s

i1. Then T T ∗ is positive semidefinite, and

T T ∗ =
( es∑

i=1

xiE s
i1

)( es∑
j=1

xjE s
j1

)∗
=

∑
i,j

xiE s
i1xjE s

1j =
∑
i,j

xixjE s
ij .

Now

x∗(zsMs)x = x∗
(∑

i,j

y∗E s
ijyEs

ij

)
x

=
∑
i,j

y∗E s
ijyx∗Es

ijx

=
∑
i,j

xixjy∗E s
ijy

= y∗T T ∗y ≥ 0.

Therefore, Ms is positive semidefinite.

Theorem 2.3. The distribution matrix D(Y ) is positive semidefinite.

Proof. This follows directly from Theorem 2.2 and (1.1).

If C is an association scheme, then nD(Y ) is the distribution matrix for Y (in the
sense of [3, Sec.12.6]). The positive semidefiniteness of nD(Y ) implies Delsarte’s
inequality aQ ≥ 0, where Q is the second eigenmatrix and a is the inner distribu-
tion of Y.

3. Connection to Groups and Association Schemes

Let (X, (fi)i∈I ) be an association scheme with automorphism groupG that is tran-
sitive on X and on each relation. For any subset Y of X, let y be the characteristic
vector of Y and yg the characteristic vector of Y g. Then

∑
g∈G yg(yg)∗ is a pos-

itive semidefinite matrix that is in A. This implies Delsarte’s inequality for such
schemes (and other methods prove it in general). Schrijver’s innovation in [10]
was to sum over a subgroup H instead and to show that the resulting matrix is in
the Terwilliger algebra of the Hamming scheme. We will show that Theorem 2.3
is an extension of this idea to general coherent configurations.

In order to use this idea, we need to have a group that acts on C. The simplest
way to do this is to have a configuration that is defined by the group. Take a group
G that acts faithfully on a finite set X, and let {fi}i∈I be the orbitals of G on X.

Then (X, (fi)i∈I ) is a coherent configuration, and such configurations are the ex-
amples motivating Higman’s definition.

Let Y ⊂ X with y and yg as before. In this situation, the relevant matrix is∑
g∈G yg(yg)∗, which is clearly positive semidefinite. The (u,w)-entry is the

number of g ∈ G with (ug
−1

,wg−1
) ∈ Y × Y, and this is constant on the orbitals;

hence this matrix is in A. The question is what to do when we have no group. As
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the next theorem shows, the matrix to use is D(Y ), and in this sense Theorem 2.3
is a generalization.

Theorem 3.1. ∑
g∈G

yg(yg)∗ = |G|
∑
i∈I

bi

mi

Ai.

Proof. Let M = ∑
g∈G yg(yg)∗. Since M ∈ A , we can write M = ∑

i∈I ciAi for
some scalars ci . Then M � Ai = ciAi.

Let τ be the linear function such that τ(A) is equal to the sum of the entries of
the matrix A. Then

τ(ciAi) = ciτ (Ai) = cimi = τ(M � Ai) =
∑
g∈G

τ(yg(yg)∗ � Ai).

Since yg(yg)∗ is a symmetric matrix, τ(yg(yg)∗ �Ai) = tr(yg(yg)∗Ai), where
“tr” denotes the trace function. Let Pg be the permutation matrix corresponding
to the action of g ∈G. Then

τ(yg(yg)∗ � Ai) = tr((Pgy)(Pgy)∗Ai)

= tr((Pgyy∗P ∗
g )PgAiP

∗
g ) since g fixes fi

= tr(yy∗Ai) = tr(y∗Aiy)

= bi.

Therefore, ci = (bi/mi)|G|.

4. Application to Partial Geometries

A partial geometry with parameters s, t,α, which we denote as pG(s, t,α), is an
incidence structure (P, B) of points and lines such that the following conditions
hold:

(1) every point lies on t + 1 lines;
(2) every line contains s + 1 points;
(3) two points lie on at most one line; and
(4) if a point x is not incident with a line B, then there are exactly α points on B

collinear with x.

Partial geometries have been extensively studied (see e.g. [1]); we use the stan-
dard results about these structures. In particular, note that collinearity of points
defines a strongly regular graph on P called the point graph. Similarly, defining
lines to be adjacent if they intersect gives a strongly regular graph, the line graph.

Given a pG(s, t,α), let X = P ∪ B and define relations on X as follows:

f1 = diag(P × P);
f2 = {(x, y) : x and y are collinear points};
f3 = {(x, y) : x and y are not collinear};
f4 = diag(B × B);
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Table 1 Irreducible representations

�1 �2 �3 �4

A1 E11 E11 1 0

A2 s(t + 1)E11 (s − α)E11 −t − 1 0

A3
st(s+1−α)

α
E11 (−s − 1 + α)E11 t 0

A4 E22 E22 0 1

A5 t(s + 1)E22 (t − α)E22 0 −s − 1

A6
st(t+1−α)

α
E22 (−t − 1 + α)E22 0 s

A7

√
(s + 1)(t + 1)E12

√
s + t + 1 − αE12 0 0

A8
st

√
(s+1)(t+1)

α
E12 −√

s + t + 1 − αE12 0 0

A9

√
(s + 1)(t + 1)E21

√
s + t + 1 − αE21 0 0

A10
st

√
(s+1)(t+1)

α
E21 −√

s + t + 1 − αE21 0 0

f5 = {(B,C) : B and C are lines that intersect};
f6 = {(B,C) : B and C are disjoint lines};
f7 = f t

9 = {(x,B) : point x lies on line B};
f8 = f t

10 = {(x,B) : x does not lie on B}.
Then (X, (fi)10

i=1) is a coherent configuration with two fibers P and B, and it is
included in the configurations studied by Higman in [9]. In fact, partial geome-
tries are the strongly regular designs with a1 = a2 = 1 and b1 = b2 = 0 (in the
terminology of that paper).

For the rest of the section, assume that (P, B) is a pG(s, t,α) with coherent con-
figuration C = (X, (fi)10

i=1) defined as before. With this configuration, we have:

m1 = |P| = (s + 1)(st + α)/α;
m2 = s(s + 1)(t + 1)(st + α)/α;
m3 = st(s + 1)(st + α)(s + 1 − α)/α2;
m4 = |B| = (t + 1)(st + α)/α;
m5 = t(s + 1)(t + 1)(st + α)/α;
m6 = st(t + 1)(st + α)(t + 1 − α)/α2;
m7 = m9 = (s + 1)(t + 1)(st + α))/α;
m8 = m10 = st(s + 1)(t + 1)(st + α)/α2.

Table 1 gives the irreducible representations for C.
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Suppose P ′ ⊆ P and B ′ ⊆ B are subsets such that no point of P ′ lies on any
line of B ′. Let Y = P ′ ∪ B ′ and bi = |Y × Y ∩ fi |. Let p = |P ′| and q = |B ′|.
Then b1 = p, b4 = q, b7 = b9 = 0, and b8 = b10 = pq.

Theorem 4.1. In the situation just described,

(st(t +1)p+ t(s −α)b2 − (t +1)αb3)(st(s +1)q + s(t −α)b5 − (s +1)αb6)

≥ (s + t +1−α)α2p2q2.

Proof. By Theorem 2.2, the matrix

�2(D(Y )) =




1

|P|
(
p + (s − α)b2

s(t + 1)
− αb3

st

) −√
s + t + 1 − α

|B|(t + 1)

(
αpq

st

)

−√
s + t + 1 − α

|P|(s + 1)

(
αpq

st

)
1

|B|
(
q + (t − α)b5

t(s + 1)
− αb6

st

)




is positive semidefinite and so has determinant ≥ 0. This implies that(
p + (s − α)b2

s(t + 1)
− αb3

st

)(
q + (t − α)b5

t(s + 1)
− αb6

st

)

≥ (s + t + 1 − α)α2p2q2

s2 t 2(s + 1)(t + 1)
, (4.1)

and the result follows.

Haemers [4, Chap. 3] used interlacing to prove an inequality for sets of noninci-
dent points and lines in a partial geometry. His inequality involves only p and q

and so doesn’t include the same kind of information about the structure of the sets.
We consider further the special case where P ′ and B ′ are co-cliques in the point

and line graphs.

Corollary 4.2. Suppose that P ′ ⊆ P and B ′ ⊆ B are such that no two points
of P ′ are collinear, no two lines of B′ intersect, and no point of P ′ lies on any
line of B ′. Let p = |P ′| and q = |B ′|. Then

((s + 1)(t + 1) − αp)((s + 1)(t + 1) − αq)

≥ (s + 1)(t + 1)(s + t + 1 − α). (4.2)

Proof. As before, let Y = P ′ ∪ B ′. The conditions on P ′ and B ′ imply that
b2 = 0, b3 = p2 − p, b5 = 0, and b6 = q2 − q.

Since �2(D(Y )) is positive semidefinite, the diagonal entries are nonnegative.
This implies

p

(
st + α − αp

α

)
≥ 0 and q

(
st + α − αq

α

)
≥ 0;

hence
p ≤ st + α

α
and q ≤ st + α

α
. (4.3)
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(Inequalities (4.3) are standard results that are easily shown combinatorially from
the assumptions on P ′ and B ′.) If p = 0 or q = 0, then (4.2) reduces to one of the
two inequalities in (4.3).

Now assume that p �= 0 and q �= 0. By (4.1),

pq

(
st + α − αp

st

)(
st + α − αq

st

)
≥ (s + t + 1 − α)α2p2q2

s2 t 2(s + 1)(t + 1)
and so

α2pq − (s + 1)(t + 1)α(p + q) + (s + 1)2(t + 1)2

≥ (s + 1)2(t + 1)2 − (s + 1)(t + 1)(st + α).

Inequality (4.2) follows from this.

The bound is tight, as the following example shows.
There is a unique pG(2, 2,1) (up to isomorphism) that has fifteen points and

fifteen lines. Let P = {1, 2, . . . ,15}, and take as lines the 3-subsets

{1, 2, 3}, {3, 4, 5}, {5, 6, 7}, {7, 8, 9}, {9,10,1},
{1, 6,13}, {2, 7,14}, {3, 8,15}, {4, 9,11}, {5,10,12},

{2,11,12}, {4,13,14}, {6,11,15}, {8,12,13}, {10,14,15}.
This partial geometry is a generalized quadrangle, and by Corollary 4.2 we have
(9 − p)(9 − q) ≥ 36. The maximum value of p satisfying this is p = 5 (which
also follows from (4.3)). If p = 5, the only possibility is that q = 0 and then
(4.2) holds with equality. Such a set P ′ is an ovoid in the generalized quadrangle.
Ovoids exist; for example, let P ′ = {1, 4, 7,12,15}. Similarly, q ≤ 5. If q = 5,
then p = 0 and the set B ′ is a spread; such sets exist.

The other values giving equality in (4.2) are p = 3 and q = 3. Letting P ′ =
{8,10,11} and B ′ = {{1, 6,13}, {2, 7,14}, {3, 4, 5}} gives an example.
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