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A Dirichlet Problem for the Complex
Monge–Ampère Operator in F(f )

Per Åhag

Introduction

Let � ⊆ C
n be a hyperconvex domain: a connected open set that admits a negative

plurisubharmonic exhaustion function. Throughout this paper it is always assumed
that � is bounded. The class of plurisubharmonic functions defined on � will be
denoted PSH(�). In the theory of distributions, the smooth functions with com-
pact support—the so-called test functions—play an important role. Because there
exist no plurisubharmonic functions with compact support in � that are not iden-
tically zero, it is useful to introduce E0 (= E0(�)). This class has a role similar to
that of the class of test functions, C∞

0 (�), since C∞
0 (�) ⊂ E0 ∩C(�̄)−E0 ∩C(�̄)

[9, Lemma 3.1]. A bounded plurisubharmonic function ϕ defined on � belongs to
E0 if limz→ξ ϕ(z) = 0 for every ξ ∈ ∂� and

∫
�
(ddcϕ)n < +∞, where (ddc·)n is

the complex Monge–Ampère operator. The maximum principle for plurisubhar-
monic functions implies that if ϕ ∈ E0 then ϕ < 0 or ϕ = 0. Bedford and Taylor
proved in [4] that (ddc·)n is well-defined on PSH(�) ∩ L∞

loc(�). This implies
that the definition of E0 is well-posed and that (ddc·)n is well-defined on E0.

Assume that u is a plurisubharmonic function defined on � and that [ϕj ]∞
j=1,

ϕj ∈ E0, is a decreasing sequence that converges pointwise to u on � as j tends
to +∞. If there can be no misinterpretation, a sequence [·]∞

j=1 will be denoted by
[·]. For fixed p ≥ 1, consider the following assertions:

(1) supj
∫
�
(−ϕj )

p(ddcϕj )
n < +∞;

(2) supj
∫
�
(ddcϕj )

n < +∞.

If the sequence [ϕj ] can be chosen such that (1) holds, then u is said to be in Ep

(= Ep(�)); if (2) holds, then u is in F (= F(�)). Finally, if both (1) and (2) are
satisfied then u∈ Fp (= Fp(�)). In [9], Cegrell proved that the complex Monge–
Ampère operator is well-defined on the subset E of nonpositive plurisubharmonic
functions containing both F and Ep (see Section 1 or [9] for the definition of E ).

It is proved in Section 1 that, for u∈ F ∪p≥1 Ep,

lim sup
z→ξ

u(z) = 0
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for every ξ ∈ ∂�. This is a generalization of [8, Lemma 3.12]. Example 1.6 shows
that there exists a function u ∈ F ∪p≥1 Ep such that lim infz→ξ u(z) = −∞ for
every ξ ∈ ∂�.

The following construction will play a central role. Let � be a domain in C
n, let

f be a continuous real-valued function defined on ∂�, and let µ be a nonnegative
measure defined on �. The envelope U(µ, f ) is then defined by

U(µ, f )(z) = sup{v(z) : v ∈B(µ, f )},
where

B(µ, f )

= {w ∈ PSH(�) ∩ L∞
loc(�) : (ddcw)n ≥ µ,

lim supz→ξ w(z) ≤ f(ξ) for every ξ ∈ ∂�}.
In Section 2, Ep(f ), F(f ), and E(f ) will be defined using the envelope U(0, f ) in
a similar manner to how E0(f ) and Fp(f ) were defined in [8]. From the boundary
behavior of functions from the classes Ep and F as proved in Section 1, it fol-
lows that, if u ∈ F(f ) ∪p≥1 Ep(f ), then lim supz→ξ u(z) = f(ξ) for every ξ ∈
∂� (Proposition 2.2). The main goal of Section 2 is to prove that it is possible to
define the complex Monge–Ampère operator on these new classes in an appropri-
ate way.

Let � ⊆ C
n (n ≥ 2) be a bounded hyperconvex domain, and let f : ∂� → R

be a continuous function such that limz→ξ U(0, f )(z) = f(ξ) for every ξ ∈ ∂�.

Assuming that µ is a nonnegative measure on � with finite total mass and that
µ vanishes on pluripolar sets, it will be proved in Theorem 3.4 that there exists a
uniquely determined function u ∈ F(f ) such that (ddcu)n = µ as measures de-
fined on �. In [9], Cegrell solved this Dirichlet problem for f = 0. This paper
ends with a comparison principle, which is proved by using methods from the
proof of Theorem 3.4.

For an introduction to classical and pluripotential theory, the monographs Pluri-
potential Theory by Klimek [14] and Classical Potential Theory by Armitage and
Gardiner [3] are recommended. For further information about these Cegrell classes
see, for example, [11; 12; 13] and the references therein. This paper is an enhanced
and revised version of a part of the author’s Ph.D. thesis (see [1]).

The author would like to express his gratitude to JonasAndersson, Stefan Borell,
Urban Cegrell, Rafał Czyż, Oscar Lemmers, Norman Levenberg, Andreas Lind,
Alexander Rashkovskii and Frank Wikström. They have all made many valuable
comments on and suggestions for this manuscript. Moreover, the author would
like to stress that the referee’s remarks helped significantly to clarify the paper.

1. On the Boundary Behavior of Functions in Ep and F
Let E (= E(�)) be the class of plurisubharmonic functions ϕ defined on � such
that, for each z0 ∈ �, there exists a neighborhood ω of z0 in � and a decreasing
sequence [ϕj ], ϕj ∈ E0, which converges pointwise to ϕ on ω, as j → +∞, and
for which
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sup
j

∫
�

(ddcϕj )
n < +∞.

Theorem 1.1 will be used extensively throughout this article.

Theorem 1.1. Let K ∈ {E0, Fp, Ep, F, E}, u ∈ K, and v ∈ PSH(�) for v ≤ 0.
Then

max{u, v} ∈ K.

Proof. See [8] and [9].

Lemma 3.12 in [8] states that if � is a bounded, strictly pseudoconvex domain and
u∈ E1, then

lim sup
z→ξ
z∈�

u(z) = 0 (1.1)

for every ξ ∈ ∂�. In this section it will be proved that this holds for any function
u∈ F ∪p≥1 Ep, where � is a bounded hyperconvex domain. Recall that a bounded
hyperconvex domain �, viewed as a domain in R

2n, is always regular with re-
spect to the Dirichlet problem for the Laplace operator; therefore, (1.1) holds for
any subharmonic function defined on � whose smallest harmonic majorant is the
zero function. Theorem 1.4 shows that any function in u∈ F ∪p≥1 Ep has smallest
harmonic majorant the zero function.

Lemma 1.2. Let � ⊆ C
n be a bounded hyperconvex domain and h : � →

(−∞, 0] a harmonic function. Define �(z) = sup{w(z) : w ∈ PSH(�), w ≤ h

on �}. If � ∈ E , then (ddc�)n = 0.

Proof. Let B be an open ball such that B̄ ⊆ � and let ε > 0 be such that
B ⊂ �ε ⊂ �, where �ε = {z ∈ � : dist(z, ∂�) > ε}. Let χε be the stan-
dard regularization kernel and let �ε = (u ∗ χε), where ∗ denotes the convolu-
tion. Then �ε ∈ PSH(�ε) ∩ C∞(�ε) and [�ε] is a decreasing sequence such
that limε→0+ �ε(z) = �(z) for every z ∈ �. Solving the Dirichlet problem with
boundary values �ε yields a function gε ∈ PSH(B)∩C(B̄) such that gε = �ε on
∂B and

(ddcgε)
n = 0 (1.2)

on B (see e.g. [4]). Define a function Hε on �ε by

Hε(z) =
{

gε(z) if z∈B,

�ε(z) if z∈ (�ε\B).
(1.3)

Then Hε ∈ PSH(�ε) and [Hε] decrease as ε decreases to 0. Let ε → 0+. The
limit function H of [Hε] exists and is plurisubharmonic on � or identically −∞.

It also follows that � ≤ Hε on �ε, which yields that

�(z) ≤ H(z) (1.4)

for every z ∈ �. The definition of � implies that � ≤ h on � and hence H =
� ≤ h on �\B. Therefore, H ≤ h on � because H is, in particular, subharmonic.
Thus,
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H(z) ≤ �(z) (1.5)

for every z∈�. Inequalities (1.4) and (1.5) imply that� = H on�. This, together
with (1.2), (1.3), and the assumption that � ∈ E , yields (ddc�)n = (ddcH )n = 0
on B. Since B was arbitrary, the lemma is proved.

Example 1.3 was kindly suggested to the author by Alexander Rashkovskii [16]; it
shows that the set {w(z) : w ∈ PSH(�), w ≤ h on �} might be empty.

Example 1.3. Let B ⊆ C
2 be the unit ball, and let p = (1, 0) ∈ C

2. For z ∈ B,
define

h(z) = |z|2 − 1

|z − p|4
.

Then −h is the Poisson kernel for B. Therefore, h is harmonic and h ≤ 0. It can
be proved that there does not exist a function ϕ ∈ PSH(B) such that ϕ ≤ h, which
implies that {w(z) : w ∈ PSH(B), w ≤ h on B} = ∅.
Theorem 1.4. If u ∈ F ∪p≥1 Ep, then the smallest harmonic majorant of u is
identically zero on �.

Proof. Assume that u ∈ F ∪p≥1 Ep. The zero function is harmonic and thus is a
harmonic majorant of u; hence there exists a smallest harmonic majorant of u (see
e.g. [3, Thm. 3.6.3]). Assume that there exists a smaller harmonic majorant of u;
in other words, assume there exists a harmonic function h defined on � such that

u ≤ h ≤ 0 (1.6)

and h(z) �= 0 for at least one z in�. Let the function� be defined as in Lemma1.2.
Then the definition of � and (1.6) imply that u ≤ � ≤ 0, so � ∈ F ∪p≥1 Ep by
Theorem 1.1. Moreover, (ddc�)n = 0 by Lemma 1.2. If � ∈ F then � = 0
by the uniqueness part of [9, Lemma 5.14], and if � ∈ ⋃

p≥1 Ep then � = 0 by
the uniqueness part of [8, Thm. 6.2]. By construction it holds that � ≤ h ≤ 0,
which implies that h = 0. This contradicts the assumption that there exists a z ∈
� such that h(z) �= 0. Thus the smallest harmonic majorant of u is equal to zero
on �.

Corollary 1.5. Suppose that u∈ F ∪p≥1 Ep. Then

lim sup
z→ξ
z∈�

u(z) = 0

for every ξ ∈ ∂�.

Remark. Theorem 1.4 and Corollary 1.5 are not generally valid for functions
from E . Consider, for example, the function that is identically −1.

Corollary 1.5 implies that lim supz→ξ ũ(z) = 0 for every ξ ∈ ∂�, and Example 1.6
shows that there exists a function ũ ∈ Fp such that lim infz→ξ ũ(z) = −∞ for
every ξ ∈ ∂�.
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Example 1.6. Let [zj ], zj ∈ �, be a sequence such that every point on ∂� is a
limit point to [zj ]. The set {zj} is pluripolar because it is countable. Theorem 5.8
in [9] implies that there exists a function u ∈ F1 such that {zj} ⊆ {u = −∞}.
For each p ≥ 1, let the function ũ be defined by ũ = max{u, −(−u)1/p}. Then
Theorem 1.1 implies that ũ ∈ F1, since −(−u)1/p ∈ PSH(�) and u ≤ ũ ≤ 0. It
therefore follows that ∫

�

(−ũ)p(ddcũ)n < +∞,

since u ∈ F1. Theorem 5.6 in [8] yields that ũ ∈ Fp. The constructions of [zj ]
and ũ imply that lim infz→ξ u(z) = −∞ and lim infz→ξ −(−u(z))1/p = −∞ for
every ξ ∈ ∂�. Thus

lim inf
z→ξ
z∈�

ũ(z) = −∞

for every ξ ∈ ∂�. Corollary 1.5 then concludes this example.

2. Definition of the Complex Monge–Ampère
Operator on E(f )

The classes E0(f ) and Fp(f ) were first defined in [8]. Here those definitions will
be recalled, and Ep(f ), F(f ), and E(f ) will be defined in a similar manner. If
K(f ) is one of these classes, where f = 0, it follows immediately that K(0) =
K, where K is the corresponding class defined in the Introduction and Section 1.
Hence the classes defined in this section are generalizations of those in Section 1.
Proposition 2.2 is a direct consequence of the definition of these classes and Corol-
lary 1.5. Therefore, functions from Ep(f ) and F(f ) essentially have their bound-
ary values given by the function f. The main goal of this section is to prove that it
is possible to define the complex Monge–Ampère operator in an appropriate way
on E(f ). The class E(f ) contains E0(f ), Fp(f ), Ep(f ), and F(f ); the complex
Monge–Ampère operator is well-defined on these classes as well.

Definition 2.1. Let K ∈ {E0, Fp, Ep, F, E}, let � ⊆ C
n be a bounded hyper-

convex domain, and let f : ∂� → R be a continuous function such that

lim
z→ξ

U(0, f )(z) = f(ξ) for every ξ ∈ ∂�.

A plurisubharmonic function u defined on � belongs to K(f ) (= K(�, f )) if
there exists a function ϕ ∈ K such that

U(0, f ) ≥ u ≥ ϕ + U(0, f ).

Remarks. (1) Under the assumptions in Definition 2.1, the Perron–Bremermann
envelope U(0, f ) belongs to E0(f ) ∩ C(�̄). Moreover, E0(f ) ⊆ L∞(�) and
(ddcU(0, f ))n = 0.

(2) If K ∈ {E0, Fp, Ep, F, E} then K(0) = K. The class K(f ) is a convex set,
but in general it is not a convex cone.



128 Per Åhag

(3) Let p and f be fixed; then E0(f ) ⊆ Fp(f ) ⊆ F(f ) ⊆ E(f ) and E0(f ) ⊆
Fp(f ) ⊆ Ep(f ) ⊆ E(f ).

(4) There exists a function u∈ E0(f ) such that∫
�

(ddcu)n = +∞
(see [2; 13]).

In the rest of this section, let � ⊆ C
n be a bounded hyperconvex domain and let

f : ∂� → R be a continuous function such that limz→ξ U(0, f )(z) = f(ξ) for
every ξ ∈ ∂�.

Proposition 2.2. Let u∈ F(f ) ∪p≥1 Ep(f ). Then

lim sup
z→ξ
z∈�

u(z) = f(ξ) (2.1)

for every ξ ∈ ∂�. If u∈ E0(f ), then

lim
z→ξ

u(z) = f(ξ) (2.2)

for every ξ ∈ ∂�.

Proof. Assume that u ∈ F(f ) ∪p≥1 Ep(f ), that is, u ∈ PSH(�), and that there
exists a function ϕ ∈ Ep (or in F ) such that U(0, f ) ≥ u ≥ ϕ + U(0, f ). Then

ϕ ≤ u − U(0, f ) ≤ 0. (2.3)

It follows from Corollary 1.5 that

lim sup
z→ξ
z∈�

ϕ(z) = 0 (2.4)

for every ξ ∈ ∂�. Hence (2.3) and (2.4) yield that (2.1) holds. Let u ∈ E0(f ).

Using the definition of E0 instead of Corollary 1.5 in the preceding method yields
the desired result—that is, (2.2) holds.

Proposition 2.3. (1) If f ≤ 0 and u∈ E(f ), then u∈ E .
(2) If v ∈ E(f ), then there exists a constant c1 ≤ 0 such that (v + c1)∈ E .
(3) If w ∈ E , then there exists a constant c2 ≤ 0 such that (w + c2)∈ E(f ).

Proof. (1) This follows from the definition of E(f ) and Theorem 1.1.
(2) This is a consequence of (1).
(3) Let w ∈ E and consider the function w − |maxξ∈∂� f(ξ)|. This function be-

longs to E(f ), which completes the proof of this proposition.

It is possible to define the complex Monge–Ampère operator on E(f ) by using
property 2 in Proposition 2.3. Yet by applying the method used here, the informa-
tion in Theorem 2.4 and Theorem 2.5 is gained.

Theorem 7.2 in [8] proves that (ddc·)n is well-defined on Fp(f ). The same
method will be used here to prove that this operator is well-defined on E(f ). This
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implies, in particular, that the complex Monge–Ampère operator is well-defined
on Fp(f ), Ep(f ), and F(f ).

Theorem 2.4. Let u∈ E(f ). Then there exists a decreasing sequence [uj ], uj ∈
E0(f ), that converges pointwise to u as j tends to +∞.

Proof. Let u ∈ E(f ), that is, u ∈ PSH(�), and let there exist a function ϕ ∈ E
such that

U(0, f ) ≥ u ≥ ϕ + U(0, f ). (2.5)

It follows from [9, Thm. 2.1] that there exists a decreasing sequence [ϕj ], ϕj ∈ E0,
such that ϕj converges pointwise to ϕ as j → +∞. Let the sequence [uj ], j ∈
N, be defined by uj = max{u,ϕj + U(0, f )}. It is a decreasing sequence of pluri-
subharmonic functions, since [ϕj ] is decreasing, and it converges pointwise to u

as j → +∞. The definition of uj implies that

uj ≥ ϕj + U(0, f ), (2.6)

and by (2.5) it follows that U(0, f ) ≥ uj , since (ϕj + U(0, f )) ∈ B(0, f ).

Therefore, inequality (2.6) yields that U(0, f ) ≥ uj ≥ ϕj + U(0, f ) for every
j ∈ N. Hence [uj ], uj ∈ E0(f ), is a decreasing sequence that converges pointwise
to u as j → +∞.

Theorem 2.5. Let [uj ], uj ∈ E0(f ), be a decreasing sequence that converges
pointwise to u∈ E(f ) as j tends to +∞. Then (ddcuj )

n is weak∗-convergent and
the limit measure does not depend on the particular sequence [uj ].

Proof. Assume that [uj ], uj ∈ E0(f ), is a decreasing sequence that converges
pointwise to u ∈ E(f ) as j → +∞. Let K ⊆ � (K �= ∅) be a compact set. By
Definition 2.1, u∈ PSH(�) and there exists a function ϕ ∈ E such that

U(0, f ) ≥ u ≥ ϕ + U(0, f ). (2.7)

There is no loss of generality in assuming that ϕ < 0, because if ϕ = 0 then (2.7)
implies that u = U(0, f ) ∈ PSH(�) ∩ L∞(�), and uj = U(0, f ) for every j ∈
N by Definition 2.1. The function U(0, f ) is continuous on �̄ and ϕ < 0; hence
there exists a constant c ≥ 0 such that U(0, f ) − α > cϕ on K, where α is the
constant defined by

α =
{

0 if maxξ∈∂� f(ξ) ≤ 0,

maxξ∈∂� f(ξ) otherwise.

This and (2.7) imply that
u − α ≥ (1 + c)ϕ (2.8)

in a neighborhood of K. Theorem 2.1 in [9] yields that there exists a decreasing
sequence [ϕj ], ϕj ∈ E0, that converges pointwise to ϕ as j → +∞. Let

vj = max{uj − α, (1 + c)ϕj}.
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The assumption uj ∈ E0(f ) implies that uj ∈ PSH(�), so (uj − α) is plurisub-
harmonic and (uj − α) ≤ 0. The class E0 is a convex cone; hence (1 + c)ϕj ∈
E0 and therefore vj ∈ E0 by Theorem 1.1. Moreover, the sequence [vj ] is a de-
creasing sequence that converges pointwise to max{u − α, (1 + c)ϕ}. Note that,
by (2.8), max{u− α, (1+ c)ϕ} = u− α in a neighborhood of K, and Theorem 1.1
yields that max{u − α, (1 + c)ϕ} ∈ E . Theorem 4.2 in [9] implies that [(ddcvj )

n]
is weak∗-convergent and the limit measure does not depend on the particular se-
quence [vj ]. Hence [(ddc(uj −α))n] is weak∗-convergent, since K was arbitrarily
chosen. But (ddc(uj −α))n = (ddcuj )

n. Thus (ddcuj )
n is weak∗-convergent and

the limit measure does not depend on the particular sequence [uj ].

Definition 2.6. Let u∈ E(f ). Define (ddcu)nu to be the limit measure in The-
orem 2.5.

Let u ∈ E(f ). Then, by Theorem 2.4, there exists a decreasing sequence [uj ],
uj ∈ E0(f ), that converges pointwise to u as j tends to +∞. If [vj ], vj ∈ E0(f ),
is any decreasing sequence that converges pointwise to u as j tends to +∞, then
Theorem 2.5 ensures that (ddcvj )

n is weak∗-convergent and the limit measure
does not depend on the particular sequence [vj ]. This implies that Definition 2.6
is well-posed.

Suppose f : ∂� → R is a continuous function such that f ≤ 0 and u ∈ E(f ).

Proposition 2.3 implies that u ∈ E . Consider u = uE(f ) to be a function only in
E(f ) and u = uE to be a function only in E . Then (ddcuE(f ))

n is a nonnegative
measure by Definition 2.6, and (ddcuE)n is also a nonnegative measure accord-
ing to [9, Def. 4.3]. Fortunately, the proof of Theorem 2.5 implies that these two
measures are the same.

Let u1, u2 , . . . , un ∈ E(f ). Then it is possible, using the idea of the proof of
Theorem 2.5, to define

(ddcu1) ∧ (ddcu2) ∧ · · · ∧ (ddcun)

in the same way as (ddcu)n was defined in Definition 2.6.
Proposition 2.7 is obtained by using Proposition 2.3 together with [9, Cor. 5.2];

this proposition will later be used in the proof of Theorem 3.4.

Proposition 2.7. Let u ∈ F(f ) and let [uj ], uj ∈ E0(f ), be a decreasing se-
quence that converges pointwise to u as j tends to +∞. If ϕ ∈ PSH(�), ϕ ≤ 0,
and if ∫

�

(−ϕ)(ddcu)n < +∞,

then limj→+∞(−ϕ)(ddcuj )
n = (−ϕ)(ddcu)n in the weak∗-topology.

3. A Dirichlet Problem for the Complex
Monge–Ampère Operator

Assume that� ⊆ C
n is a bounded hyperconvex domain, and assume thatf : ∂�→

R is a continuous function such that limz→ξ U(0, f )(z) = f(ξ) for every ξ ∈ ∂�.
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In this section, a Dirichlet problem for the complex Monge–Ampère operator is
proved. More precisely: assume that µ is a nonnegative measure that vanishes
on pluripolar sets and has finite total mass. Then there exists a uniquely deter-
mined function u∈ F(f ) such that (ddcu)n = µ (Theorem 3.4). This paper ends
with a comparison principle, which is proved by using methods from the proof of
Theorem 3.4. In [9], Cegrell solved this Dirichlet problem for f = 0. By using the
existence part of Theorem 3.4 and the Bedford–Taylor comparison principle for
bounded plurisubharmonic functions, Cegrell [10] proves a comparison principle
in the class F a(f ); as a corollary, the uniqueness part of Theorem 3.4 follows.

Lemma 3.1. Let u∈ E0(f ) and φ ∈ E0(f ) ∩ C(�). If

A = {z∈� : u(z) > φ(z)},
then χA(dd

cu)n = χA(dd
c max{u,φ})n. Here χA is the characteristic function for

the set A.

Proof. If u = U(0, f ), the lemma follows immediately. Hence assume that u is
not the function U(0, f ). It is sufficient to prove the equality of two measures on
an arbitrary compact set K ⊆ � (K �= ∅). Let α be the constant defined by

α =
{

0 if maxξ∈∂� f(ξ) ≤ 0,

maxξ∈∂� f(ξ) otherwise.

The proof of Theorem 2.5 yields that there exists a function uω ∈ E0 such that uω =
u− α in a neighborhood ω ⊆ � of the given set K. If Ã = {z∈� : uω > φ − α},
then [8, Lemma 5.4] yields that χÃ(dd

cuω)
n = χÃ(dd

c(max{uω,φ − α}))n on �

and thus, in particular, on ω. Therefore,

χA(dd
cu)n = χA(dd

c(u − α))n = χA(dd
c(max{u − α,φ − α}))n

= χA(dd
c(max{u,φ} − α))n = χA(dd

c(max{u,φ}))n

on K, since A ∩ ω = Ã ∩ ω.

Theorem 3.2. Let � ⊆ C
n be a bounded open set and let u, v ∈ PSH(�) ∩

L∞(�). If
lim inf
z→ξ
z∈�

(u(z) − v(z)) ≥ 0

for every ξ ∈ ∂� and (ddcu)n ≤ (ddcv)n, then u ≥ v.

Proof. See for example [5].

Theorem 3.3. Assume that µ is a nonnegative measure defined on a bounded
hyperconvex domain �. Then there exist functions ψ ∈E0 and ϕ∈L1

loc((dd
cψ)n),

ϕ ≥ 0, such that µ = ϕ(ddcψ)n + ν. The nonnegative measure ν is such that
there exists a pluripolar set A ⊆ � with ν(� \ A) = 0.

Proof. See [9, Thm. 5.11].
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Theorem 3.4. Let � ⊆ C
n (n ≥ 2) be a bounded hyperconvex domain. Assume

that µ is a nonnegative measure defined on � with µ(�) < +∞ and µ(A) = 0
for every pluripolar set A ⊆ �. Then, for every continuous function f : ∂� →
R such that limz→ξ U(0, f )(z) = f(ξ) for every ξ ∈ ∂�, there exists a uniquely
determined function u∈ F(f ) such that (ddcu)n = µ.

Proof. The existence part of the theorem will be proved first. Since µ vanishes on
pluripolar sets and has a finite total mass, it follows from Theorem 3.3 that there
exist functions ψ ∈ E0 and ϕ ∈L1((ddcψ)n), ϕ ≥ 0, such that µ = ϕ(ddcψ)n. For
each k ∈ N, let µk be the measure defined by µk = min{ϕ, k}(ddcψ)n. Then µk ≤
(ddc(k1/nψ))n and so, by Kołodziej’s theorem (see [15]; see also [8, Prop. 6.1]),
there exists a uniquely determined function wk ∈ E0 such that

(ddcwk)
n = µk. (3.1)

The sequence [wk] is decreasing. This construction implies that (wk +U(0, f ))∈
L∞(�) ∩ PSH(�), that limz→ξ (wk + U(0, f ))(z) = f(ξ) for every ξ ∈ ∂�,
and that U((ddc(wk +U(0, f )))n, f ) = wk +U(0, f ). Equality (3.1) implies that
(ddc(wk + U(0, f )))n ≥ µk. Theorem 8.1 in [8] yields that (ddcU(µk , f ))n =
µk and

U(0, f ) ≥ U(µk , f ) ≥ wk + U(0, f ). (3.2)

Therefore, U(µk , f ) ∈ E0(f ). It also follows that [U(µk , f )] is a decreasing se-
quence. Since µ(�) < +∞ by assumption, it follows that

sup
k

∫
�

(ddcwk)
n = sup

k

∫
�

(ddcU(µk , f ))n ≤ sup
k

µk(�) ≤ µ(�) < +∞
and so limk→+∞ wk ∈ F. Let u = limk→+∞ U(µk , f ); then u ∈ PSH(�) and
U(0, f ) ≥ u ≥ (limk→+∞ wk) + U(0, f ) by inequality (3.2). As a result, u ∈
F(f ). From Theorem 2.5 it follows that (ddcu)n = µ.

Now for the uniqueness part of the theorem. Assume that v ∈ F(f ) is such that
(ddcv)n = µ and assume (by the first part of this proof ) that there exists a func-
tion u∈ F(f ) such that (ddcu)n = µ. The assumption µ(�) < +∞ then implies
that

∫
�
(ddcu)n < +∞ and

∫
�
(ddcv)n < +∞. The aim is to prove that u = v.

The comparison principle has not been shown to be valid in F a(f ). This fact
suggests the use of approximating sequences of the solutionsu and v and then using
the comparison principle (Theorem 3.2) on these approximants. For the function
u the sequence [uk], uk ∈ E0(f ), from the existence part is used. Let [Kj ] with
Kj ⊆ � and int(Kj ) �= ∅ be a sequence of compact sets such that, for every j ∈ N,
Kj ⊆ int(Kj+1) and

⋃∞
j=1Kj = �. Moreover, let hKj

denote the relative extremal
function and let sj be a positive integer. The sequence [max{v, sj hKj

+ U(0, f )}]
is then constructed such that max{v, sj hKj

+U(0, f )} ∈ E0(f ) and such that it de-
creases to v on � as j → +∞. By using the auxiliary function aj (to be defined
shortly), it is possible to obtain

xjk + max{v, sj hKj
+ U(0, f )} ≤ uk ≤ yjk ,

where xjk ∈ E0(0) and yjk ∈ E0(f ) are constructed in a suitable way. When con-
structing the function aj , an idea from the proof of [9, Lemma 5.14] is used. To
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complete this proof it is then sufficient to prove that xjk converges to 0 and yjk
converges to v on � as k and j tend to +∞.

By Theorem 3.3, there exist functions ψ ∈ E0 and ϕ ∈ L1((ddcψ)n), ϕ ≥ 0,
such that

µ = ϕ(ddcψ)n; (3.3)

this follows because µ vanishes on pluripolar sets and µ(�) < ∞, by assumption.
For each k ∈ N, let µk be the measure defined by

µk = min{ϕ, k}(ddcψ)n. (3.4)

From the first part of this proof it follows that there exists a decreasing sequence
[uk], uk ∈ E0(f ), such that

(ddcuk)
n = µk (3.5)

and u = limk→+∞ uk. The sequence [Kj ] of compacts should also have the prop-
erty that the relative extremal function hKj

is in E0 ∩ C(�̄). Recall that

hKj
(z) = sup{ϑ(z) : ϑ ∈ PSH(�), ϑ < 0 and ϑ ≤ −1 on Kj}.

Let [sj ] be a strictly increasing sequence of positive integers, and define the func-
tion aj by

aj = −hKj
+ max

{
v − U(0, f )

sj
,hKj

}
.

Note that the function aj is, in general, not plurisubharmonic. The definition of aj
yields that limj→+∞(1 − aj ) = 0 on �\{v = −∞}. It is thus possible to choose
an increasing sequence [lj ]∞

j=1 of positive integers such that, for each j ∈ N, the
inequality ∫

�

(1 − alj )(dd
cv)n ≤ 1

j
(3.6)

holds by the monotone convergence theorem and the assumption that (ddcv)n

vanishes on pluripolar sets. To simplify the notation, [Kj ] and [sj ] will be used
instead of [Klj ] and [slj ] (the original sequences will no longer be used). If Aj =
{v > sj hKj

+ U(0, f )} then

0 ≤ aj ≤ χAj
≤ 1, (3.7)

where χAj
is the characteristic function for the set Aj . Since sj hKj

∈ E0, it fol-
lows that (sj hKj

+ U(0, f )) ∈ E0(f ). The sequence [max{v, sj hKj
+ U(0, f )}]

decreases to v as j → +∞. Let j ∈ N be fixed and let s ∈ N be such that s ≥ sj .

Then Lemma 3.1 implies that

χAj
(ddc max{v, shKj

+ U(0, f )})n = χAj
(ddc max{v, sj hKj

+ U(0, f )})n, (3.8)

since max{max{v, shKj
+U(0, f )}, sj hKj

+U(0, f )} = max{v, sj hKj
+U(0, f )}.

From (3.7) and (3.8) it follows that

0 ≤ aj(dd
c max{v, shKj

+ U(0, f )})n
≤ χAj

(ddc max{v, sj hKj
+ U(0, f )})n

≤ (ddc max{v, shKj
+ U(0, f )})n. (3.9)
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The following weak∗-limits hold:

lim
s→+∞(dd

c max{v, shKj
+ U(0, f )})n = (ddcv)n,

lim
s→+∞(−hKj

)(ddc max{v, shKj
+ U(0, f )})n = (−hKj

)(ddcv)n,

lim
s→+∞ max

{
v

sj
,hKj

+ U(0, f )

sj

}
(ddc max{v, shKj

+ U(0, f )})n

= max

{
v

sj
,hKj

+ U(0, f )

sj

}
(ddcv)n,

lim
s→+∞

(
−U(0, f )

sj

)
(ddc max{v, shKj

+ U(0, f )})n =
(
−U(0, f )

sj

)
(ddcv)n.

The first limit follows by Theorem 2.5 and the other three by Proposition 2.7. It is
possible to write the function aj as

aj = −hKj
+ max

{
v

sj
,hKj

+ U(0, f )

sj

}
− U(0, f )

sj
;

then, given (3.9) together with the preceding limits, it follows that

aj(dd
cv)n ≤ χAj

(ddc max{v, sj hKj
+ U(0, f )})n ≤ (ddcv)n (3.10)

when s → +∞. Inequality (3.7) and (3.10) imply that

(1 − aj )(dd
cv)n + (ddc max{v, sj hKj

+ U(0, f )})n
≥ (1 − aj )(dd

cv)n + χAj
(ddc max{v, sj hKj

+ U(0, f )})n
≥ (ddcv)n ≥ aj(dd

c max{v, sj hKj
+ U(0, f )})n. (3.11)

The assumption that (ddcv)n = µ together with (3.3)–(3.5) yields that

min{ϕ, k}(ddcv)n = ϕ(ddcuk)
n. (3.12)

Define

.k(z) =



1 if ϕ(z) = 0,

min{ϕ(z), k}
ϕ(z)

otherwise;

then 0 ≤ .k ≤ 1. By (3.11) and (3.12) it follows that

.k(1 − aj )(dd
cv)n + .k(dd

c max{v, sj hKj
+ U(0, f )})n

≥ .k(dd
cv)n = (ddcuk)

n

≥ .kaj(dd
c max{v, sj hKj

+ U(0, f )})n. (3.13)

Kołodziej’s theorem again implies that, for each j, k ∈ N, there exist functions
xjk ∈ E0(0) such that (ddcxjk)

n = .k(1−aj )(dd
cv)n, since.k(dd

cv)n = (ddcuk)
n.

From the first part of this proof it follows that there exist functions yjk ∈ E0(f ) such
that (ddcyjk)

n = .kaj(dd
c max{v, sj hKj

+ U(0, f )})n. Let j ∈ N be fixed. Then
the sequences [(ddcxjk)

n]∞
k=1 and [(ddcyjk)

n]∞
k=1 are increasing and so [xjk]∞

k=1 and
[yjk]∞

k=1 are decreasing by Theorem 3.2. For each j ∈ N, define
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xj = lim
k→+∞ xjk and yj = lim

k→+∞ yjk.

Now the aim is to prove that, as j → +∞, the sequence [xj ] converges to 0 on
� and the sequence [yj ] converges to v on �. From construction (3.6) it follows
that supk

∫
�
(ddcxjk)

n ≤ 1/j, which implies that xj ∈ F. There exists a function
φ ∈ PSH(�) ∩ C(�̄) such that

(ddcφ)n = dV, lim
z→ξ
z∈�

φ(z) = 0 for every ξ ∈ ∂�

(see [7]). It is a consequence of [6, Cor. 2.2] and the definition of F that∫
�

(−xj )
n dV =

∫
�

(−xj )
n(ddcφ)n ≤ Cφ

∫
�

(ddcxj )
n ≤ Cφ

1

j
,

where Cφ ≥ 0 is a constant depending only on φ and the dimension n. Therefore,

lim
j→+∞ xj = 0 (3.14)

weakly on �. Inequality (3.13) then yields that

(ddc(xjk + max{v, sj hKj
+ U(0, f )}))n

≥ (ddcxjk)
n + .k(dd

c max{v, sj hKj
+ U(0, f )})n

≥ (ddcuk)
n ≥ (ddcyjk)

n

for every j, k ∈ N. Then, by Theorem 3.2,

xjk + max{v, sj hKj
+ U(0, f )} ≤ uk ≤ yjk. (3.15)

Since (ddcyjk)
n ≤ (ddc max{v, sj hKj

+U(0, f )})n, it follows thatU(0, f ) ≥ yjk ≥
max{v, sj hKj

+ U(0, f )} by Theorem 3.2. Thus,

U(0, f ) ≥ yj = lim
k→+∞ yjk ≥ max{v, sj hKj

+ U(0, f )}.
Hence yj ∈ L∞(�) and, by Proposition 2.2, it follows that limz→ξ yj(z) = f(ξ)

for every ξ ∈ ∂�. For each j ∈ N, [8, Prop. 6.1] implies that there exists a function
wj ∈ F1 ∩ L∞(�) such that

(ddcwj )
n = (1 − aj )(dd

c max{v, sj hKj
+ U(0, f )})n (3.16)

and therefore

(ddc(yj + wj))
n ≥ (ddcyj )

n + (ddcwj )
n

= (ddc max{v, sj hKj
+ U(0, f )})n ≥ (ddcyj )

n.

As a result,
yj + wj ≤ max{v, sj hKj

+ U(0, f )} ≤ yj (3.17)

by Theorem 3.2, since yj ,wj ∈L∞(�) and yj +wj ≤ max{v, sj hKj
+U(0, f )} =

yj on ∂�. Theorem 2.5 yields that (ddc max{v, sj hKj
+ U(0, f )})n ≤ (ddcv)n;

after multiplying the left inequality in (3.10) by aj it follows that a2
j (dd

cv)n ≤
aj(dd

c max{v, sj hKj
+ U(0, f )})n, so
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�

(1 − aj )(dd
c max{v, sj hKj

+ U(0, f )})n ≤
∫
�

(1 − a2
j )(dd

cv)n.

Now it follows by (3.6) and (3.16) that∫
�

(ddcwj )
n ≤

∫
�

(1 − a2
j )(dd

cv)n ≤ 2
∫
�

(1 − aj )(dd
cv)n ≤ 2

j
.

Hence, by [6, Cor. 2.2],∫
�

(−wj)
n dV =

∫
�

(−wj)
n(ddcφ)n ≤ C ′

φ

∫
�

(ddcwj )
n ≤ C ′

φ

2

j
,

where C ′
φ ≥ 0 is a constant depending only on φ and the dimension n. This im-

plies that
lim

j→+∞wj = 0 (3.18)

weakly on �. It follows from (3.14), (3.15), (3.17), and (3.18) that u = v on �

after letting k and j tend to +∞.

Definition 3.5. Define F a(f ) to be the class of plurisubharmonic functions u∈
F(f ) such that (ddcu)n vanishes on all pluripolar sets.

Corollary 3.6. Let � ⊆ C
n (n ≥ 2) be a bounded hyperconvex domain, and

let f , g : ∂� → R be continuous functions such that limz→ξ U(0, f )(z) = f(ξ)

and limz→ξ U(0, g)(z) = g(ξ) for every ξ ∈ ∂�. If u ∈ F(f ) and v ∈ F a(g)

where f ≤ g,
∫
�
(ddcu)n < +∞, and (ddcu)n ≥ (ddcv)n, then u ≤ v.

Proof. There exist functions ψ1,ψ2 ∈ E0, with ϕ1 ∈ L1((ddcψ1)
n), ϕ1 ≥ 0, and

ϕ2 ∈L1((ddcψ2)
n), ϕ2 ≥ 0, such that

(ddcu)n = ϕ1(dd
cψ1)

n + ν,

(ddcv)n = ϕ2(dd
cψ2)

n; (3.19)

here ν is a nonnegative measure, which (by Theorem 3.3) is carried by a pluripolar
set. Moreover, (ddc(ψ1 +ψ2))

n ≥ (ddcψ1)
n and (ddc(ψ1 +ψ2))

n ≥ (ddcψ2)
n.

The measures (ddcψ1)
n and (ddcψ2)

n are thus absolutely continuous with respect
to (ddc(ψ1 + ψ2))

n. Hence there exist functions τ1 ∈L1((ddc(ψ1 + ψ2))
n), τ1 ≥

0, and τ2 ∈L1((ddc(ψ1 + ψ2))
n), τ2 ≥ 0, such that

τ1(dd
c(ψ1 + ψ2))

n = (ddcψ1)
n,

τ2(dd
c(ψ1 + ψ2))

n = (ddcψ2)
n.

(3.20)

By the equality of measures in (3.19) and (3.20) it follows that

(ddcu)n = ϕ1τ1(dd
c(ψ1 + ψ2))

n + ν,

(ddcv)n = ϕ2τ2(dd
c(ψ1 + ψ2))

n.
(3.21)

Therefore, ϕ1τ1 ≥ ϕ2τ2 on � because (ddcu)n ≥ (ddcv)n, by assumption. Con-
sider the measure ϕ1τ1(dd

c(ψ1 + ψ2))
n; it has finite total mass and vanishes on
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every pluripolar set. Hence Theorem 3.4 implies that there exists a uniquely deter-
mined function w ∈ F a(g) such that (ddcw)n = ϕ1τ1(dd

c(ψ1 + ψ2))
n, and from

(3.21) it follows that

(ddcv)n ≤ (ddcw)n = ϕ1τ1(dd
c(ψ1 + ψ2))

n ≤ (ddcu)n,

since ϕ1τ1 ≥ ϕ2τ2 on �. For each j ∈ N, let the measures µv
j and µw

j be defined by

µv
j = min{ϕ2τ2 , j}(ddc(ψ1 + ψ2))

n,

µw
j = min{ϕ1τ1, j}(ddc(ψ1 + ψ2))

n.

By the proof of the existence part of Theorem 3.4, there exist uniquely determined
functions vj ,wj ∈ E0(g) such that (ddcvj )

n = µv
j and (ddcwj )

n = µw
j . As a re-

sult, (ddcvj )
n ≤ (ddcwj )

n. Theorem 3.2 then yields that

vj ≥ wj (3.22)

and that [vj ] and [wj ] are decreasing sequences. Let

ṽ = lim
j→+∞ vj and w̃ = lim

j→+∞ wj .

Using the same idea used in the existence part of the proof of Theorem 3.4, it
is possible to prove that ṽ, w̃ ∈ F a(g), (ddcṽ)n = ϕ2τ2(dd

c(ψ1 + ψ2))
n, and

(ddcw̃)n = ϕ1τ1(dd
c(ψ1 + ψ2))

n. But v and w were uniquely determined and so
v = ṽ and w = w̃. It follows from (3.22) that

v ≥ w. (3.23)

Let [sj ] and [Kj ] be as in the proof of the uniqueness part of Theorem 3.4. In a
similar manner, define the function bj on � by

bj = −hKj
+ max

{
u − U(0, f )

sj
,hKj

}
.

Note that u ∈ F(f ) and therefore (ddcu)n may put mass on pluripolar sets. In-
equality (3.10) yields that

bj(dd
cu)n ≤ (ddc max{u, sj hKj

+ U(0, f )})n. (3.24)

This implies, in particular, that the nonnegative measure bj(dd
cu)n vanishes on

pluripolar sets and so

bj(dd
cu)n = bjϕ1τ1(dd

c(ψ1 + ψ2))
n = bj(dd

cw)n.

There exists a uniquely determined function w ′
j ∈ E0(g) such that (ddcw ′

j )
n =

.jbj(dd
cu)n, where

.j(z) =



1 if ϕ1(z)τ1(z) = 0,

min{ϕ1(z)τ1(z), j}
ϕ1(z)τ1(z)

otherwise.

Theorem 3.2 and (3.24) imply that
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w ′
j ≥ max{u, sj hKj

+ U(0, f )} (3.25)

on �. Recall that f ≤ g by assumption. Let w̃ ′ = limj→+∞ w ′
j . Then w̃ ′ ∈ F(g)

and (ddcw̃ ′)n = (ddcw)n. Therefore, w̃ ′ ∈ F a(g) and w̃ ′ = w on �, since w was
uniquely determined. It thus follows that w ≥ u on �, by (3.25). The proof of the
corollary is completed since v ≥ w on � by (3.23).
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