A Property of the Absolute Integral Closure of an Excellent Local Domain in Mixed Characteristic

GENNADY LYUBEZNIK

Dedicated to Professor Melvin Hochster on the occasion of his sixty-fifth birthday

1. Introduction

Let (R, m) be a Noetherian local excellent domain and let R^+ be the absolute integral closure of R—that is, the integral closure of R in the algebraic closure of the fraction field of R. The ring R^+ when R is 3-dimensional and of mixed characteristic played an important role in Heitmann's proof of the direct summand conjecture in dimension 3 [3]. In dimension > 3 the direct summand conjecture is still open. This motivates the study of R^+ in mixed characteristic and in dimension > 3.

Hochster and Huneke [4] proved that if R contains a field of characteristic 0 then R^+ is a big Cohen–Macaulay R-algebra; in other words, $H_{\mathfrak{m}}^i(R^+) = 0$ for all $i < \dim R$, and every system of parameters of R is a regular sequence on R^+ . Recently, in joint work with Huneke [5], we gave a simpler proof of this result.

This paper is motivated by Huneke's suggestion that perhaps the techniques of our paper [5] could be applied to R^+ in mixed characteristic. Our main result is the following theorem.

THEOREM 1.1. Let (R, \mathfrak{m}) be a Noetherian local excellent domain of mixed characteristic, residual characteristic p > 0, and dimension ≥ 3 . Let \sqrt{pR} (resp. $\sqrt{pR^+}$) be the radical of the principal ideal of R (resp. R^+) generated by p. Set $\overline{R} = R/\sqrt{pR}$ (resp. $\overline{R^+} = R^+/\sqrt{pR^+}$). Then

- (i) $H_{\mathfrak{m}}^{1}(\overline{R^{+}}) = 0$, and
- (ii) every part of a system of parameters $\{a,b\}$ of \bar{R} of length 2 is a regular sequence on \bar{R}^+ .

This theorem suggests the following.

QUESTION. Let (R, \mathfrak{m}) be a Noetherian local excellent domain of mixed characteristic. Is $\overline{R^+}$ then a big Cohen–Macaulay \overline{R} -algebra? That is:

- (i) is $H_{\mathfrak{m}}^{i}(\overline{R^{+}}) = 0$ for all $i < \dim \overline{R}$; and
- (ii) is every system of parameters of \overline{R} a regular sequence on $\overline{R^+}$?

2. Proof of Theorem 1.1

Since \bar{R} is a ring of characteristic p, it follows that, for every \bar{R} -algebra \mathcal{R} , the standard map $\mathcal{R} \xrightarrow{r \mapsto r^p} \mathcal{R}$ induces a map $f: H^i_\mathfrak{m}(\mathcal{R}) \to H^i_\mathfrak{m}(\mathcal{R})$. This map is called *the action of the Frobenius* on the local cohomology of \mathcal{R} .

LEMMA 2.1. Let R' be a finite normal extension of R contained in R^+ , and let $\overline{R'} = R'/\sqrt{pR'}$. The aforementioned action of the Frobenius $f: H^1_{\mathfrak{m}}(\overline{R'}) \to H^1_{\mathfrak{m}}(\overline{R'})$ on $H^1_{\mathfrak{m}}(\overline{R'})$ is nilpotent; that is, for some $s \ge 1$, f^s sends $H^1_{\mathfrak{m}}(\overline{R'})$ to zero (here $f^1 = f$ and $f^s = f \circ f^{s-1}$ for s > 1).

Proof. Because R and R' are excellent and normal, their completions with respect to the m-adic topology also are excellent and normal. Since R' is semilocal, it follows that $\widehat{R'}$ is a product of several complete normal domains R'_1, R'_2, \ldots , which are the completions of R' with respect to its maximal ideals. We set $\overline{R'_i} = R'_i/\sqrt{pR'_i}$. Since

$$\widehat{R'}/\sqrt{p\widehat{R'}} \cong \widehat{\overline{R'}} \cong \Pi_i \overline{R'_i}$$
 and $H^1_{\mathfrak{m}}(\widehat{\overline{R'}}) \cong H^1_{\mathfrak{m}}(\overline{R'}) \cong \Pi_i H^1_{\mathfrak{m}}(\overline{R'_i})$

and since the action of the Frobenius is the same on $H^1_{\mathfrak{m}}(\widehat{R'})$ as on $H^1_{\mathfrak{m}}(\overline{R'})$ and since the Frobenius acts individually on each $H^1_{\mathfrak{m}}(\overline{R'})$, we conclude that it is enough to prove that the action of the Frobenius on each $H^1_{\mathfrak{m}}(\overline{R'})$ is nilpotent. Thus, giving \hat{R} and R'_i the names R and R' again, we may assume that R is complete and hence that R' is local. We keep this assumption for the rest of the proof.

At this point we paraphrase a result from [6, 4.1, 4.6b, and the paragraph following the statement of 4.6b]: Let A be a local ring of characteristic p. Then f is nilpotent on $H^i_{\mathfrak{m}}(A)$ for $i \leq 1$ if and only if $\dim A \geq 2$ and the punctured spectrum of the completion of the strict Henselization of A is connected. Because $\dim \overline{R'} \geq 2$, this implies that f is nilpotent on $H^1_{\mathfrak{m}}(\overline{R'})$ if the punctured spectrum of $B \stackrel{\text{def}}{=} \widehat{(\overline{R'})^{\text{sh}}}$ is connected, where $\widehat{(\overline{R'})^{\text{sh}}}$ is the completion of the strict Henselization of $\overline{R'}$. Hence it is enough to prove that the punctured spectrum of B is connected.

Since R' is excellent, so is its strict Henselization $(R')^{\text{sh}}$ [1, 5.6iii]. Since R' is normal, standard properties of strict Henselization imply that $(R')^{\text{sh}}$ is normal. Because $(R')^{\text{sh}}$ is both excellent and normal, so is its completion $B' \stackrel{\text{def}}{=} \widehat{(R')^{\text{sh}}}$. In particular, B' is a domain.

Since B' is excellent and since $\overline{R'} = R'/\sqrt{pR'}$, standard properties of strict Henselization and completion imply that $B = B'/\sqrt{pB'}$.

Assume that the punctured spectrum of B is disconnected. This is equivalent to the existence of ideals \tilde{I}_1 and \tilde{I}_2 of B such that $\tilde{I}_1 \cap \tilde{I}_2 = 0$ and $\sqrt{\tilde{I}_1 + \tilde{I}_2} = \mathfrak{m}_B$, where \mathfrak{m}_B is the maximal ideal of B.

Let I_1 and I_2 be the preimages of \tilde{I}_1 and \tilde{I}_2 (respectively) in B'. Then $\sqrt{pB'} = I_1 \cap I_2$ and $I_1 + I_2$ is \mathfrak{m}' -primary, where \mathfrak{m}' is the maximal ideal of B'. Let dim $B' = \dim R = d$. The Mayer–Vietoris sequence yields

$$H_{(p)}^{d-1}(B') \to H_{\mathfrak{m}'}^d(B') \to H_{I_1}^d(B') \oplus H_{I_2}^d(B'),$$

which is an exact sequence. Then $H_{(p)}^{d-1}(B')=0$ because (p) is a principal ideal and d-1>1, while $H_{I_1}^d(B')=0$ and $H_{I_2}^d(B')=0$ by the Hartshorne–Lichtenbaum local vanishing theorem [2, 3.1] (note that B' is a complete local d-dimensional domain). Hence $H_{m'}^d(R')=0$, which is impossible.

Viewing $\overline{R'}$ as a subring of $\overline{R^+}$ in a natural way, we set

$$\mathcal{R} \stackrel{\text{def}}{=} \{ r \in \overline{R^+} \mid r^{p^s} \in \overline{R'} \}.$$

Since every monic polynomial with coefficients in $\overline{R'}$ has a root in $\overline{R^+}$, we know that every element of $\overline{R'}$ has a (p^s) th root in $\overline{R^+}$ and that this (p^s) th root is unique because $\overline{R^+}$ is reduced. Therefore, the \overline{R} -algebra homomorphism $\varphi \colon \mathcal{R} \to \overline{R'}$ that sends $r \in \mathcal{R}$ to $r^{p^s} \in \overline{R'}$ is an isomorphism.

Lemma 2.2. The map $\phi_* \colon H^1_{\mathfrak{m}}(\overline{R'}) \to H^1_{\mathfrak{m}}(\mathcal{R})$ induced by the natural inclusion $\phi \colon \overline{R'} \hookrightarrow \mathcal{R}$ is the zero map.

Proof. The composition of \overline{R} -algebra homomorphisms $\varphi \circ \varphi \colon \overline{R'} \to \overline{R'}$ is the standard homomorphism sending $r \in \overline{R'}$ to $r^{p^s} \in \overline{R'}$. Hence the induced map $\varphi_* \circ \varphi_* \colon H^1_{\mathfrak{m}}(\overline{R'}) \to H^1_{\mathfrak{m}}(\overline{R'})$ is nothing but f^s , which is the zero map by Lemma 2.1. Because φ is an isomorphism, so is φ_* . Since $\varphi_* \circ \varphi_*$ is the zero map and since φ_* is an isomorphism, φ_* is the zero map.

The \overline{R} -algebra $\overline{R^+}$ is the direct limit of $\overline{R'}$ as R' ranges over the finite normal extensions of R contained in R^+ . Since local cohomology commutes with direct limits, it follows that $H^1_{\mathfrak{m}}(\overline{R^+})$ is the direct limit of $H^1_{\mathfrak{m}}(\overline{R^+})$. In other words, $H^1_{\mathfrak{m}}(\overline{R^+})$ is the union of the images of the maps $\phi'_*\colon H^1_{\mathfrak{m}}(\overline{R^+})\to H^1_{\mathfrak{m}}(\overline{R^+})$ induced by the natural inclusion $\phi'\colon \overline{R^+}\to \overline{R^+}$. But Lemma 2.2 implies that the image of every ϕ'_* is zero $(\phi'_*$ factors through ϕ_*). This completes the proof of Theorem 1.1(i).

For Theorem 1.1(ii), let $\{a,b\}$ be a part of a system of parameters of \overline{R} . Since $\overline{R^+}$ is a reduced integral extension of \overline{R} , a is regular on $\overline{R^+}$. That $H^i_{\mathfrak{m}}(\overline{R^+})=0$ for i=0,1 and the short exact sequence

$$0 \to \overline{R^+} \xrightarrow{\text{mult. by } a} \overline{R^+} \to \overline{R^+}/a\overline{R^+} \to 0$$

together imply that $H^0_{\mathfrak{m}}(\overline{R^+}/a\overline{R^+})=0$. Hence \mathfrak{m} is not an associated prime of $\overline{R^+}/a\overline{R^+}$. This implies that the only associated primes of $\overline{R^+}/a\overline{R^+}$ are the minimal primes of $\overline{R}/a\overline{R}$. Indeed, if there is an embedded associated prime, say P, then P is the maximal ideal of the ring \overline{R}_P whose dimension exceeds 1 and P is an associated prime of $(\overline{R^+}/a\overline{R^+})_P=(\overline{R}_P)^+/a(\overline{R}_P)^+$, which is impossible by the foregoing. Since b is not in any minimal prime of $\overline{R}/a\overline{R}$, it must be regular on $\overline{R^+}/a\overline{R^+}$.

References

- [1] S. Greco, Two theorems on excellent rings, Nagoya Math. J. 60 (1976), 139–149.
- [2] R. Hartshorne, Cohomological dimension of algebraic varieties, Ann. of Math. (2) 88 (1968), 403–450.

- [3] R. Heitmann, *The direct summand conjecture in dimension three*, Ann. of Math. (2) 156 (2002), 695–712.
- [4] M. Hochster and C. Huneke, *Infinite integral extensions and big Cohen–Macaulay algebras*, Ann. of Math. (2) 135 (1992), 53–89.
- [5] C. Huneke and G. Lyubeznik, *Absolute integral closure in positive characteristic*, Adv. Math. 210 (2007), 498–504.
- [6] G. Lyubeznik, On the vanishing of local cohomology in characteristic p > 0, Compositio Math. 142 (2006), 207–221.

Department of Mathematics University of Minnesota Minneapolis, MN 55455 gennady@math.umn.edu