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0. Introduction and Preliminaries

A fibered surface, or simply a fibration, is a proper surjective morphism with con-
nected fibers f from a smooth surfaceX to a smooth complete curveB. Call F the
general fiber of f. A fibration is said to be relatively minimal if the fibers contain
no (−1)-curves. The genus g of F is called the genus of the fibration. We say that
f is smooth if all the fibers are smooth, isotrivial if all the smooth fibers are mu-
tually isomorphic, and locally trivial if it is smooth and isotrivial. A hyperelliptic
(resp. bielliptic) fibration is a fibered surface whose general fiber is a hyperellip-
tic (resp. bielliptic) curve. A fibration is said to be semistable if all its fibers are
reduced nodal curves that are moduli semistable (any rational smooth component
meets the rest of the curve in at least two points).

Relative Invariants. As usual, the relative dualizing sheaf of a fibration
f : X → B is the line bundle

ωf = ωX ⊗ (f ∗ωB)
−1,

where ωV is the canonical sheaf of V.

Remark 0.1. A relatively minimal fibration is a fibration such that ωf is f -nef.
A semistable fibration is a relatively minimal fibration whose fibers are nodal and
reduced.

The basic invariants for a relatively minimal fibration f : X → B are

(ωf · ωf), deg f∗ωf and ef := e(X)− e(B)e(F ),

where e is the topological Euler number. These invariants are related by Noether’s
formula,

(ωf · ωf) = 12 deg f∗ωf − ef .

It is well known that all these invariants are greater than or equal to 0; moreover,
deg f∗ωf = 0 if and only if f is locally trivial, (ωf · ωf) = 0 implies that f is
isotrivial, and ef = 0 if and only if the fibration is smooth.
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Slope. Assuming that the fibration is not locally trivial, we can consider the ratio

s(f ) = (ωf · ωf)
deg f∗ωf

,

which is itself an important invariant of the fibration called the slope. Noether’s
formula gives the upper bound s(f ) ≤ 12, which is achieved when all the fibers
are smooth (e.g., for the Kodaira fibrations). The lower bound for relatively min-
imal fibrations of genus g ≥ 2 is given by the so-called slope inequality (see [6;
9; 12]:

(ωf · ωf) ≥ 4(g − 1)

g
deg f∗ωf . (0.1)

That is, s(f ) ≥ 4(g − 1)/g. Observe that the slope inequality implies in particu-
lar that (ωf · ωf) = 0 if and only if f is locally trivial. The inequality is sharp;
equality holds for certain hyperelliptic fibrations (see [1; 6]).

One of the main problems in the study of fibered surfaces is to understand how
properties of the general fiber influence the slope. It is significant that, if the bound
4(g − 1)/g is reached, then F has a g1

2. As a matter of fact, the gonality (or the
Clifford index) of the general fiber plays an important role: there are several re-
sults in this direction (mainly due to Konno), although an explicit sharp bound on
the slope depending on the gonality is still not known and seems to be hard to find.

Double Covers. Another direction in which the hyperelliptic case can be gener-
alized is the study of fibrations whose general fiberF is a double cover of a smooth
curve of genus γ ≥ 0, which we will call double fibrations. As will be made clear
in Section 1, it is necessary to work with a smaller family of fibrations—that is,
fibrations that possess a global involution restricting to an involution of the gen-
eral fibers (double cover fibrations). The bielliptic case (γ = 1) has been treated
by Barja in [3]: 4 is the sharp lower bound for the slope and it is possible to
give a characterization of the fibrations that reach the bound. About the general
case, what is known at present is a result of Barja and Zucconi, who show that the
slope of a double cover fibration with g ≥ 2γ + 11 is again greater than 4 (cf. [4,
Thm. 0.6]).

It is easy to construct examples of double cover fibrations with slope 4(g − 1)/
(g−γ ), whereas examples with smaller slope are known only for g < 4γ (see [2]
and Examples 4.1 and 4.2). Moreover, for hyperelliptic and bielliptic fibrations
the number 4(g−1)/(g− γ ) gives exactly the sharp bound. It is therefore natural
to conjecture, as Barja does in [2, Sec. 4.2], that this is the sharp bound for double
cover fibrations with g ≥ 4γ + 1.

Here we give an affirmative answer to this conjecture (Theorem 3.1 and Theo-
rem 3.2) together with a characterization of the fibrations that reach the bound. Our
results follow from an application of the slope inequality for fibered surfaces and
of the algebraic index theorem, or signature theorem (see e.g. [5, Thm. IV.2.14]
or [7]).

In Section 1 we discuss the problem of gluing involutions on the general fibers
to a global involution. In Section 2 we recall a standard construction that allows
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us to relate the invariants of a double cover fibration to the ones of a fibration that
is a “true” double cover of a relatively minimal fibration of genus γ. Section 3 is
devoted to the proof of the bound and to the characterization of the extremal case,
and in Section 4 we present two examples that prove the sharpness of the bound.

1. Double Covers and Double Fibrations

The notion of double fibration is a natural extension of the one of hyperelliptic or
bielliptic fibration.

Definition 1.1. A double fibration of type (g, γ ) is a relatively minimal genus g
fibered surface f : X → B such that there is a degree-2 morphism from the gen-
eral fiber of f to a smooth curve of genus γ.

The sheet interchange involution on the general fiber of a double fibration f : X →
B does not necessarily come from a global involution onX. The problem, of course,
is that the involution on the general fiber may not be unique and there may not exist
a rational section of AutB(X) → B that reduces to the given involution on the
general fiber, where AutB(X) stands for the relative Hilbert scheme parameteriz-
ing automorphisms of fibers of X → B. If such a section exists—for instance, if
the involution on the general fiber of f is unique—then it gives a global rational
involution onX, which is actually regular when g ≥ 2 because of the relative min-
imality of X → B. In this case we thus get what we call a double cover fibration.

Definition 1.2. A double cover fibration of type (g, γ ) is the datum of a genus-g
fibration f : X → B together with a global involution on X that restricts, on the
general fiber, to an involution with genus-γ quotient.

This definition of double cover fibration is slightly more restrictive than the one
given in [4]; in the cases we shall be concerned with, however, the two definitions
are equivalent. Because one can always produce sections of the scheme of relative
automorphisms after a suitable finite base change T → B, one might think that, to
prove slope inequalities for general double fibrations of genus g ≥ 2, it would suf-
fice to prove them for double cover fibrations. Although this strategy works well
if X → B is a semistable fibration, in the general case it runs into difficulties that
at present appear insurmountable, since the slope behaves very badly under base
change [10; 11].

We shall now show that, under the assumption g > 4γ + 1, the involution on
a general fiber of a double cover fibration of type (g, γ ) is indeed unique and that
the same is true when g = 4γ + 1 except in a special case. The argument is due
to Barja [2, Lemma 4.7] save for the discussion of the case g = 4γ + 1.

Lemma 1.3. Let F be a smooth curve of genus g, and let γ ≥ 1 be an integer. If
g > 4γ +1, then F has at most one involution ι such that � = F/〈ι〉 has genus ≤
γ. If instead g = 4γ + 1 and if there are distinct involutions ι1, ι2 of F such that
the quotients F/〈ι1〉 = �1 and F/〈ι2〉 = �2 have genera γ1, γ2 both not exceeding
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γ, then γ1 = γ2 = γ, �1 and �2 are hyperelliptic, the natural map F → �1 × �2

is an embedding, and its image belongs to the linear system |π∗
1(2q1)+π∗

2(2q2)|,
where qi is a Weierstrass point on �i and πi denotes the projection �1 × �2 → �i.

Proof. Suppose ι1 and ι2 are two involutions of F such that the quotients

F/〈ι1〉 = �1 and F/〈ι2〉 = �2

have genera γ1 and γ2 not greater than γ. Consider the commutative diagram

F

σ1

�����������
σ

��

σ2

�����������

�1 D
β1��

β2 ��
� �

j

��

�2 ,

�1 × �2

π1

���������� π2

����������

where the σi are the quotient morphisms, D = σ1 × σ2(F ), j � σ = σ1 × σ2, the
πi are the projections, and the βi are their restrictions to D. Clearly, the degree of
σ is either 1 or 2. If it is 2 then the βi must be isomorphisms; therefore, σ1 and σ2

are the quotient maps of the same involution on F. Conversely, if the involutions
ι1 and ι2 coincide, then the degree of σ must be 2.

Now suppose that deg σ = 1. Set Li = π−1
i (pi) ⊆ �1 × �2 with pi ∈ �i. The

effective divisor L1 + L2 has self-intersection 2 > 0. By the index theorem, the
determinant of the intersection matrix of the pair (D,L1 + L2) has to be nonpos-
itive. In other words,

2(D ·D)− (D · L1 + L2)
2 ≤ 0.

Since (D · Li) = 2, we obtain that (D ·D) ≤ 8. By the adjunction formula,

2g − 2 ≤ 2pa(D)− 2 = (K�1×�2 +D ·D) ≤ 4(γ1 + γ2) ≤ 8γ. (1.1)

Thus g ≤ 4γ + 1, and the first part of the lemma is proved.
If g = 4γ +1, then all the preceding inequalities must necessarily be equalities.

In particular, γ1 = γ2 = γ and pa(D) = g, so σ is an isomorphism. Furthermore,
by the index theorem, D must be numerically equivalent to a rational multiple of
L1+L2. Intersecting withL1 andL2, one sees thatD is numerically equivalent to
2L1 + 2L2. Hence D is linearly equivalent to a divisor of the form π∗

1A1 + π∗
2A2,

where Ai is a divisor of degree 2 on �i. Observe that

H 0(�1 × �2, O(π∗
1A1 + π∗

2A2)) = H 0(�1, O(A1))⊗H 0(�2, O(A2)). (1.2)

It follows in particular that the dimension of H 0(�i, O(Ai)) must be strictly pos-
itive, since the linear system |π∗

1A1 + π∗
2A2| is nonempty. If the dimension of

H 0(�1, O(A1)) were equal to 1, then (1.2) would imply that every divisor in
|π∗

1A1 + π∗
2A2| is of the form π∗

1D1 + π∗
2D2, where D1 is the unique divisor

in |A1| and D2 belongs to |A2|, and is therefore singular. Since D is smooth and
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belongs to |π∗
1A1 + π∗

2A2|, it follows that the dimension of H 0(�1, O(A1)) must
be at least 2. Similar considerations apply to H 0(�2, O(A2)). We therefore con-
clude that the �i are hyperelliptic and that Ai is linearly equivalent to 2qi, where
qi is a Weierstrass point.

Lemma 1.3 implies in particular that, if g = 4γ + 1 and F has an involution ι

such that F/〈ι〉 has genus γ, then the involution is unique provided that F/〈ι〉 is
nonhyperelliptic.

If the general fibers of a double fibration are as described in the second part of
Lemma 1.3, then it is possible that a nontrivial base change is needed in order to
get a global involution, as the following example shows (see also [3] for an exam-
ple in the bielliptic case).

Example 1.4. Let � be a smooth hyperelliptic curve of genus γ. Let B be a
smooth curve of positive genus, and let α : T → B be an unramified degree-2
covering; thus B is the quotient of T modulo a basepoint-free involution σ. We set
G = 〈σ 〉 and denote by τ the “exchange of components” automorphism of �×�.

Let π1 and π2 denote the projections from � × � to the two factors. Let q be a
Weierstrass point of �, and consider the linear system |π∗

1(2q) + π∗
2(2q)|τ of ef-

fective τ -invariant divisors linearly equivalent to π∗
1(2q)+π∗

2(2q); it is immediate
to show that this system is basepoint-free and not composed with an involution.
So, by Bertini’s theorem, a general member F ∈ |π∗

1(2q) + π∗
2(2q)|τ is smooth

and irreducible. The genus of F is g = 4γ + 1. Let G act on � × � × T by

σ(f1, f2, t) = (f2, f1, σ(t)) = (τ (f1, f2), σ(t)).

Clearly, the subvariety F × T ⊆ � × � × T is G-invariant, and the action of G
on it is compatible with the action of G on T. Dividing by these two actions, we
thus get from F × T → T a new fibration X → B, where X = (F × T )/G, with
fibers all isomorphic to F. The curve F carries two involutions, ι1 and ι2, which
correspond to the projections to the two factors of �×�. Notice that ι1 and ι2 are
conjugate under the involution τ (i.e., that τ ι1 = ι2τ). For each b ∈B, the fiberXb

ofX → B inherits from F two involutions with quotient of genus γ. In particular,
X → B is a double fibration of type (g, γ ). We claim that, for any b ∈B, the two
involutions on Xb belong to the same component of the scheme AutB(X). In fact,
AutB(X) is the quotient modulo G of AutT (F ×T ) = Aut(F )×T, where σ acts
by sending (α, t)∈Aut(F )× T to (τατ, σ(t)), while the irreducible components
of AutB(X) are the images of the irreducible components of AutT (F × T ). On
the other hand, the images of the components {ι1} × T and {ι2} × T coincide, as
follows from the observation that σ(ι1, t) = (τ ι1τ, σ(t)) = (ι2, σ(t)). This proves
our claim. A consequence is that, for any b ∈B, there is no global involution ι in
the group AutB(X) of automorphisms of X over B that pulls back on Xb to one of
the two involutions coming from ιi and ι2. In fact, if such a ι existed, it would give
an involution on every fiber of X → B and hence a section of AutB(X) over B.
This section would be a component of AutB(X) containing only one of the two
involutions on Xb, contrary to what we have just proved.
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2. Reduction to Double Covers of
Relatively Minimal Fibrations

Because this is crucial for our argument, we now sketch a well-known procedure
that associates to a double cover fibration a double cover of a relatively minimal
fibration. (See e.g. [1] or [4] for the precise construction.)

Let f : X → B be a double cover fibration. Let ι be the involution onX. If ι has
a fixed locus of codimension 1, then the quotient X/〈ι〉 is a smooth surface. Other-
wise, consider the blow-up X̃ of X at the isolated fixed points of ι, and call ι̃ the
induced involution on it. The quotient X̃/〈 ι̃ 〉 = Ỹ is a smooth surface with a nat-
ural fibration α̃ over B that is not necessarily relatively minimal. Let α : Y → B

be its minimal model. Then

X̃

��

��
Ỹ

α̃
��

�� Y

α
����

��
��

�

X
f

�� B .

The direct imageR of the branch locus of the double cover X̃ → Ỹ induces a dou-
ble cover X ′ → Y with X ′ normal but not necessarily smooth; but notice that, by
construction, X ′ is a hypersurface in a threefold that is smooth overB, soX ′ → B

admits an invertible relative dualizing sheaf. To obtain a smooth double cover we
perform the canonical resolution (see [1, Sec. 2.2; 3, Sec. 2; 5, III.7])

Xk

σk ��

��

Xk−1 ��

��

· · · X1
σ1 ��

��

X0 = X ′

��

Yk
τk �� Yk−1 �� · · · Y1

τ1 �� Y0 = Y ,

where the τj are successive blow-ups that resolve the singularities of R; the mor-
phismXj → Yj is the double cover with branch locusRj := τ ∗

j Rj−1−2[mj−1/2]Ej ,
where Ej is the exceptional divisor of τj , mj−1 is the multiplicity of the blown-up
point, and [·] stands for integral part. Let fj : Xj → B and f ′ : X ′ → B be the
induced fibrations. A computation shows that

(ωfk · ωfk ) = (ωf ′ · ωf ′)− 2
k∑
i=1

([
mi

2

]
− 1

)2

and

deg(fk∗ωfk ) = deg f ′
∗ωf ′ − 1

2

k∑
i=1

[
mi

2

]([
mi

2

]
− 1

)
.

Observe that, since Xk is smooth, by the relative minimality of f : X → B there
is a morphism β : Xk → X. Therefore

(ωf · ωf) = (ωfk · ωfk )+ ε,
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where ε is the number of blow-ups that make up β. Moreover, observe that f∗ωf =
fk∗ωfk . Hence we get the following fundamental identity:

(ωf · ωf)− 4
g − 1

g − γ
deg(f∗ωf)

= (ωf ′ · ωf ′)− 4
g − 1

g − γ
deg(f ′

∗ωf ′)

+ 2
k∑
i=1

([
mi

2

]
− 1

)(
γ − 1

g − γ

[
mi

2

]
+ 1

)
+ ε. (2.1)

Definition 2.1. In the preceding case, we say that the branch divisor R ⊂ Y

has negligible singularities if all the multiplicities mi in the process just described
equal 2 or 3 (cf. [8]).

3. The Bound

Theorem 3.1. Let f : X → B be a double fibration of type (g, γ ). If g > 4γ + 1,
then

(ωf · ωf) ≥ 4
g − 1

g − γ
deg f∗ωf . (3.1)

If γ ≥ 1, then equality holds if and only if X is the minimal desingularization of
a double cover π : X̄ → Y of a locally trivial genus-γ fibration α : Y → B such
that the branch locus R of π has only negligible singularities and, in addition,
when γ > 1, is numerically equivalent to a rational linear combination of ωα and
a fiber of α.

Proof. The case γ = 0 is the slope inequality for hyperelliptic fibrations. The
case γ = 1 has been proved in [3]. We therefore assume that γ > 1. In view
of Lemma 1.3, the assumptions about g and γ guarantee that we are in fact deal-
ing with a double cover fibration. We adopt the notation introduced in Section 2.
In view of (2.1), to prove (3.1) it suffices to prove its analogue for f ′ : X ′ → B.

Recall that the double covering ξ : X ′ → Y corresponds to a line bundle L on Y
such that L2 = O(R), where R is the ramification divisor of ξ, and that

ξ∗OX ′ = OY ⊕ L−1, ωf ′ = ξ ∗(ωα ⊗ L).
It follows that

(ωf ′ · ωf ′) = 2(ωα ⊗ L · ωα ⊗ L) = 2(ωα · ωα)+ 4(L · ωα)+ 2(L · L)
and also, by the Riemann–Roch theorem, that

deg f ′
∗ωf ′ = 2 degα∗ωα + (L · L)

2
+ (L · ωα)

2
.

Hence we may write

(ωf ′ · ωf ′)− 4
g − 1

g − γ
deg f ′

∗ωf ′ = 2

(
(ωα · ωα)− 4

g − 1

g − γ
degα∗ωα

)

− 2
γ − 1

g − γ
(L · L)+ 2

g − 2γ + 1

g − γ
(L · ωα).
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Using the slope inequality (0.1) for α : Y → B, we obtain that

(ωα · ωα)− 4
g − 1

g − γ
degα∗ωα ≥ −g − γ 2 + 2γ

(γ − 1)(g − γ )
(ωα · ωα).

Therefore

(ωf ′ · ωf ′)− 4
g − 1

g − γ
deg f ′

∗ωf ′

≥ 2

g − γ

(
(g − 2γ + 1)(ωα · L)− (γ − 1)(L · L)− γ 2 + g − 2γ

γ − 1
(ωα · ωα)

)

= 1

g − γ

(
2(L · �)(ωα · L)− (ωα · �)(L · L)− 4

γ 2 + g − 2γ

(ωα · �) (ωα · ωα)

)
,

where � stands for a general fiber of α. Since (ωα · ωα) ≥ 0, it follows that the
intersection matrix of ωα , L, and � cannot be negative definite. The index theo-
rem then implies that its determinant is nonnegative—in other words, that

2(L · �)(ωα · �)(ωα · L)− (ωα · �)2(L · L) ≥ (L · �)2(ωα · ωα).

Combining this inequality with the ones obtained previously, we get

(ωf ′ · ωf ′)− 4
g − 1

g − γ
deg f ′

∗ωf ′

≥ 1

g − γ

(
(L · �)2

(ωα · �) − 4
γ 2 + g − 2γ

(ωα · �)
)
(ωα · ωα),

and so

(ωf ′ · ωf ′)− 4
g − 1

g − γ
deg f ′

∗ωf ′ ≥ (g − 4γ − 1)(g − 1)

2(g − γ )(γ − 1)
(ωα · ωα). (3.2)

The expression on the right is clearly nonnegative as soon as g ≥ 4γ + 1. Note
that the argument so far applies to any double cover fibration.

To prove the characterization of the fibrations that reach the bound, observe first
that the coefficient of (ωα · ωα) in (3.2) is not zero when g > 4γ + 1, so the local
triviality of α is a necessary condition. Now recall that O(R) = L2 and notice
that, if (3.1) is an equality, then all the inequalities in the proof must be equali-
ties and the terms 2

∑k
i=1

([mi

2

] −1
)( γ−1

g−γ
[mi

2

] +1
)

and ε in (2.1) must vanish. In
particular, we get that

(g − 2γ + 1)(ωα · L)− (γ − 1)(L · L) = 0,

which, in view of (ωα ·ωα) = 0 and of O(R) = L2, is equivalent to the vanishing
of the determinant of the intersection matrix of ωα , �, and R—that is, to R being
numerically equivalent to a rational linear combination of ωα and �.

The analogous result for g = 4γ + 1 can be stated as follows.

Theorem 3.2. Let f : X → B be a double fibration of type (g, γ ) with g =
4γ +1. Then inequality (3.1) holds, provided we are in one of the following cases:
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(1) f is a double cover fibration;
(2) f is a semistable fibration.

In particular, (3.1) is valid if a smooth fiber of f admits an involution whose quo-
tient is a nonhyperelliptic curve of genus γ.

Moreover, a necessary condition for the slope to reach the bound is that the as-
sociated relatively minimal fibration of genus γ be either locally trivial or hyper-
elliptic with slope 4(γ − 1)/γ.

Proof. Case (1) is covered by the argument used to prove Theorem 3.1. In case
(2), let ρ : T → B be a finite map with T smooth. Then X ×B T has An singu-
larities. Let X ′ be its minimal resolution and f ′ : X ′ → T the natural projection;
clearly, this is a minimal fibration. As is well known, the slope of f ′ is equal to
that of f. In fact, in this case ωf ′ is just the pullback to X ′ of ωf , so (ωf ′ ·ωf ′) and
deg f ′∗ωf ′ are both equal to deg ρ times the corresponding invariant of f. Since the
base change ρ can be chosen so that f ′ : X ′ → T is a double cover fibration, we
are reduced to the previous case. It follows from Lemma 1.3 and the comment im-
mediately following its proof that a sufficient condition for f to be a double cover
fibration is that one of its smooth fibers admit an involution with nonhyperelliptic
genus-γ quotient. The coefficient of (ωα · ωα) in (3.2) is 0 when g = 4γ + 1.
Hence the local triviality of α is no longer a necessary condition for the fibration
to reach the bound. If α is not locally trivial, it is instead necessary that α itself
attain the bound given by the slope inequality, so we are done.

Clearly, one could give necessary and sufficient conditions as in Theorem 3.1 by
requiring that the inequalities in the proof be equalities. It is interesting to no-
tice that, in this borderline case, the conditions change substantially because local
triviality of the fibration of genus γ is no longer needed and, indeed, one can con-
struct a fibered surface of arbitrary genus g that reaches the bound and is a double
cover of a non–locally trivial fibration of genus γ = (g−1)/4 (see Example 4.2).

4. Examples

We next present two examples, both due to Barja (cf. [2, Sec. 4.5]) showing that
the bound given is indeed sharp. The first is an example of double cover fibration
reaching the bound; in the second we construct a fibration with g = 4γ + 1 that
reaches the bound and is a double cover of a hyperelliptic fibration, which in turn
reaches the bound given by the slope inequality. The last construction also leads
to counterexamples to the bound for g < 4γ.

Example 4.1. This is a generalization of the examples constructed in [12] and
in [6]. Let � and B be smooth curves. Call γ the genus of �. Let p1 : B × � →
B and p2 : B × � → � be the two projections, and let H1 and H2 be their gen-
eral fibers. For sufficiently large integers n and m, the linear system |2nH1 +
2mH2| is basepoint-free. Hence, by Bertini’s theorem there exists a smooth di-
visor R ∈ |2nH1 + 2mH2|. Since R is even, we can construct the double cover
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ρ : X → B × � ramified over R. Consider the fibration f := p1 �ρ : X → B; its
general fiber is a double cover of �, and its genus is g = 2γ +m−1. Observe that

ωf ∼= ρ∗(ωp1(nH1 +mH2)) ∼= ρ∗(O(nH1 + (2γ − 2 +m)H2))

and
deg f∗ωf = degp1∗(ωp1(nH1 +mH2)) = n(γ − 1 +m).

Therefore, the slope of f is exactly

s(f ) = 4
2γ +m− 2

γ +m− 1
= 4

g − 1

g − γ
.

If we consider a general divisor R ∈ |2nH1 + 2mH2|, it has only simple ramifica-
tion points over B and we obtain a semistable fibration. Notice that R is numeri-
cally equivalent to a linear combination of ωp1 and � (as it should be) because

R ≡ 2nH1 + 2mH2 ≡ 2n� + m

γ − 1
Kp1.

Example 4.2. Consider the fibration of Example 4.1 with � = P
1, and set fi =

pi �ρ. CallFi the general fiber of fi; henceF1 is hyperelliptic of genus γ = m−1.
By what we observed in Example 4.1,

ωf1
∼= ρ∗(ωp1(nH1 +mH2)) ∼= O(nF1 + (m− 2)F2).

Let x and y be positive integers, and consider the linear system |2xF1 + 2yF2|.
Applying Bertini’s theorem again, for large enough x and y we can find a smooth
even divisor 0 belonging to this system. Let π : Y → X be the double cover ram-
ified over 0. Call h the fibration p1 � ρ � π : Y → B; then the general fiber F
of h is a double cover of F1. Its genus is g = 2(m − 1) + 2y − 1. Now ωh

∼=
π∗(ωf1(xF1 + yF2)) ∼= O((n+ x)F + (m+ y − 2)π∗F2), so

(ωh · ωh) = 8(x + n)(y +m− 2)

while

h∗ωh = f1∗(ωf1(xF1 + yF2))⊕ f1∗(ωf1)

= p1∗(ρ∗(ρ∗O((n+ x)H1 + (m+ y − 2)H2)))

= p1∗(ωp1((n+ x)H1 + (m+ y)H2))

⊕ p1∗O(xH1 + (y − 2)H2)⊕ f1∗(ωf1).

Therefore

degh∗ωh = (x + n)(y +m− 1)+ x(y − 1)+ n(m− 1).

If we choose (as we may) m = y, then we get exactly g = 4m − 3 = 4γ + 1
and slope

s(h) = 8
2m− 2

3m− 2
= 4

g − 1

g − γ
.

Notice moreover that by choosing m > y we obtain fibrations with g ≤ 4γ − 1
and slope strictly smaller than 4(g − 1)/(g − γ ).
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