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Invariant Differential Operators
Associated with a Conformal Metric

Seong-A Kim & Toshiyuki Sugawa

1. Introduction

Peschl defined invariant higher-order derivatives of a holomorphic or meromorphic
function on the unit disk. Here, the invariance is concerned with the hyperbolic
metric of the source domain and the canonical metric of the target domain. Minda
and Schippers extended Peschl’s invariant derivatives to the case of general con-
formal metrics. We introduce similar invariant derivatives for smooth functions on
a Riemann surface and show a complete analogue of Faà di Bruno’s formula for
the composition of a smooth function with a holomorphic map with respect to the
derivatives. An interpretation of these derivatives in terms of intrinsic geometry
and some applications will be also given.

The uniformization theory tells us that an arbitrary Riemann surface has the nat-
ural geometry—namely, spherical, Euclidean, or hyperbolic geometry. Standard
examples are the Riemann sphere Ĉ with the spherical metric |dz|/(1 + |z|2), the
complex plane with the Euclidean metric |dz|, and the unit disk D = {z ∈ C :
|z| < 1} with the hyperbolic (or the Poincaré) metric |dz|/(1 − |z|2). For a unify-
ing treatment, we introduce the notation Cε to designate Ĉ for ε = 1, C for ε =
0, and D for ε = −1. Unless otherwise stated, we understand that Cε is equipped
with the canonical metric λε(z)|dz| = |dz|/(1+ ε|z|2). Note that λε has constant
Gaussian curvature 4ε.

For a holomorphic map f : Cδ → Cε (δ, ε = 1, 0,−1), it is more natural to con-
sider a type of invariant derivatives of f(z) associated with Cδ and Cε rather than
the usual derivatives f (n)(z) = d nf(z)/dzn. As such, commonly used is the in-
variant derivative Dnf(z) due to Peschl [Pe], which is defined by the power series
expansion

f
( ζ+z

1−δz̄ζ

) − f(z)

1 + εf(z)f
( ζ+z

1−δz̄ζ

) =
∞∑
n=1

Dnf(z)

n!
· ζ n (1.1)

around ζ = 0. Note that the group Isom+(Cε) of sense-preserving isometries of
Cε consists of the maps L(ζ) = η(ζ − a)/(1 + εāζ) for some a ∈ Cε and η ∈ C

with |η| = 1, where L(ζ) = −η/ζ for ε = 1 and a = ∞. For example,
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D1f(z) = (1 + δ|z|2)f ′(z)
1 + ε|f(z)|2 ,

D2f(z) = (1 + δ|z|2)2f ′′(z)
1 + ε|f(z)|2 + 2δz̄(1 + δ|z|2)f ′(z)

1 + ε|f(z)|2

− 2ε(1 + δ|z|2)2f(z)f ′(z)2

(1 + ε|f(z)|2)2
,

D3f(z) = (1 + δ|z|2)3f ′′′(z)
1 + ε|f(z)|2 − 6ε(1 + δ|z|2)3f(z)f ′(z)f ′′(z)

(1 + ε|f(z)|2)2

+ 6δz̄(1 + δ|z|2)2f ′′(z)
1 + ε|f(z)|2 + 6δ2z̄2(1 + δ|z|2)f ′(z)

1 + ε|f(z)|2

− 12δεz̄(1 + δ|z|2)2f(z)f ′(z)2

(1 + ε|f(z)|2)2
+ 6ε2(1 + δ|z|2)3f(z)2f ′(z)3

(1 + ε|f(z)|2)3
.

These derivatives are invariant in the sense that |Dn(L � f �M)| = |Dnf | �M for
L ∈ Isom+(Cε) and M ∈ Isom+(Cδ). Minda [M] and Schippers [S] generalized
this for arbitrary conformal metrics. We now give a generalized definition of Dnf.

In this introductory section, we consider plane domains with smooth conformal
metrics for the sake of simplicity. As we will see in Section 3, the notions given
here can be extended for a holomorphic map f between Riemann surfaces with
smooth conformal metrics in an obvious manner. See [Su] for examples of useful
(but not necessarily smooth) conformal metrics on Riemann surfaces.

We define invariant differential operators ∂n
ρ acting on the space C∞(V ) of

smooth (complex-valued) functions on a plane domain V with smooth conformal
metric ρ = ρ(z)|dz| inductively by

∂1
ρϕ = ∂ρϕ = 1

ρ(z)

∂ϕ(z)

∂z
and

∂n+1
ρ ϕ = (∂ρ � ∂n

ρ )ϕ − n(∂ρ log ρ) · ∂n
ρ ϕ, n ≥ 1, (1.2)

forϕ ∈C∞(V ). Note that the symbol ∂n
ρ does not mean an iteration of ∂ρ. However,

when ρ = |dz| (the Euclidean metric), obviously ∂n
ρ = ∂n = (∂/∂z)n, which is

the nth iterate of ∂.
The operator ∂ 2

ρ for ρ = λε appeared in [KM] (see also [KSu]). Note that the
quantity ρn∂n

ρ ϕ appears in some computations of Laplacians for the n-differential
on Riemann surfaces with variable conformal metrics (see e.g. [HP]).

Letf : V → W be a holomorphic map between plane domains. Ifρ = ρ(z)|dz|
and σ = σ(w)|dw| are smooth conformal metrics on V and W, respectively, then
Dnf = Dn

σ,ρf is defined on V inductively by

D1f = σ � f
ρ

f ′ and

Dn+1f = [∂ρ − n(∂ρ log ρ) + (∂σ log σ) � f · D1f ]Dnf , n ≥ 1. (1.3)

Here, Dn does not mean the nth iterate of D1. It should be noted that the chain rule
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D1
τ,ρ(g � f ) = (D1

τ,σ g) � f · D1
σ,ρf

is valid for holomorphic maps f : V → W and g : W → X and conformal met-
rics ρ, σ, τ on V,W,X, respectively. This definition looks different from Peschl’s
one, but it turns out that these are equivalent when V = Cδ and W = Cε (see
Proposition 7.2).

One of the purposes of this paper is to show that these invariant derivatives sat-
isfy the same rule as do the ordinary derivatives of compositions of smooth func-
tions of a real variable. It is known that higher-order derivatives of the composite
function g � f of smooth real-valued functions f and g of a real variable are de-
scribed by Faà di Bruno’s formula (cf. [Ri, p. 36] or [C, p. 137])

(g � f )(n) =
n∑

k=1

g(k) � f · An,k(f
′, . . . , f (n−k+1)),

where An,k = An,k(x1, . . . , xn−k+1) are Bell polynomials (see Section 4 for the
definition). The following result is an analogue of Faà di Bruno’s formula for our
invariant differential operators. We note that, by virtue of transformation rules for
these operators (Lemmas 3.2 and 3.6), the result can be extended for Riemann
surfaces with smooth conformal metrics via local coordinates (see Section 3).

Theorem 1.1. Let V and W be plane domains with smooth conformal metrics ρ
and σ, respectively, and let f : V → W be holomorphic. Then, for every function
ϕ in C∞(W ), the relation

∂n
ρ (ϕ � f ) =

n∑
k=1

(∂ k
σϕ) � f · An,k(D

1f , . . . ,Dn−k+1f ) (1.4)

holds for each n ≥ 1.

We remark that these relations for n = 1, 2 were previously noticed in [KM] when
V = C−1 and W = C+1 and in [KSu] when V = W = C−1.

Theorem 1.1 shows that our invariant derivatives Dnf are natural and enables us
to compute higher-order derivatives of functions more easily. For instance, when
V = W = C−1 and f maps C−1 conformally onto a hyperbolically convex sub-
domain ! of C−1, several characterizations of the domain ! are given in terms of
the invariant derivatives Dnf in [MaM]. Invariant derivatives of µ�f can be com-
puted and related to Dnf by using equation (1.4) for a geometric quantity µ on
!. In this way, Theorem 1.1 in this special case was used to simplify the involved
computations in [KSu].

In order to give a natural interpretation of our invariant derivatives on Riemann
surfaces, we need a differential geometric setup. In Section 2, we give basic con-
cepts in differential geometry that we need and introduce necessary notation and
terminology. Though the material is standard, an expository account will be given
there because we could not find a convenient reference containing all the needed
content concisely.

Section 3 will be devoted to an explanation of the way that the invariant deriva-
tives Dnf = Dn

σ,ρf arise for a holomorphic map f : R → S between Riemann



462 Seong-A Kim & Toshiyuki Sugawa

surfaces with conformal metrics ρ and σ. Prior to this, we define the operators ∂n
ρ

in a natural way. Since these operators are described as tensors of specific types,
it is a routine task to see that they obey certain transformation rules.

Section 4 summarizes basic properties of the (exponential) Bell polynomials as
well as a principle leading to Faà di Bruno–type formulas for a sort of differen-
tial operators (see Lemma 4.2). This principle plays a decisive role in the proof of
Theorem 1.1.

Section 5 gives a proof of Theorem 1.1. Toward this end, we introduce an auxil-
iary differential operator. A remarkable fact is that the nth iterate of the differential
operator can describe our differential operators ∂n

ρ and Dn
σ,ρ in simple ways, which

makes the proof of Theorem 1.1 dramatically short.
The defining recursive relations (1.3) give apparently complicated expressions

of Dnf. In Section 6, as an application of Theorem 1.1, we derive another ex-
pression of Dnf in terms of f (n) and the lower-order derivatives D1f , . . . ,Dn−1f.

Moreover, we give concrete forms for Dnf in terms of only the ordinary deriva-
tives f ′, . . . , f (n) and for f (n) in terms of D1f , . . . ,Dnf.

Section 7 will explore the consequences of the previous sections for the canon-
ical surfaces Cε for ε = +1, 0,−1. Although some of them are known already, we
believe that our approach will give a further insight even into the classical invari-
ant derivatives.

Further applications of theorems given in this paper to the study of Schwarzian
derivatives will be supplied in forthcoming papers of the authors.

Acknowledgments. The authors are grateful to Kyung Hyun Cho for his sup-
port. They also thank Eric Schippers for valuable information and comments.

2. Connections on Vector Bundles

We recall basic notions used in differential geometry, referring to an excellent book
[KoN] by Kobayashi and Nomizu for details. We give a somewhat detailed expo-
sition of the necessary material (for the reader who is not familiar with differential
geometry) as well as of the terminology and notation.

Let R be a Riemann surface. Let E be a holomorphic vector bundle over R
with projection π : E → R, and denote by '(E) the set of smooth cross-sections
of E over R. In what follows, vector bundles will always be holomorphic. The
most fundamental vector bundles over R are the (complexified) tangent bundle
T(R) = TC(R) and its dual T ∗(R) (over C), the cotangent bundle. An element
of X(R) = '(T(R)) is called a vector field on R and an element of '(T ∗(R)) is
called a 1-form on R.

A connection on E is a complex linear mapping ∇ : '(E) → '(T ∗(R) ⊗ E)

satisfying the Leibniz rule

∇(ϕξ) = dϕ ⊗ ξ + ϕ∇ξ, ϕ ∈C∞(R), ξ ∈'(E).

Note that the operator ∇ is local. In other words, ∇ naturally operates on '(E|U)
for an open subset U of R. (This fact enables us to consider ∇ as a sheaf homo-
morphism of the sheaf of local smooth sections of E, though we do not take this



Invariant Differential Operators 463

formalism explicitly.) Identifying '(T ∗(R)⊗E) with '(Hom(T (R),E)), we can
define a linear transformation ∇X : '(E) → '(E) forX ∈ X(R) by setting ∇Xξ =
(∇ξ)(X) for ξ ∈'(E). We call ∇Xξ the covariant derivative of ξ with respect to
X. Let ωi

k be the connection forms of ∇ with respect to a local frame (e1, . . . , er)
of E; namely,

∇ek =
r∑

i=1

ωi
k ⊗ ei,

where the ωi
k are local 1-forms on R. The connection forms then reproduce ∇ by

the formula

∇ξ =
r∑

i=1

(
dξ i +

r∑
k=1

ξkωi
k

)
⊗ ei,

where ξ = ∑
k ξ

kek ∈'(E).

Let E and F be vector bundles over R with connections ∇′ and ∇′′, respectively.
Then the tensor product E ⊗ F admits a connection ∇ such that

∇X(ξ ⊗ η) = ∇′
Xξ ⊗ η + ξ ⊗ ∇′′

Xη, X ∈ X(R), ξ ∈'(E), η ∈'(F ).

We will write ∇ = ∇′ ⊗ 1F + 1E ⊗ ∇′′.
Let E be a vector bundle over R with connection ∇. Then a connection, which

will be denoted by the same letter ∇, is defined on the dual vector bundle E∗ by
the rule

d〈ξ ∗, ξ〉 = 〈∇ξ ∗, ξ〉 + 〈ξ ∗, ∇ξ〉, ξ ∈'(E), ξ ∗ ∈'(E∗),

where 〈ξ ∗, ξ〉 = ξ ∗(ξ). If ωi
k are the connection forms of ∇ on E with respect to a

local frame (e1, . . . , er) of E, then the connection forms of ∇ on E∗ with respect
to the dual frame (e∗

1 , . . . , e∗
r ) of E∗ are given by −ωk

i .

Let f : R → S be a holomorphic map and let F be a vector bundle over S with
projection π : F → S and connection ∇. Recall first that the induced bundle f ∗F
is realized as the fibre product R×S F = {(p, ξ)∈R×F : f(p) = π(ξ)}. In par-
ticular, one can define the pullback f ∗ξ of ξ ∈'(F ) by f ∗ξ(p) = (p, ξ(f(p))).
The induced connection f ∗∇ on f ∗F is defined by the connection forms f ∗ωk

j

with respect to (f ∗e1, . . . , f ∗er), where ωk
j are connection forms of ∇ with respect

to a local frame (e1, . . . , er).
Let g be a smooth conformal metric on a Riemann surface R; that is, g is a Rie-

mannian metric on R written locally in the form g = ρ(z)2(dx 2 + dy2), where
z = x + iy : U → U ′ is a local coordinate of R and ρ is a smooth positive func-
tion on U ′. (We use “i” to denote the imaginary unit

√−1.) It is a simple exercise
to see that a Riemannian metric g on a Riemann surface is conformal if and only
if it is Hermitian. Note that a smooth Hermitian metric on a Riemann surface is
automatically Kählerian. A conformal metric g is sometimes written in the form
ds = ρ(z)|dz| as a line element or in the form g = ρ(z)2dzdz̄ as a Hermitian
metric. In what follows, we will refer to the conformal metric as ρ = ρ(z)|dz|.

Let ∇ρ be the Levi–Civita connection (or the Riemannian connection) on T(R)

associated with ρ. For a local coordinate z = x + iy of R, the (local) vector fields
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e1 = ∂/∂z = (1/2)(∂/∂x − i∂/∂y) and e2 = ∂/∂z̄ = (1/2)(∂/∂x + i∂/∂y) form a
local frame (e1, e2) of T(R). By using the information in [KoN,Vol. II, Chap. IX,
Sec. 5], we obtain the connection forms of ∇ρ as follows:

ω1
1 = ω2

2 = 2

ρ

∂ρ

∂z
dz = 2

∂ log ρ

∂z
dz, ω2

1 = ω1
2 = 0. (2.1)

We remark that the Christoffel symbol 'i
jk is defined to be ωi

k(ej ). Note also that
the connection forms of ∇ρ on T ∗(R) with respect to the dual frame (e∗

1 , e∗
2 ) =

(dz, dz̄) are given by −ωk
i . Thus, for instance,

∇ρ(dz) = −2
∂ log ρ

∂z
dz ⊗ dz. (2.2)

We denote by T r
s (R) the tensor bundle of type (r, s) over R (so T r

s (R) =
T(R)⊗r ⊗ T ∗(R)⊗s ) and denote by Dr

s(R) the set of smooth tensor fields of type
(r, s) on R: Dr

s(R) = '(T r
s (R)). By the operation explained previously, the con-

nection ∇ρ is defined on T r
s (R) as well. Note that D0

0(R) = C∞(R) and that ∇ρ

acts on it as the exterior differentiation: ∇ρϕ = dϕ for ϕ ∈ C∞(R). The direct
sum D(R) = ∑∞

r,s=0 Dr
s(R) has the structure of a bi-graded C∞(R)-algebra and

is called the mixed tensor algebra on R.

3. Invariant Higher-Order Derivatives

Let R be a Riemann surface with conformal metric ρ. We define a linear transfor-
mation 4 = 4ρ of D(R) by

4(ω) = dz ⊗ ∇ρ

∂/∂z(ω), ω ∈ D(R),

where z : U → U ′ for U ⊂ R and U ′ ⊂ C is a local coordinate of R. We see that
4(ω) does not depend on the choice of local coordinates. Indeed, let w be an-
other local coordinate defined in the same domain as z, and let w = h(z) be the
transition function. Since dw = h′dz and ∂/∂w = (1/h′)∂/∂z, we obtain

dw ⊗ ∇ρ

∂/∂w(ω) = (h′dz) ⊗ ∇ρ

(1/h′ )∂/∂z(ω)

= 1

h′ · h′dz ⊗ ∇ρ

∂/∂z(ω) = dz ⊗ ∇ρ

∂/∂z(ω)

for a tensor fieldω. We observe that, by definition,4(Dr
s(R)) ⊂ Dr

s+1(R). We also
note that 4(ω) is nothing but the projection of ∇ρω to the (1, 0)-part T ∗

(1,0)(R)⊗E

of T ∗(R) ⊗ E.

Lemma 3.1. Let ϕ ∈ C∞(R) and z : U → U ′ be a local coordinate of R. The
tensor field 4n(ϕ) := (4 � · · · � 4)(ϕ) (n times) can be written in the form

4n(ϕ) = ϕn(z)dz
n

for each n ≥ 0, where dzn = dz ⊗ · · · ⊗ dz (n times) and ϕn is the smooth func-
tion on U ′ determined by the recurrence relations with initial condition:

ϕ0 = ϕ � z−1, ϕn+1 = ∂ϕn

∂z
− 2n

∂ log ρ

∂z
ϕn, n ≥ 0. (3.1)
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Proof. We prove the lemma by induction. When n = 0, the assertion is trivial. So
let n ≥ 0 and assume that the assertion holds for n, 4n(ϕ) = ϕndz

n. Then

4n+1(ϕ) = 4(ϕndz
n) = 4(ϕn) ⊗ dzn + ϕn4(dz

n).

Since 4(dzn) = n4(dz) ⊗ dzn−1 = −2n ∂
∂z
(log ρ)dzn+1 by (2.2), it follows that

4n+1(ϕ) =
{
∂ϕn

∂z
− 2n

∂(log ρ)

∂z
ϕn

}
dzn+1 = ϕn+1dz

n+1,

which completes the induction argument.

We now define the operator ∂n
ρ by

∂n
ρ ϕ(z) = ρ(z)−nϕn(z) (3.2)

on U ′ for ϕ ∈C∞(R) and n∈ N, where ϕn is given by (3.1). We also write ∂ρ for
∂1
ρ . We will call ∂n

ρ ϕ the nth ρ-derivative of ϕ.
We now show that this definition agrees with that given in Section 1 when R is a

plane domain V and z : V → V is the identity. Indeed, differentiating both sides
of (3.2), we obtain

∂

∂z
(∂n

ρ ϕ) = ∂

∂z
(ρ−nϕn) = ρ−n ∂ϕn

∂z
+ ∂(ρ−n)

∂z
ϕn

= ρ−n

{
ϕn+1 + 2n

∂ log ρ

∂z
ϕn

}
− nρ−n ∂ log ρ

∂z
ϕn

= ρ∂n+1
ρ ϕ + n

∂ log ρ

∂z
∂n
ρ ϕ,

where we have used (3.1). We now divide both sides by ρ to obtain the rela-
tion (1.2).

Note that ∂n
ρ ϕ is no longer a function on R, in general. More precisely, ∂n

ρ ϕ

should be understood as (4nϕ)/ρn = ϕn(z)dz
n/(ρ(z)n|dz|n), which is some-

times called an (n/2, −n/2)-differential on R because |dz| = dz1/2dz̄1/2 for-
mally. At least the modulus |∂n

ρ ϕ| can be regarded as a function on R, and that is
enough in most applications.

Since a local isometry between Riemann surfaces with conformal metrics can
be regarded (at least locally) as a change of local coordinates, we are able to state
the invariance property of (4nϕ)/ρn as a lemma in the following way.

Lemma 3.2. Let V and W be plane domains with smooth conformal metrics ρ
and σ, respectively. Suppose that a locally univalent holomorphic map p : V →
W is locally isometric. Then

∂n
σ(ϕ � p) =

(
p ′

|p ′|
)n

[(∂n
ρ ϕ) � p], ϕ ∈C∞(W ),

for each n ≥ 1.

Let R and S be Riemann surfaces. Suppose now that a holomorphic map f : R →
S is given. The tangent map Tf : T(R) → T(S) can be regarded as an element
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of '(Hom(T (R), f ∗T(S))) = '(T ∗(R) ⊗ f ∗T(S)). By using local coordinates
z : U → U ′ of R and w : V → V ′ of S with f(U) ⊂ V, the section Tf is de-
scribed by

Tf = f̃ ′(z)dz ⊗ f ∗
(

∂

∂w

)
+ f̃ ′(z)dz̄ ⊗ f ∗

(
∂

∂w̄

)
,

where f̃ = w � f � z−1 : U ′ → V ′ ⊂ C. We now set

∂f = dz ⊗ Tf

(
∂

∂z

)
= f̃ ′(z)dz ⊗ f ∗

(
∂

∂w

)
.

It is clear that ∂f does not depend on the choice of local coordinates and thus ∂f ∈
'(T ∗(R) ⊗ f ∗T(S)) = '(T 0

1 (R) ⊗ f ∗T(S)).
Suppose next that the Riemann surfaces R and S are equipped with conformal

metrics ρ and σ, respectively. We recall that ∇ρ is defined on T r
s (R), so that its

action on the mixed tensor algebra D(R) satisfies the Leibniz rule ∇ρ

X(ξ ⊗ η) =
∇ρ

Xξ ⊗ η + ξ ⊗ ∇ρ

Xη for ξ, η ∈ D(R) and X ∈ X(R). For a holomorphic map
f : R → S, let

∇ρ,σ,f : '(T 0
n (R) ⊗ f ∗T(S)) → '(Hom(T (R), T 0

n (R) ⊗ f ∗T(S)))

= '(T 0
n+1(R) ⊗ f ∗T(S))

be the connection given by ∇ρ ⊗1+1⊗f ∗(∇σ ). Furthermore, we define a linear
operator 4f = 4ρ,σ,f : '(T 0

n (R) ⊗ f ∗T(S)) → '(T 0
n+1(R) ⊗ f ∗T(S)) by

4f ξ = dz ⊗ ∇ρ,σ,f

∂/∂z ξ, ξ ∈'(T 0
n (R) ⊗ f ∗T(S)),

where z is a local coordinate of R. As before, we can check that 4f ξ does not
depend on the choice of z.

Let us find a concrete expression of 4ρ,σ,f . For a pair of local coordinates
z : U → U ′ of R and w : V → V ′ of S with f(U) ⊂ V, we set f̃ = w � f �
z−1 : U ′ → V ′. We now consider a local section ξ of T 0

n (R) ⊗ f ∗T(S) in the
form ξ = ϕ(z)dzn ⊗ f ∗(∂/∂w), where ϕ ∈ C∞(U ′). Recall that the connection
forms ωi

k of ∇σ with respect to the local frame (e1, e2) = (∂/∂w, ∂/∂w̄) are given
by ω1

1 = 2∂(log σ)dw = ω2
2 and ω2

1 = ω1
2 = 0; see (2.1). Thus, by definition,

(f ∗∇σ )(f ∗e1) = f ∗ω1
1 ⊗ f ∗e1 and so

(f ∗∇σ )f ∗
(

∂

∂w

)
= 2(∂ log σ) � f̃ · f̃ ′dz ⊗ f ∗

(
∂

∂w

)
.

By (2.2), we obtain

∇ρ,σ,fξ = dϕ ⊗ dzn ⊗ f ∗
(

∂

∂w

)
− 2n(∂ log ρ)ϕdzn+1 ⊗ f ∗

(
∂

∂w

)

+ 2(∂ log σ) � f̃ · f̃ ′ϕdzn+1 ⊗ f ∗
(

∂

∂w

)

= {[∂ϕ − 2n(∂ log ρ)ϕ + 2(∂ log σ) � f̃ · f̃ ′ϕ]dz + ∂̄ϕdz̄}
⊗ dzn ⊗ f ∗

(
∂

∂w

)
.
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Therefore,

4ρ,σ,f

[
ϕdzn ⊗ f ∗

(
∂

∂w

)]

= [∂ϕ − 2n(∂ log ρ)ϕ + 2(∂ log σ) � f̃ · f̃ ′ϕ]dzn+1 ⊗ f ∗
(

∂

∂w

)
. (3.3)

For the local description f̃ of f : R → S, we define fn inductively for n ≥ 1 by

f1 = f̃ ′, fn+1 = ∂fn − 2n(∂ log ρ)fn + 2(∂ log σ) � f̃ · f̃ ′fn, n ≥ 1. (3.4)

It is easy to show a result analogous to Lemma 3.1 by induction.

Lemma 3.3. For n ≥ 1, 4n−1
ρ,σ,f (∂f ) := (4ρ,σ,f � · · · �4ρ,σ,f )(∂f ) (n− 1 times)

is of the form fndz
n ⊗ f ∗(∂/∂w), where fn is defined in (3.4).

We define Dnf = Dn
σ,ρf for the coordinates z and w by

Dnf(z) = σ(f̃ (z))fn(z)

ρ(z)n
, z∈U ′. (3.5)

As in the proof of the equivalence of (1.2) and (3.2), it can be checked that this
definition is the same as (1.3) when R and S are plane domains with the identity
as local coordinates.

Remark 3.4. When S = C with the Euclidean metric σ = λ0, Dn
λ0,ρ

f coincides
with ∂n

ρ f.

The definition of Dnf depends on the choice of the coordinates z and w. Let
us observe the effect of a change of coordinates on Dnf. Let ẑ and ŵ be other
local coordinates of R and S, respectively, and write ρ = ρ̂(ẑ)|dẑ| and σ =
σ̂(ŵ)|dŵ|. We set f̂ = ŵ � f � ẑ−1 and write z = g(ẑ), ŵ = h(w), 4n−1

ρ,σ,f (∂f ) =
f̂ndẑ

n ⊗ f ∗(∂/∂ŵ), and D̂nf = σ̂ � f̂ · f̂n/ρ̂n. Since

4n−1
ρ,σ,f (∂f ) = fn(z) · (g ′dẑ)n ⊗ (h′ � f̃ )f ∗

(
∂

∂ŵ

)

= (g ′(ẑ))n(h′(f̃ (z)))fn(z)dẑn ⊗ f ∗
(

∂

∂ŵ

)
,

it follows that f̂n(ẑ) = (g ′(ẑ))n(h′(f̃ (z)))fn(z). In view of ρ(z)|g ′(ẑ)| = ρ̂(ẑ)

and σ(w) = σ̂(ŵ)|h′(w)|, we obtain

D̂nf =
(

h′

|h′|
)

� f̃ � g · (Dnf ) � g ·
(

g ′

|g ′|
)n

. (3.6)

In particular, it turns out that |Dnf | does not depend on the choice of local coor-
dinates and thus can be regarded as a global function on the Riemann surface R.

Remark 3.5. By the transformation rule just described, we see that the quotient
Dnf/Dmf is independent of the choice of the local coordinate w. Therefore, one
can regard it as an ((n − m)/2, (m − n)/2)-differential on R.

We now reformulate the preceding computation as an invariance property of Dn.
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Lemma 3.6. Let V, V̂,W,Ŵ be plane domains with smooth conformal metrics
ρ, ρ̂, σ, σ̂, respectively. Suppose that locally isometric holomorphic maps g : V̂ →
V and h : W → Ŵ are given. Then, for a holomorphic map f : V → W, the
formula

Dn
σ̂,ρ̂(h � f � g) =

(
h′

|h′|
)

� f � g · (Dn
σ,ρf ) � g ·

(
g ′

|g ′|
)n

is valid on V̂.

4. Bell Polynomials

In this section we give a definition and some properties of the Bell polynomials.
As usual, we denote by Z the ring of integers and by N the set of positive integers.
Consider the (commutative) polynomial ring of indeterminates xj (j ∈ N) with
coefficients in Z:

P = Z[x1, x2 , . . . ].

Let D : P → P be the derivation determined by Dxj = xj+1 for each j ∈ N. In
other words, D can be written in a formal way by

D =
∞∑
j=1

xj+1
∂

∂xj
.

The degree and the weight of a monomial xj1 · · · xjk are defined to be the numbers
k and j1 + · · · + jk , respectively. Let Pk and Qn be the sub-Z-modules of P gen-
erated by monomials of degree k and by monomials of weight n, respectively. It
is easy to see that P = ∑∞

k=0 Pk becomes a graded ring as well as
∑∞

n=0 Qn. By
definition, D maps Qn into Qn+1 while D preserves Pk.

We define the Bell polynomials An,k (n∈ N, k ∈ Z) in P inductively by

A1,k = δ1,k x1 and

An+1,k = DAn,k + x1An,k−1, n ≥ 1, (4.1)

where δ1,k = 1 when k = 1 and δ1,k = 0 otherwise. By induction, we can easily
check the following.

Lemma 4.1. The Bell polynomialsAn,k have nonnegative coefficients. Moreover,
we have

(i) An,k = 0 unless 1 ≤ k ≤ n,
(ii) An,k ∈Pk ,

(iii) An,k ∈Qn,
(iv) An,k ∈ Z[x1, . . . , xn−k+1] for 1 ≤ k ≤ n,
(v) An,1 = xn, and

(vi) An,n = xn
1 .

We remark that (iv) follows also from (ii) and (iii) because Pk ∩Qn ⊂ Z[x1, . . . ,
xn−k+1]. SinceAn,k ∈ Z[x1, . . . , xn−k+1], we sometimes writeAn,k = An,k(x1, . . . ,
xn−k+1) for 1 ≤ k ≤ n.
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The Bell polynomials have a certain universal property, which subsumes Faà di
Bruno’s formula as a special case. In this section, let V andW be just sets and let
F(V ) and F(W ) be C-subalgebras of the algebra of complex-valued functions on
V and W, respectively.

Lemma 4.2. Let dV and dW be C-derivations on F(V ) and F(W ), respectively,
and let f be a map of V into W such that ϕ � f ∈ F(V ) for every ϕ ∈ F(W ).

Suppose there exists δf ∈ F(V ) satisfying

dV (ϕ � f ) = (dW ϕ) � f · δf , ϕ ∈ F(W ).

Then

d n
V (ϕ � f ) =

n∑
k=1

(d k
W ϕ) � f · An,k(δf , dV (δf ), . . . , d

n−k
V (δf ))

for ϕ ∈ F(W ). Here d n
V and d k

W do mean iterations of dV and dW , respectively.

Proof. We prove this by means of induction. When n = 1, the assertion is triv-
ial. Assume that the assertion is valid up to n. Taking the derivation dV of the
assertion for n, we obtain

d n+1
V (ϕ � f ) =

n∑
k=1

dV [(d k
W ϕ) � f ] · An,k(δf , dV (δf ), . . . , d

n−k
V (δf ))

+
n∑

k=1

(d k
W ϕ) � f · dV [An,k(δf , dV (δf ), . . . , d

n−k
V (δf ))]

=
n∑

k=1

(d k+1
W ϕ � f ) · δfAn,k(δf , dV (δf ), . . . , d

n−k
V (δf ))

+
n∑

k=1

(d k
W ϕ) � f ·

n−k+1∑
j=1

∂An,k

∂xj
(δf , dV (δf ), . . . , d

n−k
V (δf ))d

j

V (δf )

=
n+1∑
k=1

(d k
W ϕ � f ) · [x1An,k−1 + DAn,k](δf , dV (δf ), . . . , d

n−k+1
V (δf ))

=
n+1∑
k=1

(d k
W ϕ � f ) · An+1,k(δf , dV (δf ), . . . , d

n−k+1
V (δf ))

by (4.1). Hence, the assertion is valid also for n + 1.

The following property will be crucial in the proof of Theorem 1.1.

Lemma 4.3. Let a, b ∈ C and 1 ≤ k ≤ n. Then

An,k(abx1, ab2x2 , . . . , abn−k+1xn−k+1) = akbnAn,k(x1, x2 , . . . , xn−k+1).

Proof. The relation

An,k(ax1, . . . , axn−k+1) = akAn,k(x1, . . . , xn−k+1)

follows immediately from Lemma 4.1(ii). Similarly, the relation
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An,k(bx1, . . . , bn−k+1xn−k+1) = bnAn,k(x1, . . . , xn−k+1)

is a consequence of Lemma 4.1(iii).

For instance, we have:

A1,1 = x1;
A2,2 = x 2

1 , A2,1 = x2;
A3,3 = x3

1, A3,2 = 3x1x2 , A3,1 = x3;
A4,4 = x4

1, A4,3 = 6x 2
1 x2 , A4,2 = 3x 2

2 + 4x1x3, A4,1 = x4.

It is also known that An,k is given explicitly by

An,k =
∑

j1+2j2+··· +njn=n
j1+j2+··· +jn=k

n!

j1! · · · jn!

(
x1

1!

)j1

· · ·
(
xn

n!

)jn

.

5. Proof of Theorem 1.1

We are now ready to prove Theorem 1.1. Let us introduce an auxiliary differential
operator. Define a linear transformation dρ of C∞(V ) by

dρϕ = ρ−1∂ρϕ = ρ−2∂ϕ, ϕ ∈C∞(V ). (5.1)
Set also

δf = σ � f
ρ

D1
σ,ρf = σ 2 � f

ρ2
f ′.

We note that the relation

dρ(ϕ � f ) = (dσϕ) � f · δf (5.2)

holds for ϕ ∈C∞(W ). Indeed, we have

∂ρ(ϕ �f ) = ρ−1 · ∂ϕ �f ·f ′ = [σ−1∂ϕ] �f · σ � f
ρ

f ′ = (∂σϕ) �f ·D1
σ,ρf. (5.3)

Multiplying both sides by ρ−1 yields (5.2).

Lemma 5.1. For n ≥ 1,

d n
ρ ϕ = ρ−n∂n

ρ ϕ and d n−1
ρ (δf ) = σ � f

ρn
Dn

σ,ρf.

Here d n
ρ denotes the nth iterate of the transformation dρ.

Proof. We use induction to show the second relation only; the first relation can be
shown similarly (see also Remark 3.4).

The second relation is trivial for n = 1, so assume that it holds for all values up
to n. Taking the dρ-derivative of the logarithm of both sides, we obtain

d n
ρ (δf )

d n−1
ρ (δf )

= ρ−1

[
(∂σ log σ) � f · D1f − n∂ρ log ρ + ∂ρD

nf

Dnf

]
= ρ−1Dn+1f

Dnf
,

where we have used (5.3) and (1.3). Hence
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d n
ρ (δf ) = σ � f

ρn+1
Dn+1

σ,ρ f ,

which completes the induction.

Proof of Theorem 1.1. Since the δf just described satisfies the relation (5.2) for the
C-derivations dρ and dσ on C∞(V ) and C∞(W ), Lemma 4.2 yields the formula

d n
ρ (ϕ � f ) =

n∑
k=1

(d k
σϕ) � f · An,k(δf , d1

ρ(δf ), . . . , d n−k
ρ (δf ))

for ϕ ∈C∞(W ) and n ≥ 1, where the An,k are Bell polynomials.
By Lemma 5.1, we can rewrite this in the form

ρ−n∂n
ρ (ϕ � f ) =

n∑
k=1

(σ−k∂ k
σϕ) � f · An,k

(
σ � f
ρ

D1f , . . . ,
σ � f
ρn−k+1

Dn−k+1f

)
.

We can now use Lemma 4.3 to establish the validity of (1.4).

6. Another Expression for Dnf

Let V and W be plane domains with smooth conformal metrics ρ and σ, respec-
tively, and let f : V → W be holomorphic. In (1.3) we defined the invariant
derivative Dnf recursively in terms of Dn−1f and its ρ-derivative. It is, how-
ever, natural to find an expression of Dnf in terms of the ordinary derivative f (k)

without using the ρ-derivative of Dn−1f. Toward this end, we introduce a double
sequence of auxiliary functions associated with the metric ρ.

Define the double sequence an,k = a
ρ
n,k (n = 1, 2, . . . , k = 0, ±1, ±2, . . . ) of

functions in C∞(V ) inductively by

a1,k = δ1,k and

an+1,k = an,k−1 + ∂an,k − 2n(∂ log ρ) · an,k , n ≥ 1.
(6.1)

Note that an,k = 0 unless 1 ≤ k ≤ n. Here is a short listing of some an,k values:

a1,1 = 1;
a2,2 = 1, a2,1 = −2∂ log ρ;
a3,3 = 1, a3,2 = −6∂ log ρ, a3,1 = −2∂ 2 log ρ + 8(∂ log ρ)2;
a4,4 = 1, a4,3 = −12∂ log ρ, a4,2 = −8∂ 2 log ρ + 44(∂ log ρ)2;
a4,1 = −2∂ 3 log ρ + 28∂ log ρ · ∂ 2 log ρ − 48(∂ log ρ)3.

Let ϕn be the function given in (3.1) for ϕ ∈C∞(V ). We are now able to express
ϕn in terms of an,k as follows.

Lemma 6.1.

ϕn =
n∑

k=1

an,k∂
kϕ =

∞∑
k=−∞

an,k∂
kϕ, n ≥ 1.
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Proof. We show the assertion by induction. For n = 1 it is trivial, so suppose that
the assertion is valid for all values up to n. By definition, we compute

ϕn+1 = ∂

∂z

∞∑
k=−∞

an,k∂
kϕ − 2n(∂ log ρ)

∞∑
k=−∞

an,k∂
kϕ

=
∞∑

k=−∞
(∂an,k · ∂ kϕ + an,k∂

k+1ϕ) − 2n(∂ log ρ)
∞∑

k=−∞
an,k∂

kϕ

=
∞∑

k=−∞
(∂an,k + an,k−1 − 2n(∂ log ρ) · an,k)∂ kϕ

=
∞∑

k=−∞
an+1,k∂

kϕ.

Thus the assertion is valid also for n + 1.

We define the double sequence Bn,k (n ∈ N, k ∈ Z) of polynomials in P induc-
tively by

B1,k = δ1,k and

Bn+1,k = Bn,k−1 + DBn,k − 2nx1Bn,k , n ≥ 1.

By definition, Bn,k = 0 unless 1 ≤ k ≤ n. For instance:

B1,1 = 1;
B2,2 = 1, B2,1 = −2x1;
B3,3 = 1, B3,2 = −6x1, B3,1 = −2x2 + 8x 2

1 ;
B4,4 = 1, B4,3 = −12x1, B4,2 = −8x2 + 44x 2

1 , B4,1 = −2x3 + 28x1x2 − 48x3
1.

We summarize properties of Bn,k and the relation with a
ρ
n,k in the next lemma.

Lemma 6.2.

(i) Bn,k ∈Qn−k for 1 ≤ k ≤ n; in particular, Bn,k ∈ Z[x1, . . . , xn−k].
(ii) Bn,n = 1.

(iii) a
ρ
n,k = Bn,k(∂ log ρ, . . . , ∂n−k log ρ).

As a consequence of Theorem 1.1, we obtain the following expression of Dnf.

Proposition 6.3. Let f : V → W be a holomorphic map between plane domains
V and W with smooth conformal metrics ρ and σ, respectively. The invariant de-
rivative Dnf = Dn

σ,ρf can be expressed by

Dnf = σ � f · ρ−n

n∑
k=1

a
ρ

n,kf
(k)

−
n∑

k=2

{σ 1−kaσ
k,1} � f · An,k(D

1f , . . . ,Dn−k+1f ), (6.2)



Invariant Differential Operators 473

where An,k is the Bell polynomial given in (4.1) and a
ρ
n,k and aσ

n,k are defined in
(6.1) for ρ and σ, respectively.

Proof. For brevity, we write Af = A(f ′, . . . , f (n)) and ADf = A(D1f , . . . ,Dnf )

for A ∈ Z[x1, . . . , xn]. We will express both sides of (1.4) in terms of ∂ kϕ (k =
1, 2, . . . , n) with the aid of Lemma 6.1. We begin with the left-hand side:

∂n
ρ (ϕ � f ) =

n∑
k=1

ρ−naρ
n,k∂

k(ϕ � f ) =
n∑

k=1

ρ−naρ
n,k

k∑
l=1

(∂ lϕ) � f · Af

k,l;

here we have used Lemma 4.2 with dV = dW = ∂. On the other hand, the right-
hand side can be written as

n∑
k=1

(∂ k
σ ϕ) � f · ADf

n,k =
n∑

k=1

k∑
l=1

(σ−kaσ
k,l∂

lϕ) � f · ADf
n,k.

Equating both sides, we obtain the relation

n∑
l=1

(∂ lϕ) � f
n∑

k=l

[ρ−naρ
n,k · Af

k,l − (σ−kaσ
k,l) � f · ADf

n,k] = 0.

For each l (1 ≤ l ≤ n), we can choose ϕ ∈C∞(W ) such that ∂ lϕ �= 0 yet ∂mϕ =
0 for all m with 1 ≤ m < l at a given point in W ; hence we conclude that

n∑
k=l

[ρ−naρ
n,k · Af

k,l − (σ−kaσ
k,l) � f · ADf

n,k] = 0 (6.3)

holds for every l = 1, 2, . . . , n. In particular, by letting l = 1 we obtain the re-
quired relation.

As an application of Proposition 6.3, we give the first three of the invariant deriva-
tives of f :

D1f = σ � f
ρ

f ′,

D2f = σ � f
ρ2

f ′′ − 2∂ρ log ρ · D1f + 2(∂σ log σ) � f · (D1f )2,

D3f = σ � f [ρ−3f ′′′ − 6∂ρ log ρ · ρ−2f ′′ − 2(∂ 2
ρ log ρ − 2(∂ρ log ρ)2)ρ−1f ′ ]

+ 6(∂σ log σ) � f · D1fD2f + 2(∂ 2
σ log σ − 2(∂σ log σ)2) � f · (D1f )3.

In light of (6.3), we may obtain an expression for the invariant derivative Dnf

in terms of only the ordinary derivatives f (k), 1 ≤ k ≤ n, as follows.

Corollary 6.4. Let f : V → W be a holomorphic map between plane domains
V and W with smooth conformal metrics ρ and σ, respectively. Then
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Dnf = (σ � f ) ·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

b1 aσ
2,1 � f aσ

3,1 � f aσ
4,1 � f .. . aσ

n,1 � f
b2 1 aσ

3,2 � f aσ
4,2 � f .. . aσ

n,2 � f
b3 0 1 aσ

4,3 � f .. . aσ
n,3 � f

b4 0 0 1 . . . aσ
n,4 � f

...
...

...
...

...
...

bn 0 0 0 . . . 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

where

bl =
n∑

k=l

ρ−naρ
n,k · Ak,l(f

′, f ′′, . . . , f (k−l+1))

for l = 1, 2, . . . , n.

Proof. The equation (6.3) can be interpreted as a system of equations for Ak =
σ−k � f · ADf

n,k , 1 ≤ k ≤ n:
n∑

k=l

(aσ
k,l � f ) · Ak = bl , l = 1, 2, . . . , n.

Thus Dnf = (σ � f ) · A1 is obtained as before.

Conversely, by using (6.2) we can also express the ordinary nth-order derivative
f (n) of f in terms of the invariant derivatives D1f , . . . ,Dnf as follows.

Corollary 6.5. Let f : V → W be a holomorphic map between plane domains
V and W with smooth conformal metrics ρ and σ, respectively. Then

f (n) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 . . . 0 p1

a
ρ
2,1 1 0 . . . 0 p2

a
ρ
3,1 a

ρ
3,2 1 . . . 0 p3

...
...

...
...

...
...

a
ρ
n−1,1 a

ρ
n−1,2 a

ρ
n−1,3 . . . 1 pn−1

a
ρ
n,1 a

ρ
n,2 a

ρ
n,3 . . . a

ρ
n,n−1 pn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

where

pl = ρl ·
l∑

k=1

(σ−kaσ
k,1) � f · Al,k(D

1f , . . . ,Dl−k+1f )

for l = 1, 2, . . . , n.

Proof. From (6.2) we obtain the system of equations

l∑
k=1

a
ρ

l,k · f (k) = pl , l = 1, 2, . . . , n.

Solving this system yields the f (n) given in the corollary.
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7. Case of Canonical Metric

In this section we consider the special case where R = Cδ , S = Cε, and ρ and
σ are their canonical metrics λδ and λε, respectively, where δ, ε = +1, 0, −1. We
begin by remarking on a special nature of the metric λε: since

∂λε log λε(z) = −εz̄, z∈ Cε, (7.1)

many computations become simple. For instance, we have the following.

Lemma 7.1. Define αn,k (n∈ N, k ∈ Z) by

αn,k = (−1)n−k n! (n − 1)!

k! (k − 1)! (n − k)!
= (−1)n−k n!

k!

(
n − 1
k − 1

)

if 1 ≤ k ≤ n and by αn,k = 0 otherwise. Then

aλε
n,k = αn,k(∂ log λε)

n−k, n∈ N, k ∈ Z.

Proof. We prove the lemma by induction on n. The assertion is trivial for n = 1.
Assuming the assertion for n, we prove it for n + 1. First, taking the ∂-derivative
of both sides of (7.1) yields

∂ 2 log λε = (∂ log λε)
2. (7.2)

By the defining relation (6.1) of an,k = aλε
n,k , we then compute

an+1,k = αn,k−1(∂ log λε)
n−k+1 + αn,k∂(∂ log λε)

n−k

− 2n∂ log λε · αn,k(∂ log λε)
n−k

= [αn,k−1 + (n − k)αn,k − 2nαn,k](∂ log λε)
n−k+1

= αn+1,k(∂ log λε)
n−k+1.

Thus the assertion is valid for n + 1, too.

Concerning the invariant derivative Dnf = Dn
λε,λδ

f , the definition (1.1) due to
Peschl looks different from our definition (1.3). Schippers [S] gives a brief expla-
nation for the coincidence based on recurrence relations. For the reader’s conve-
nience, we give another explanation as an application of Proposition 6.3.

Proposition 7.2. Let f : Cδ → Cε be a holomorphic map. Then Peschl’s in-
variant derivative Dnf defined by (1.1) satisfies the recurrence relations (1.3) for
ρ = λδ and σ = λε.

Proof. For clarity, in this proof only we write Dnf for Dn
λε,λδ

f and write Dnf

for Peschl’s derivative. Now we show that Dnf = Dnf. It is straightforward
to check that Dn obeys the same transformation rule for isometries as Dn does
(Lemma 3.6). Because Isom+(Cε) acts on Cε transitively, it is enough to show that
Dnf(0) = Dnf(0) for a holomorphic map f : Cδ → Cε with f(0) = 0. Then, by
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(1.1), we have Dnf(0) = f (n)(0). We now compute Dnf(0). Apply Lemma 7.1 to
see that

aλε
n,k(0) = αn,nδn,k = δn,k.

Substituting z = 0 and f(0) = 0 into the expression of Dnf in Proposition 6.3,
we find Dnf(0) = f (n)(0) = Dnf(0).

Our definition of Dn gives, in turn, the following relations for Peschl’s invariant
derivatives.

Corollary 7.3. Let f : Cδ → Cε be holomorphic. Then

(1 + δ|z|2)∂(Dnf )(z) = Dn+1f(z) − δnz̄Dnf(z) + εf(z)D1f(z)Dnf(z)

for n ≥ 1.

Remark 7.4. These relations appeared in [W, p. 7] for the cases n = 1, 2. They
also follow from the identity

(1 − δz̄ζ)
∂W

∂ζ
− (1 + δ|z|2)∂W

∂z
= (1 − εf(z)W )D1f(z),

where W is the left-hand side of (1.1).

Since αλε
k,1 = (−1)k−1k! for k ≥ 1, Proposition 6.3 now gives the following result.

Corollary 7.5. Let f : Cδ → Cε be holomorphic. Then

Dnf = λε � f · λ−n
δ

n∑
k=1

aλδ
n,kf

(k)

−
n∑

k=2

{λ1−k
ε · aλε

k,1} � f · An,k(D
1f , . . . ,Dn−k+1f )

=
n∑

k=1

αn,k

(−δz̄)n−k(1 + δ|z|2)kf (k)(z)

1 + ε|f(z)|2

−
n∑

k=2

k! (εf(z))k−1An,k(D
1f , . . . ,Dn−k+1f ),

where An,k is the Bell polynomial given in (4.1), aλε
n,k is defined in (6.1) for the

canonical metric λε, and αn,k is given in Lemma 7.1.

The special case when ε = 0 was previously proved by Gong [G1] (see also [G2,
p. 133]). Using Corollary 7.5, we can express the ordinary derivative f (n) in terms
of the invariant derivatives Dkf (k = 1, 2, . . . , n) as follows. Hereafter, we set
z0 = 1 regardless of what the complex number z is.

Corollary 7.6. Let f : Cδ → Cε be holomorphic. Then

(1 + δ|z|2)n
1 + ε|f(z)|2

f (n)(z)

n!
=

n∑
k=1

(
n − 1
k − 1

)
(−δz̄)n−k · ck ,
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where

ck =
k∑

l=1

l!

k!
(εf(z))l−1Ak,l(D

1f , . . . ,Dk−l+1f ).

Proof. Let fk = (1+ δ|z|2)kf (k)(z)/(k! (1+ ε|f(z)|2)). Then, putting the explicit
form of αn,k given in Lemma 7.1 into the formula in Corollary 7.5, we obtain

n∑
k=1

(
n − 1
k − 1

)
(δz̄)n−k · fk = cn.

It is not difficult to invert this relation and so express fn in terms of ck (1 ≤ k ≤
n), as given in the assertion of the corollary.

For the case when δ = −1 and ε = 0, Ruscheweyh [R2] derived the relation
in Corollary 7.6. We end this section with an application to a rough estimate of
higher-order derivatives of a holomorphic map f : Cδ → Cε.

Theorem 7.7. Let δ, ε ∈ {0,1,−1} and write Dn = Dn
λε,λδ

. Suppose that a holo-
morphic map f : Cδ → Cε satisfies the inequality |D1f | ≤ M on Cδ for a positive
constant M. Then, for each n∈ N, there exists a positive constant Mn (depending
only on n and M) such that |Dnf | ≤ Mn on Cδ. Moreover, the inequality

(1 + δ|z|2)n
1 + ε|f(z)|2

|f (n)(z)|
n!

≤
n∑

k=1

(
n − 1
k − 1

)
|δz|n−k · Ck (7.3)

holds for z∈ Cδ , where

Ck =
k∑

l=1

l!

k!
|εf(z)| l−1Ak,l(M1,M2 , . . . ,Mk−l+1).

Remark 7.8. It is well known that a holomorphic map f : Cδ → Cε must be con-
stant whenever δ > ε. The Schwarz–Pick lemma implies the inequality |D1f | ≤
1 for any holomorphic map f : C−1 → C−1. On the other hand, a meromorphic
function f : C−1 → C+1 is called normal if D1f is bounded (cf. [LV]).

Proof of Theorem 7.7. We first show that |Dnf | ≤ Mn holds for a constant Mn

depending only on n and M. Since the relevant conditions are invariant under
isometries, it suffices to show that |Dnf(0)| = |f (n)(0)| ≤ Mn for f with f(0) =
0. Let dε(z,w) denote the distance induced by the metric λε. Note that d1(z, 0) =
arctan|z|, d0(z, 0) = |z|, and d−1(z, 0) = arctanh|z|. Since

f ∗λε(z) = |f ′(z)|
1 + ε|f(z)|2 ≤ M

1 + δ|z|2 = Mλδ(z),

we obtain the estimate
dε(f(z), 0) ≤ Mdδ(z, 0). (7.4)

In particular, for a fixed positive number r in Cδ , there exists a number N de-
pending only on M, δ, and ε such that |f(z)| ≤ N for |z| ≤ r. Cauchy’s theorem
now yields
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|f (n)(0)| =
∣∣∣∣ (n − 1)!

2πi

∫
|z|=r

f ′(z) dz
zn

∣∣∣∣
≤ (n − 1)!

2πr n

∫
|z|=r

M(1 + ε|f(z)|2)|dz|
1 + δr 2

≤ M(n − 1)! (1 + max{εN 2, 0})
(1 + δr 2)r n−1

.

The last term depends only on n and M (and δ, ε), so we have shown an inequal-
ity of the form |Dnf | ≤ Mn. Now (7.3) follows from Corollary 7.6 together with
|Dnf | ≤ Mn and Lemma 4.1.

Remark 7.9. When ε ≤ 0, in the proof we can choose

Mn = inf
r∈Cδ,r>0

M(n − 1)!

(1 + δr 2)r n−1
.

When δ = ε = −1, by Theorem 7.7 we obtain an estimate of the form

(1 − |z|2)n
1 − |f(z)|2 |f (n)(z)| ≤ Kn

for a holomorphic map f : C−1 → C−1 with some constant Kn. Note that Rusch-
eweyh [R1] showed the same inequality with the sharp constant Kn = 2n−1n!.
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