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0. Introduction

Let M be a smooth manifold and let V be a subbundle of CTM, the complexified
tangent bundle of M. The pair (M,V ) is called an abstract CR manifold if V is
involutive and if, for each p ∈M, Vp ∩ V̄p = {0}. Recall that V is involutive if the
space of smooth sections of V, C∞(M,V ), is closed under commutators. Let n
be the complex dimension of the fibre Vp of V at p and write dimR M = n+m.

The number n is called the CR dimension of M, and d = m− n will be called the
CR codimension of M. If d = 1, the CR structure is said to be of hypersurface
type. The CR manifold (M,V ) is called integrable or locally embeddable if, for
any po ∈M, there exist m complex-valued C∞ functions Z1, . . . , Zm defined near
po such that (a) LZj = 0 for all L ∈ C∞(M,V ), j = 1, . . . ,m, and (b) the dif-
ferentials dZ1, . . . , dZm are C-linearly independent. Any such set of functions Zj

will be called a complete set of first integrals.
If (M,V ) is an integrable CR manifold, then the mapping p 
→ Z(p) =

(Z1(p), . . . , Zm(p)) ∈ C
m, where the Zj are a complete set of first integrals, is a

map of constant rank near po and so is an immersion. Thus, if U is a small neigh-
borhood of po, then Z(U) is an embedded real submanifold of C

m of dimension
m+n, and its real codimension in C

m agrees with the CR codimension d = m−n.

It is easy to see that Z(U) is a generic CR submanifold of C
m and that its CR bun-

dle agrees with the push-forward Z∗V. Conversely, if M is a CR submanifold of
C

m and V is its CR bundle, then (M,V ) defines an integrable CR structure (see
[BER] and [J] for more details).

In an abstract CR manifold (M,V ), a smooth section of V is called a CR vector
field. A function f on M is called a CR function if Lf = 0 for any CR vector field
L. The maximum principle for the modulus of CR functions when (M,V ) is em-
beddable has been studied by several authors (see e.g. [Ba; Ber; EHS; Io; Ro; Si]).
To our knowledge, very little seems to be known when (M,V ) is not necessarily
embeddable. The authors of [HNa] have proved a weak maximum principle for
almost complex manifolds under some assumptions on the Levi form and mini-
mality of the manifold (see [BER, p. 20]). When (M,V ) is locally embeddable, it
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is well known that, near a point p ∈M where the Levi form is strictly definite, one
can always find a smooth CR function hwhose modulus peaks at p. If we write the
coordinates in C

2 as z = x+ iy and w = s+ it on the 3-dimensional CR submani-
fold M = {(z, s+ i(|z|4+s2))}, then the CR function h = exp(i(s+ i(|z|4+s2)))

satisfies |h(0)| > |h(p)| for any p ∈M, p �= 0. Note that the Levi form of M
is not strictly definite at 0 and so the converse of the preceding result is not true.
However, there is a good partial converse: If (M,V ) is locally embeddable and h

is a continuous CR function whose modulus peaks at p, then there is a sequence
of points pj in M converging to p such that the Levi form is strictly definite at
each pj . When h is assumed to be C2, the result dates back to Rossi [Ro] in the
hypersurface case and to Sibony [Si] in the higher-codimensional case. In Sec-
tion 4 we will relax the regularity to just continuity (see Remark 4.1). In this paper,
we show (see Theorem 2) that this partial converse holds for (M,V ) an abstract
CR manifold. Observe that in the abstract setting there may be no nonconstant
CR functions even on strictly pseudoconvex structures (see [N]), so one will not
always get CR functions that peak at strictly definite points. At such points, ap-
proximate peak functions exist (see [HaJ, Lemma 1.8]).

For (M,V ) a CR submanifold of C
N, the works [Ro] and [Si] actually estab-

lish the following maximum principle for CR functions: For any open set � ⊂⊂
M, any z∈�, and any h∈C2(�) ∩ C(�̄) that is CR on �,

|h(z)| ≤ sup
∂�∪(�∩�)

|h|, (0.1)

where � is the set of strictly definite points of the Levi form in � (see Defini-
tion 1.3). In this paper we will present a sufficient condition for the validity of
the maximum principle for CR functions akin to (0.1) on an abstract CR manifold
(Theorem 1). This sufficient condition is always satisfied when the CR manifold
(M,V ) is globally embeddable in some C

N. However, we also present a class of
examples of locally embeddable (in fact, real-analytic) CR manifolds for which
the maximum principle (0.1) fails (Example 4.1). We will also present examples
of nonlocally embeddable CR manifolds that satisfy our sufficient condition and
hence also the maximum principle as stated in (0.1).

The paper is organized as follows. In Section 1, we recall some basic defini-
tions and state Theorems 1 and 2. In Section 2, we first review Sibony’s notion of
plurisubharmonicity on an embedded CR manifold and his generalization of the
maximum principle for plurisubharmonic functions in C

n. We then extend Sibony’s
notion of plurisubharmonicity and his results to abstract CR manifolds. Section 3
contains the proofs of Theorems 1 and 2, and Section 4 is devoted to a variety of
examples. We conclude with an appendix that presents a result—on the Levi form
of an embedded CR manifold—that played a crucial role in Sibony’s paper [Si].

1. Preliminaries and Statement of Main Results

Let (M,V ) be an abstract CR manifold. For p ∈M, let

πp : CTpM → CTpM/Vp ⊕ V̄p

denote the quotient map.
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Definition 1.1. The Levi map at p ∈M is the Hermitian vector-valued form

Lp : Vp × Vp → CTpM/Vp ⊕ V̄p,

Lp(Xp,Yp) = 1

2i
πp([X, Ȳ ](p)),

where X and Y are CR vector fields that extend Xp and Yp.

Definition1.2. The Levi map is called nondegenerate atp ∈M if Lp(Xp,Yp) =
0 for all Yp ∈ Vp implies that Xp = 0.

Definition 1.3. The Levi map is said to be strictly definite at p ∈ M if
Lp(Xp,Xp) �= 0 whenever Xp is a nonzero CR vector in Vp.

We will use the notation

� = {z∈M : the Levi map is strictly definite at z}.
Section 4 contains examples that illustrate these concepts (see [Ber; Bo] for de-
tails on the Levi form in the embedded case). See Definition 3.1 for the concept
of V-convexity used in Theorems 1 and 2.

Our main results are as follows.

Theorem 1 (Maximum principle). Suppose (M,V ) is an abstract CR manifold
that admits a V-convex function g. Let � ⊆ M be a relatively compact open set,
and let f ∈C2(�) ∩ C(�̄) be a CR function on �. Then, for any z∈�,

|f(z)| ≤ max
∂�∪�∩�

|f |.

Theorem 2. Let (M,V ) be an abstract CR manifold. Suppose h is a C2 CR
function whose modulus peaks at a point p; that is, suppose |h(p)| > |h(q)| for
all q �= p. Then p is in the closure of the set of strictly definite points.

2. A Notion of Plurisubharmonicity and
Some Maximum Principles

In [BeT], Bedford and Taylor proved the following maximum principle for pluri-
subharmonic functions in C

n.

Theorem A [BTa]. Suppose that � ⊆ C
n is a bounded open set and that ϕ,ψ

are continuous on �̄ and plurisubharmonic on �. Assume that

(i) ϕ ≤ ψ on ∂� and
(ii) (ddcϕ)n ≥ (ddcψ)n in �.

Then ϕ ≤ ψ in �.

When ϕ ∈C2(�),

(ddcϕ)n = ddcϕ ∧ · · · ∧ ddcϕ = 4nn! det L(ϕ),
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where

L(ϕ) =
(

∂ 2ϕ

∂zi∂z̄j

)
i,j

.

In [BeT] and [CLN], this operator was extended to act on plurisubharmonic
continuous functions. In [Si], Sibony generalized this theorem to CR manifolds
embedded in C

N. His generalization actually implies a strengthened version of
Theorem A (see Remark 2.1) because the plurisubharmonicity of ψ is not needed.
For the extension of Theorem A to the case of embedded CR manifolds, Sibony
introduced a cone of functions that play the role of plurisubharmonic functions
and contain the modulus of C2 CR functions. In this section we briefly review the
main results of [Si] and then extend them to abstract CR manifolds.

Let N ⊆ C
n+d be a generic CR manifold with dimR N = 2n+d and dimC V =

n, where V is the CR bundle on N. For ρ a C2 function defined on an open set in
C

n+d (u,w ∈C
n+d), we define

〈(Lzρ)u,w〉 =
n+d∑
i,j=1

∂ 2ρ

∂zi∂z̄j
(z)uiw̄j .

Let zo ∈N and let U be a neighborhood of zo such that

N ∩ U = {z∈U : ρj(z) = 0, 1≤ j ≤ d}
for some C∞ real-valued functions ρ1, . . . , ρd satisfying dρ1 ∧ · · · ∧ dρd �= 0 on
U. For any z∈N ∩ U, the fiber Vz is given by

Vz =
{n+d∑

j=1

uj
∂

∂z̄j

∣∣∣∣
z

:
n+d∑
j=1

uj
∂ρk

∂z̄j
(z) = 0 ∀k = 1, . . . , d

}
.

For z∈N ∩ U, define

Kz =
{n+d∑

j=1

uj
∂

∂z̄j

∣∣∣∣
z

∈ Vz : 〈Lz(ρk)ū, w̄〉 = 0 ∀k and ∀
n+d∑
j=1

wj

∂

∂z̄j

∣∣∣∣
z

∈ Vz

}
.

We caution the reader that in [Si] the space Kz, denoted there by Nz, was defined
as a subspace of V̄z. This explains the conjugation of u and v in the inner product
in our definition of this space.

Recall that Kz is called the Levi space of N at z. It is well known that Kz is
independent of the choice of the defining functions. In fact,

Kz = {u∈Vz : [U, V̄ ](z)∈Vz + V̄z

for smooth sections U,V of V with U(z) = u}.
The usual way of checking this is by using the embedding e : N → C

n+d of N
into C

n+d. Since e∗dρj ≡ 0, d = ∂ + ∂̄ , and ∂ρ1 ∧ · · · ∧ ∂ρd �= 0 (N is generic)
near zo, it follows that the 1-forms

θj = e∗(i∂ρj ), 1≤ j ≤ d,

are real and linearly independent. It is easy to see that
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〈θj ,X〉 = 0 ∀X ∈ V + V̄. (2.1)

If X and Y are CR vector fields then, by Cartan’s identity,

2〈dθj ,X ∧ Ȳ 〉 = X(〈θj , Ȳ 〉)− Ȳ(〈θj ,X〉)− 〈θj , [X, Ȳ ]〉 = −〈θj , [X, Ȳ ]〉. (2.2)

Since dθj = e∗(id∂ρj ) = e∗(i∂̄∂ρj ), it follows that

〈θj , [X, Ȳ ](p)〉 = −2〈e∗(i∂̄∂ρj )(p),Xp ∧ Ȳp〉. (2.3)

That Kz actually is as asserted follows from (2.3) and the observation that, for any
v ∈ CTpN \Vp ⊕ V̄p, there exists a j such that 〈θj(p), v〉 �= 0. Let σ = {z ∈N :
Kz = {0}}. Observe that σ is the set of points where the Levi map is nondegen-
erate (see Definition 1.2). Equation (2.3) also shows that the Levi map is strictly
definite at z∈N (see Definition 1.3) if and only if, for every nonzero u∈Vz, there
exists a j (1 ≤ j ≤ d) such that 〈Lz(ρj )u, u〉 �= 0. Recall that � = {z ∈ N :
the Levi map is strictly definite at z}. Clearly, � ⊆ σ. We are now ready to recall
Sibony’s generalization of plurisubharmonicity.

Let ϕ be a C2 function defined on an open subset V of N. Now extend ϕ to a
C2 function ϕ̃ defined on an open subset � of C

n+d. If u∈Kz and z∈V, set

〈Lz(ϕ)u, u〉 =
n+d∑
i,j=1

∂ 2ϕ̃

∂zi∂z̄j
(z)ūiuj . (2.4)

It was shown in [Si] that the Hermitian form Lz(ϕ) defined on Kz does not depend
on the choice of extension.

Definition 2.1 [Si]. Suppose ϕ ∈ C2(V ) as before. We say that ϕ ∈ P(V ) if
the Hermitian form Lz(ϕ) is positive (i.e., ≥ 0) on Kz for each z∈V.
Sibony showed that if f is a C2 CR function on V then |f |2 ∈ P(V ). The cone
P(V ) also contains the restrictions to N of plurisubharmonic functions defined
on a neighborhood of N. If N = C

m then, for each z∈C
m, Kz = Cm and so one

recovers the usual notion of plurisubharmonicity.
Suppose now that � is a relatively compact and open subset of N with ∂� its

boundary, and let δ� = ∂� ∪ (σ ∩�). In [Si] Sibony proved the following gen-
eralization of Theorem A.

Theorem B [Si, Thm. 1′ ]. Suppose ϕ,ψ ∈ C2(�) ∩ C(�̄). Assume that ϕ ∈
P(�), and let

(i) ϕ ≤ ψ on δ� and
(ii) det Lz(ϕ) ≥ det Lz(ψ) for each z∈�\δ�.

Then ϕ ≤ ψ in �.

Remark 2.1. Theorem A follows from Theorem B by observing that, when N =
C

m, Kz = C
m for all z∈C

m. In fact, one obtains a stronger version of Theorem A
when ϕ and ψ are C2 since only ϕ needs to be plurisubharmonic.
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Remark 2.2. The set �\δ� is

�\δ� = {z∈� : Kz �= {0}}.
For z ∈ �\δ�, det Lz(ϕ) is not defined because there is no natural basis of Kz.

However, it is easy to see that, if det Lz(ϕ) ≥ det Lz(ψ) for a given choice of a
basis, then the inequality also holds for any other choice.

Theorem B has the following important corollary.

Corollary C [Si, Cor. 1]. Suppose f ∈C2(�)∩C(�̄) is a CR function. Then,
for any z∈�,

|f(z)| ≤ max
∂�∪�∩�

|f |.

This in turn implies our next result.

Corollary D. Suppose N ⊆ C
n+d is also compact. Then, for any C2 CR func-

tion f and any z∈N,
|f(z)| ≤ max

�̄

|f |.

In order to extend these results to an abstract CR manifold, we will first generalize
the cone P.

In what follows, let (M,V ) be an abstract CR manifold, let dimR M = 2n+d,
and let dimC Vp = n for any p ∈M. Pick a C∞ Hermitian metric on CTM such
that V is orthogonal to V̄, and let F be the othogonal complement of V ⊕ V̄ such
that

CTM = V ⊕ V̄ ⊕ F.

Let p : CTM → V and p̄ : CTM → V̄ be the orthogonal projections. We will
use the following notion of Hessian from Kuranishi [Ku].

Definition 2.2. Let f be a C2 function on an open subset � of M. We define
the V-Hessian of f by

HV(X,Y )f = X(Ȳf )− p̄[X, Ȳ ]f ,

where X and Y are smooth sections of V.
The V-Hessian is not Hermitian. We will show, however, that if f is real-valued
then HV(X,Y )f defines a Hermitian form on each vector space Kz. Observe that
the V-Hessian depends only on V and not on the choice of the metric.

Let {L1, . . . ,Ln} be an orthonormal basis of V for some Hermitian metric, and
let {ω1, . . . ,ωn} its dual basis. That is,

〈ωj ,Li〉 = δij and ωj |V̄⊕F = 0 ∀j.
Let {T1, . . . , Td} be an orthonormal basis of F, and let

[Li, L̄j ] =
n∑

k=1

akijLk +
n∑

k=1

bk
ij L̄k +

d∑
s=1

c sijTs (2.5)
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for some smooth functions akij , b
k
ij , and c sij . It can then be shown that HV(Li,Lj)

are the coefficients of ∂̄b∂bf when the V-Hessian is expressed using the ortho-
normal bases L1, . . . ,Ln and ω1, . . . ,ωn (see [Sh]).

Proposition 2.1. The V-Hessian of a real-valued f defines a Hermitian form on
Kz. In particular, if X ∈C∞(M,V ) and X(z)∈Kz, then HV(X,X)f(z) is real.

Proof. Observe that if X = ∑n
i=1 xiLi is a smooth section of L such that X(p)∈

Kp, then
n∑
i=1

cmij (p)xi(p) = 0 ∀j. (2.6)

To see (2.6), use the fact that [X, L̄j ](p) ∈ Vp ⊕ V̄p for all j and then expand
[X, L̄j ] using (2.5).

Suppose now X,Y ∈ C∞(M,V ) such that X(p) and Y(p) ∈ Kp. Let X =∑n
i=1 xiLi and Y = ∑n

i=1 yiLi. We have

HV(X,Y )f =
∑
i,j

xi ȳjLi(L̄jf )−
∑
i,j

(∑
k

bk
ij L̄kf

)
xi ȳj (2.7)

and

HV(Y,X)f =
∑
i,j

xi ȳj L̄j(Lif )−
∑
i,j

(∑
k

b̄ k
ijLkf

)
xjȳi . (2.8)

Using (2.5) and (2.6), equation (2.7) can be expressed at the point p as

HV(X,Y )f =
∑
i,j

xi ȳj L̄j(Lif )−
∑
i,j

(∑
k

akijLkf

)
xi ȳj . (2.9)

Next observe that, since −[Lj , L̄i] is the complex conjugate of [Li, L̄j ], equation
(2.5) yields

akij = −b̄ k
ij . (2.10)

From (2.8), (2.9), and (2.10), we conclude that

HV(X,Y )f(p) = HV(Y,X)f (p).

In particular, HV(X,X)f(p) is real-valued.

Proposition 2.1 allows us to introduce the following cone PV of functions.

Definition 2.3. Let V ⊆ M be open and let f ∈C2(V ) be real-valued. We say
that f ∈ PV(V ) if HV(X,X)f(p) ≥ 0 for any X ∈ C∞(V,V ) such that X(p) ∈
Kp with p ∈V.
Proposition 2.2. Suppose that V ⊆ M is open and that f ∈ C2(V ) is a CR
function. Then |f |2 ∈PV(V ).

Proof. We may assume that {L1, . . . ,Ln} is a basis of V over V as before and that
(2.5) holds in V. Since Li(f ) = 0 for all i, it follows that
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LiL̄j(|f |2) = (Lif̄ )(L̄jf )+ f̄Li(L̄jf ) (2.11)

and
L̄k(|f |2) = f̄ L̄k(f ). (2.12)

Using (2.7), (2.11), and (2.12), for any X ∈C∞(V,V ) we have

HV(X,X)(|f |2)
=

∑
i,j

(Lif̄ )(L̄jf )xi x̄j +
∑
i,j

f̄Li(L̄jf )xi x̄j −
∑
i,j

(∑
k

bk
ij f̄ L̄k(f )

)
xi x̄j

=
∣∣∣∣
∑
i

(Lif̄ )xi

∣∣∣∣
2

+
∑
i,j

f̄Li(L̄jf )xi x̄j −
∑
i,j

(∑
k

bk
ij f̄ L̄k(f )

)
xi x̄j , (2.13)

where

X =
n∑
i=1

xiLi.

Since Lif = 0 for all i, we obtain

Li(L̄jf ) = [Li, L̄j ]f =
∑
k

bk
ij L̄k(f )+

∑
s

c sijTs(f ). (2.14)

We now plug (2.14) into (2.13), assume X(p)∈Kp, and use (2.6) to conclude that

HV(X,X)(|f |2)(p) =
∣∣∣∣

n∑
i=1

(Lif̄ )(p)xi(p)

∣∣∣∣
2

≥ 0.

We next show that our cone PV agrees with that of Sibony when (M,V ) is an
embedded CR submanifold of C

n+d.

Proposition 2.3. Let M ⊆ C
n+d be a generic embedded CR manifold. A real-

valued f ∈C2(M) is in P if and only if f ∈PV .

Proof. Let M be defined by ρ1 = · · · = ρd = 0 near zo ∈M, where

∂ρk

∂zn+l

(zo) = δlk

2i
for k, l = 1, . . . , d.

Then V has a basis near zo of the form

Li = ∂

∂z̄i
+

d∑
k=1

Aik

∂

∂z̄n+k

, 1≤ i ≤ n,

where
Aik(zo) = 0.

Pick a Hermitian metric for CTM such that {L1, . . . ,Ln} is orthonormal and V is
orthogonal to V̄. Let X = ∑

i xiLi ∈ C∞(M,V ) with X(zo) ∈Kzo . The propo-
sition will follow if we can show that, for f ∈C2 near zo and f̃ a real-valued C2

extension of f in a neighborhood in C
n+d of zo,
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HV(X,X)f(zo) =
n∑

i,j=1

∂ 2f̃

∂z̄j∂zi
(zo)xj(zo)xi(zo). (2.15)

Computing HV(X,X)f = X(X̄f )− p̄([X, X̄])f yields

X(X̄f ) =
n∑

i,j=1

Lj(L̄if )xj x̄i +
n∑

i,j=1

xjLj(x̄i)L̄if (2.16)

and

[X, X̄] =
∑
i,j

xiLi(x̄j )L̄j +
∑
i,j

xi x̄j [Li, L̄j ]−
∑
i,j

x̄j L̄j(xi)Li. (2.17)

We observe that [Li, L̄j ] is in the span of
{

∂

∂zn+k
, ∂

∂z̄n+k
: 1 ≤ k ≤ d

}
but, at zo, V̄

is spanned by
{

∂

∂zi

∣∣
zo

: 1≤ i ≤ n
}
. Hence,

p̄([X, X̄](zo)) =
∑
i,j

xi(zo)Li(x̄j )(zo)L̄j

∣∣
zo
. (2.18)

With f̃ an extension of f and Lj being tangent to M, we then use (2.16), (2.17),
and (2.18) to obtain

HV(X,X)f(z0) =
n∑

i,j=1

Lj(L̄i f̃ )(zo)xj(zo)xi(zo)

=
n∑

i,j=1

∂

∂z̄j

(
∂f̃

∂zi
+

d∑
k=1

Āik

∂f̃

∂zn+k

)
(zo)xj(zo)xi(zo)

= ∂ 2f̃

∂z̄j∂zj
(zo)xj(zo)xi(zo)

+
d∑

k=1

n∑
i,j=1

∂Āik

∂z̄j
(zo)

∂f̃

∂zn+k

(zo)xj(zo)xi(zo), (2.19)

where we have used Aik(zo) = 0.
Consider the last term in (2.19). Differentiating L̄jρk = 0 yields

− ∂ 2ρk

∂z̄i∂zj
(zo) =

d∑
l=1

∂Ājl

∂z̄i
(zo)

∂ρk

∂zn+l

(zo),

in which we use
∂ρk

∂zn+l
(zo) = δlk

2i to get

∂Āik

∂z̄j
(zo) = −2i

∂ 2ρk

∂z̄j∂zi
(zo),

so that
n∑

i,j=1

∂Āik

∂z̄j
(zo)xj(zo)xi(zo) = −2i

n∑
i,j=1

∂ 2ρk

∂z̄j∂zi
(zo)xj(zo)xi(zo).
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Since X(zo) ∈ Kzo , it follows that this sum equals zero and hence (2.19) simpli-
fies to (2.15) as claimed.

The proof of Theorem B, Corollary C, and Corollary D in [Si] exploit the func-
tion |z|2 or, more generally, the existence of a strictly plurisubharmonic function
on a neighborhood in C

n of the embedded CR manifold. In general, examples in
Section 4 will show that these results are not valid even on locally embeddable CR
manifolds. We shall demonstrate that Theorem B can be generalized if we assume
the existence of a function that behaves like a strictly plurisubharmonic function
just in the direction of the vectors {v ∈Kz : Kz �= {0}}.
Theorem 2.1. Assume that there is a real-valued function g ∈C2(M) such that,
whenever Kz �= {0}, HV(X,X)g(z) > 0 for all X ∈C∞(M,V ) with X(z)∈Kz.

Let � be a relatively compact and open subset of M, and let

δ� = ∂� ∪ (σ ∩M).

Suppose ϕ,ψ ∈C2(�) ∩ C(�̄) and ϕ ∈PV(�). Let

(i) ϕ ≤ ψ on δ� and
(ii) detHVϕ(z) ≥ detHVψ(z) for each z∈�\δ�.

Then ϕ ≤ ψ in �.

Here, for a real-valued function f and z∈M with Kz �= {0}, HVf(z) denotes the
Hermitian form HV(X,Y )f(z) on Kz.

Proof of Theorem 2.1. Suppose there is a z∈�\(∂�∪ (σ ∩�)) such that ϕ(z) >
ψ(z). Then, for some ε > 0, the function h = ϕ + εg − ψ attains its maximum
on �̄ at a point zo ∈�\(∂�∪ (σ ∩�)). Let X ∈C∞(M,V ) be such that X(zo)∈
Kzo . We will show that HV(X,X)h(zo) ≤ 0. Recall that

HV(X,X)h(zo) = Xzo(X̄h)− p̄([X, X̄]zo )(h).

Since h attains its maximum at zo, it follows that p̄([X, X̄]zo )(h) = 0 and so
HV(X,X)h(zo) = Xzo(X̄h).

Let X = A+ iB, where A and B are real vector fields. Then

HV(X,X)h(zo) = Azo(Ah)+ Bzo(Bh)+ i[B,A]zo (h) = Azo(Ah)+ Bzo(Bh).

Let r(t) be an integral curve of A with r(0) = zo. Because the function t →
h(r(t)) attains its maximum at 0, we have

Azo(Ah) =
d 2

dt 2
h(r(t))

∣∣∣
t=0

≤ 0.

Likewise, Bzo(Bh) ≤ 0 and hence

HV(X,X)h(zo) ≤ 0.

(Observe that, in this inequality, the fact that X(zo)∈Kzo is not used.) Therefore,

HV(X,X)ϕ(zo)+ εHV(X,X)g(zo) ≤ HV(X,X)ψ(zo).
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Since HV(X,X)ϕ(zo) ≥ 0 on Kzo and since HV(X,X)g(zo) is strictly positive,
it follows that

detHVϕ(zo) < detHVψ(zo),

contradicting assumption (ii). Hence ϕ ≤ ψ on �.

Section 4 presents examples of CR manifolds that are not even locally embeddable
but that admit functions g as in Theorem 2.1.

3. Proofs of Theorems 1 and 2

ForTheorem1, we use the notion of V-convex functions as defined in [Hö] and [Sh].

Definition 3.1. A real-valued function g ∈C2(M) is called V-convex if

 HV(L,L)g(p) > 0

for any L∈C∞(M,V ) such that L(p) �= 0.

Observe that a V-convex function is in the cone PV .
Before we prove our next lemma, we recall the concept of a complete set of ap-

proximate first integrals {f1, . . . , fn+d} at po ∈ M (see [Tr, Thm. IV.1.1]). This
means that

(1) the fj are C∞;
(2) the differentials df1, . . . , dfn+d are C-linearly independent at po; and
(3) for any section L ∈ C∞(�,V ), Lfj = 0 to infinite order at po for all j =

1, . . . , n+ d.

Since V ∩ V̄ = {0}, the forms dfj and their conjugates df̄j span the orthogonal
subbundle V⊥ ⊆ CT ∗� near 0. As a result, after reordering the fk and replacing
some of them with ifk , we may assume that

df1 ∧ · · · ∧ dfn ∧ df̄1 ∧ · · · ∧ df̄n ∧ d fn+1 ∧ · · · ∧ d fn+d(po) �= 0

and that n is the largest such integer. Moreover, by taking linear combinations of
the fk , we may also assume that

d"fk = 0 at po for k ≥ n+ 1.

By replacing the fj with fj −fj(po), we also get the fj vanishing at po. After con-
tracting � about po, it follows that the map P : � → P(�) = N ⊆ C

n+d given
by P = (f1, . . . , fn+d) is an embedding.

The submanifold N is a generic CR submanifold of C
n+d. Denote its CR bun-

dle by V. Since the fj are approximate first integrals at po and since P(po) = 0,
the vector spaces P∗(Vpo) and V0 are equal and, moreover, the bundles P∗V and V
agree to infinite order at 0.

Lemma 3.1. Let (M,V ) be an abstract CR manifold and let {f1, . . . , fn+d} be a
complete set of approximate first integrals at po. Let � be a neighborhood of po

such that P = (f1, . . . , fn+d) : � → P(�) = N ⊆ C
n+d is an embedding. Let
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h be a C2 function near po in �. Then there exists a C2 function H defined on a
neighborhood of P(po) in C

n+d such that

(i) h = H # P near po and
(ii) ∂̄H vanishes to second order at P(po).

Proof. We may assume that P(p0) = 0. Let h̃ be a C2 function near 0 in C
n+d

such that h̃ # P = h. We begin by observing that, if N near 0 is defined by ρ1 =
· · · = ρd = 0 and ∂ρ1 ∧ · · · ∧ ∂ρd(0) �= 0, then it follows that, since Lh̃(0) = 0
for all L∈C∞(N,V ), there exist constants λj ∈C such that

∂̄h̃(0) =
d∑

j=1

λj ∂̄ρj(0). (3.1)

Let {u1, . . . , un} be (0,1)-forms near 0 such that {∂̄ρ1, . . . , ∂̄ρd , u1, . . . , un} forms a
basis of the (0,1)-forms in C

n+d near 0. Then (3.1) implies the existence of smooth
functions gj and fj such that, near 0,

∂̄h̃(z) =
d∑

j=1

fj(z)∂̄ρj(z)+
n∑

j=1

gj(z)uj(z), (3.2)

fj(0) = λj and gk(0) = 0.

Let h1(z) = h̃(z)−∑d
j=1 fj(z)ρj(z). Note that h1|N = h̃ and

∂̄h1(z) = ∂̄h̃(z)−
d∑

j=1

fj(z)∂̄ρj(z)−
d∑

j=1

ρj(z)∂̄fj(z). (3.3)

From (3.2) we see that
∂̄h1(0) = 0 (3.4)

and thus h1 improves upon h̃. To gain a further improvement, define

h2 = h1+
d∑

j,k=1

gj,kρjρk (3.5)

for some gj,k to be determined. Using (3.2) and (3.3), we obtain

∂̄h2 =
n∑

j=1

gjuj −
d∑

j=1

ρj ∂̄fj +
d∑

j,k=1

ρkgj,k∂̄ρj +
d∑

j,k=1

ρjgj,k∂̄ρk +O(2), (3.6)

where O(2) denotes a term that vanishes to second order at 0. Next we apply ∂̄ to
(3.2), which yields

0 = ∂̄ 2h̃ =
d∑

j=1

∂̄fj ∧ ∂̄ρj +
n∑

j=1

∂̄gj ∧ uj +
n∑

j=1

gj ∂̄uj . (3.7)

Since gj(0) = 0 for all j and since the ∂̄ρk annihilate V, (3.7) implies that
∂̄gj(L0) = 0 for all j and for all L0 ∈V0. That is, the forms ∂̄gj(0) are in the span
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of {∂̄ρ1(0), . . . , ∂̄ρd(0)} and so there exist smooth functions ajk and bjm such that,
near 0 and for each j = 1, . . . , n,

∂̄gj(z) =
d∑

k=1

ajk(z)∂̄ρk(z)+
n∑

m=1

bjm(z)um(z), (3.8)

where bmj(0) = 0 for all m, j.
We now plug (3.8) into (3.7) to arrive at

0 =
d∑

j=1

∂̄fj∧ ∂̄ρj +
n∑

j=1

d∑
k=1

ajk∂̄ρk∧uj +
n∑

j=1

n∑
m=1

bjmum∧uj +
n∑

j=1

gj ∂̄uj . (3.9)

In particular, at 0 we have

d∑
k=1

(
∂̄fk(0)−

n∑
j=1

ajk(0)uj(0)

)
∧ ∂̄ρk(0) = 0. (3.10)

For each k = 1, . . . , d, let

∂̄fk −
n∑

j=1

ajkuj =
d∑

j=1

ckj ∂̄ρj +
n∑

s=1

dksus. (3.11)

Plugging (3.11) into (3.10) and using the linear independence of the forms ∂̄ρ1, . . . ,
∂̄ρd and u1, . . . , un shows that

ckj(0)− cjk(0) = 0 and dks(0) = 0. (3.12)

Next, plug the formula for ∂̄fk from (3.11) into (3.6) to get:

∂̄h2 =
n∑

j=1

gjuj −
n∑

j=1

d∑
k=1

ρkajkuj −
d∑

j,k=1

ρkckj ∂̄ρj −
d∑

k=1

n∑
s=1

ρkdksus

+
d∑

j,k=1

gjkρk∂̄ρj +
d∑

j,k=1

gjkρj ∂̄ρk +O(2). (3.13)

Recall that dks(0) = 0 and so the term
∑

k,s ρk dksus = O(2), which leads to

∂̄h2 =
n∑

j=1

(
gj−

d∑
k=1

ρkajk

)
uj+

∑
k

(∑
j

(gkj+gjk−cjk)ρj

)
∂̄ρk+O(2). (3.14)

We now set gkj = ckj/2. The equation ckj(0) = cjk(0) in (3.12) then implies that

∂̄h2 =
n∑

j=1

ηjuj +O(2), (3.15)

where each

ηj = gj −
d∑

k=1

ρkajk. (3.16)
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Clearly, ηj(0) = 0 for all j. Next we show that ∂̄ηj(0) = 0 for all j. We have

∂̄ηj = ∂̄gj −
d∑

k=1

ajk∂̄ρk −
d∑

k=1

ρk∂̄ajk =
n∑

m=1

bjmum −
d∑

k=1

ρk∂̄ajk , (3.17)

where (3.8) was used in the last equality. It follows that ∂̄ηj(0) = 0 for all j.
We may assume that each uj = ∂̄Fj , where the Fj are C∞ near 0 and where

Fj(0) = 0 for all j. Then we can write (recall (3.15))

∂̄h2 =
n∑

j=1

ηj ∂̄Fj +O(2).

Define h3 = h2 −∑n
j=1 ηjFj . Then h3 # P = h near po in � and

∂̄h3 = −
n∑

j=1

Fj∂̄ηj +O(2).

Since each Fj(0) = 0 and ∂̄ηj(0) = 0, we have shown that ∂̄h3 vanishes to second
order at 0. Then H = h3 is as desired.

Proof of Theorem 1. Suppose that, for some ε > 0, the function h = |f |2+ εg at-
tains its maximum on �̄ at some zo ∈�. We will show that zo ∈�. The theorem
will follow from this.

Choose a complete set of approximate first integrals {f1, . . . , fn+d} at zo as in
the proof of Lemma 3.1, so that fj(zo) = 0,

df1 ∧ · · · ∧ dfn ∧ df̄1 ∧ · · · ∧ df̄n ∧ d fn+1 ∧ · · · ∧ d fn+d(zo) �= 0,

and
d("fn+k(zo)) = 0 for 1≤ k ≤ d.

After contracting � about zo, recall that the map P = (f1, . . . , fn+d) : � →
P(�) = N ⊆ C

n+d is an embedding and, if V is the CR bundle on N, then the
bundles P∗V and V agree to infinite order at 0. We may assume N is defined near
0 by

ρ1 = · · · = ρd = 0,

where
∂ρk

∂zn+l

(0) = δlk

2i
for k, l = 1, . . . , d. (3.18)

Then V has a basis near 0 of the form

Li = ∂

∂z̄i
+

d∑
k=1

Aik

∂

∂z̄n+k

, 1≤ i ≤ n,

where
Aik(0) = 0.

Let {L′1, . . . ,L′n} be a basis of V near zo such that
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P∗(L′j |zo ) = Lj |0, 1≤ j ≤ n.

Pick a Hermitian metric for CTM such that {L′1, . . . ,L′n} is orthonormal and V is
orthogonal to V̄ as before. Let akij , b

k
ij , and cij be as before. Let h̃, g̃, and f̃ be

defined in a neighborhood of N in C
n+d so that

h̃ # P = h, g̃ # P = g, and f̃ # P = f.

Since P∗V and V agree to infinite order at 0, it follows that

HV(L′i,L
′
j )h(zo) = Li(L̄j(h̃))(0)−

∑
k

bk
ij(zo)L̄k(h̃)(0). (3.19)

Observe that the commutators

[Li, L̄j ] =
[

∂

∂z̄i
+

d∑
k=1

Aik

∂

∂z̄n+k

,
∂

∂zj
+

d∑
k=1

Ājk

∂

∂zn+k

]

have no component in V̄, so

bk
ij(zo) = 0 ∀i, j, k. (3.20)

Using (3.20) and (3.18), we may simplify (3.19) to

HV(L′i,L
′
j )h(zo) =

∂ 2h̃

∂z̄i∂zj
(0)+

d∑
k=1

∂Ājk

∂z̄i
(0)

∂h̃

∂zn+k

(0).

Hence, if L = ∑n
i=1 ūiL

′
i for some (u1, . . . , un)∈C

n then

HV(L,L)h(0) =
∑
i,j

HV(L′i,L
′
j )hūiuj

=
∑
i,j

∂ 2h̃

∂z̄i∂zj
(0)ūiuj +

d∑
k=1

∑
i,j

∂Ājk

∂z̄i
(0)ūiuj

∂h̃

∂zn+k

(0). (3.21)

Since
∂Ājk

∂z̄i
(0) = −2i

∂ 2ρ

∂z̄i∂zj
(0),

as we saw in the proof of Proposition 2.3, we can express (3.21) as

HV(L,L)h(0) =
∑
i,j

∂ 2h̃

∂z̄i∂zj
(0)ūiuj − 2i

d∑
k=1

∂h̃

∂zn+k

(0)〈L0(ρk)u, u〉. (3.22)

Likewise, we have

HV(L,L)(|f |2)(0)

=
∑
i,j

∂ 2|f̃ |2
∂z̄i∂zj

(0)ūiuj − 2i
d∑

k=1

∂|f̃ |2
∂zn+k

(0)〈L0(ρk)u, u〉. (3.23)

Since f is a CR function, by Lemma 3.1 we may assume that ∂̄f̃ = 0 at 0 to sec-
ond order, which implies that
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∑
i,j

∂ 2|f̃ |2
∂z̄i∂zj

(0)ūiuj ≥ 0. (3.24)

Since h = |f |2 + εg, we have

HV(L,L)h(zo)

= −2i
d∑

k=1

∂|f̃ |2
∂zn+k

(0)〈L0(ρk)u, u〉 +
∑
i,j

∂ 2|f̃ |2
∂z̄i∂zj

(0)ūiuj + εHg(L,L).

Suppose the vector L(0) = ∑n
i=1 ūiLi |0 �= 0. Then  Hg(L,L)(zo) > 0 by hy-

pothesis, and the proof of Theorem 2.1 shows that, since h has a maximum at zo,

HV(L,L)h(zo) ≤ 0. (3.25)

These observations and (3.24) imply that

d∑
k=1

∂|f̃ |2
∂zn+k

(0)〈L0(ρk)u, u〉 �= 0;

therefore, by the equality at 0 to infinite order of P∗V and V, we conclude that zo ∈
� as desired.

Proof of Theorem 2. Let V be any neighborhood of p. By Lemma 4 in [Sh], there
exist a neighborhood V1 ⊂ V of p and g ∈C∞(V1) such that g is V-convex in V1.

We may assume V1 to be small enough that

max
∂V1
|h| < |h(p)|. (3.26)

By Theorem 1 and (3.26), since V1 admits a V-convex function,

|h(p)| ≤ max
�∩V̄1

|h|

with � ∩ V̄1 �= ∅. Since V can be chosen arbitrarity small, there exists a pj ∈M
such that (M,V ) is strictly definite at pj and pj → p.

4. Examples

Our first example will show that, even on real analytic CR manifolds (which are
necessarily locally embeddable), the analogues of Theorem B, Corollary C, and
Corollary D may not hold. Thus it shows that such manifolds do not admit a func-
tion g as in Theorem 1 or Theorem 2.1.

Example 4.1. We will use the examples constructed by Kaup and Zaitsev in
their recent paper [KZ]. They exhibited a class of compact, globally nonembed-
dable, real-analytic, strongly pseudoconvex CR manifolds of arbitrary CR co-
dimension that are nontrivial in the sense that they are not locally products of
lower-dimensional CR manifolds. The manifolds in this class are finite covers of
embedded CR submanifolds of C

n and therefore all have “many” nonconstant CR



Maximum Principle and Plurisubharmonicity for Abstract CR Manifolds 97

functions. Let M1 be one of these manifolds. Theorems 1 and 2.1 and Corollaries
C and D all hold on M1 for the trivial reason that �(M1) = M1.

Let M2 be a real-analytic, Levi-flat CR manifold that is compact, and let M =
M1×M2 with the CR structure coming from M1 and M2. It is clear that M is
locally embeddable but not globally embeddable. Since M2 is Levi flat, there are
no strictly definite points on M; in fact, σ = ∅ on M.

Theorems 1 and 2.1 and Corollaries C and D cannot hold on M because, for
example, Corollary D would imply that every CR function on M is constant—
contrary to the existence of nonconstant CR functions on M1 and hence on M.

Example 4.2. Let M = C
n×R with coordinates (z, s) = (z1, . . . , zn, s). There

is a smooth function a(z, s) (see [JTr1; JTr2]) defined on a neighborhood of the
origin and vanishing to infinite order at z1 = 0 such that the bundle V generated
by the vector fields

L1 = ∂

∂z̄1
+ iz1(1+ a(z, s))

∂

∂s

and

Lj = ∂

∂z̄j
− izj(1+ a(z, s))

∂

∂s
, 2 ≤ j ≤ n,

is a CR structure that is not locally embeddable in any neighborhood of the origin.
Let g(z, s) = ∑n

j=1|zj |2. Equip V with a Hermitian metric so that the Lj form

an orthonormal basis and V̄ is orthogonal to V. For any smooth CR vector field
L = ∑n

j=1 cj(z, s)Lj , we have

HV(L,L)g = L(L̄g)− p̄([L, L̄])(g) = L

(∑
j

c̄j (L̄j g)

)
−

∑
j

cjLj(c̄j )(L̄j g);

since [Lj , L̄j ] has no component in V̄, it follows that

HV(L,L)g =
n∑

j=1

|cj |2Lj(L̄jg) =
n∑

j=1

|cj |2.

Hence, if L(p) �= 0 then Hg(L,L)(p) > 0 and so g is V-convex on M. By Theo-
rem 1 and the fact that the Levi form is never strictly definite on M, CR functions
on M satisfy the following maximum principle: If � is a relatively compact and
open subset of M and if f ∈C2(�) ∩ C(�̄) is CR on �, then

|f(z)| ≤ max
∂�
|f | ∀z∈�.

Example 4.3. Let (M,V ) be an abstract CR manifold. Recall that, for z∈M,

Kz = {u∈Vz : [U, L̄](z)∈Vz ⊕ V̄z

for all C∞ sections U,L of V such that U(z) = u}.
Assume that, for some k ≥ 1, we have dimC Kz = k for all z ∈M. Define K =⋃

z∈M Kz. We can easily check that the bundle K is involutive by using Jacobi’s
identity. Since
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K ⊕ K̄ = {W ∈V ⊕ V̄ : [W,V ⊕ V̄ ] ⊆ V ⊕ V̄ },
Jacobi’s identity also shows that K ⊕ K̄ is involutive. It follows that  K =
{X+ X̄ : X ∈K} is a real subbundle of TM of fiber dimension 2k. By the Frobe-
nius theorem, M is foliated by the leaves of  K. If p ∈ M and if S is the leaf
through p, then

CTqS = Kq ⊕ K̄q and Kq = Vq ∩ CTqS.
By the Newlander–Nirenberg theorem, the pair (S,K|S) has the structure of a
complex manifold of dimension k. We can thus conclude as follows: A real-
valued ϕ on M is in the cone PV if and only if the restriction of ϕ to each leaf S
is plurisubharmonic.

Remark 4.1. Suppose that (M,V ) is a locally embeddable CR manifold and
that h is a continuous CR function whose modulus peaks at a point p in M. By
the Baouendi–Treves approximation theorem [BT], in a sufficiently small neigh-
borhood V of p we can find a sequence of fj ∈ C∞(V ) that are CR such that
fj → h uniformly on V̄. Hence, for m large enough, |fm| attains its maximum in
V̄ on a compact subset K ⊆ V. That is, for any z∈ V̄ \K,

|fm(z)| < max
K
|fm|. (4.1)

We may assume V is small enough that there is a g ∈C2(V ), which is V-convex
by [Sh, Lemma 4]. Then, by Theorem 1, since fm is CR it follows that, for any
z∈V,

|fm(z)| ≤ max
(�∩V̄ )∪∂V

|fm|. (4.2)

From (4.1) and (4.2), we conclude that K ⊆ � ∩ V̄ and hence p ∈ �̄.

Appendix

Let M ⊂ C
n+d be a CR submanifold of the form

M = {(z, s + iϕ(z, z̄, s))},
where we denote the coordinates of C

n+d by (z,w) = (x + iy, s + it), ϕ is a
smooth real-valued function defined near the origin with ϕ(0) = 0, and dϕ(0) =
0. Let ρj = tj −ϕj(z, z̄, s) for j = 1, . . . , d. In [Si], Sibony used the following in-
equality, which involves the Levi form of M. The inequality played a key role in
the proofs of his results.

Sibony’s Lemma. Let θ be a C2 function defined in a neighborhood V of 0 in
C

n+d. Suppose θ ≤ 1 on M and θ(0) = 1. Then, for all v ∈Vo(M),

〈Lo(θ)v, v〉 ≤
d∑
i=1

∂θ

∂ti
(0)〈Lo(ρi)v, v〉.

Here we will present this inequality as an equation in a slightly more general setup.
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Lemma A.1. Let (N,V ) ⊆ C
n+d be a generic CR manifold defined near 0 ∈N

by ρ1 = · · · = ρd = 0. Let � ⊆ R
2n+d be a neighborhood of 0 and let P : �→

N be a parameterization, P(0) = 0. Suppose θ o : � → R is a C2 function for
which 0 is a critical point, and suppose θ : U ⊆ C

n+d → R is C2, where U is
a neighborhood of N in C

n+d and θ # P = θ o. Then there exist real numbers
a1, . . . , ad such that, for any tangent vector u∈ T0� with P∗u∈ V|0,

〈D2θ(0)P∗u,P∗u〉 = 〈D2θ o(0)u, u〉 +
d∑
i=1

ai〈L0ρiP∗u,P∗u〉. (A.1)

Remark A.1. The term 〈L0ρP∗u,P∗u〉 is to be understood in the following
sense. The real tangent vector P∗u ∈ T0C

n+d has a complex vector realization
w ∈C

n+d—once we identify T0C
n+d = R

2(n+d ) with C
n by means of

n+d∑
j=1

aj
∂

∂xj
+

n+d∑
j=1

bj
∂

∂yj

→ (a1, b1, . . . , an+d , bn+d)


→ (a1+ ib1, . . . , an+d + ibn+d).

With this convention,

〈L0ρP∗u,P∗u〉 =
n+d∑
i,j=1

∂ 2ρ

∂zi∂z̄j
(0)wiw̄j .

In the statement of the lemma,

 V = {L+ L̄ : L∈C∞(N,V )}.
Proof of Lemma A.1. Let A : C

n+d → C
n+d be a C-linear isomorphism such that,

near 0,
M = A(N ) = {(x + iy, s + iϕ(x, y, s))},

where z = x + iy ∈C
n, s ∈R

d, and ϕ = (ϕ1, . . . ,ϕd) is real-valued and C∞ with

ϕ(0) = 0 and dϕ(0) = 0.

Let �′ be a neighborhood of 0 in R
2n+d and define P ′ : �′ → A(N ) by

P ′(x1, y1, . . . , xn, yn, s1, . . . , sd) = (x + iy, s + iϕ(x, y, s)).

Then there is a diffeomorphism R : �′ → � with R(0) = 0 such that P ′ =
A # P # R. Let B = A−1, ηo = θ o # R, and η = θ # B. Then ηo = η # P ′.

Differentiating the equation

ηo(x1, y1, . . . , xn, yn, s1, . . . , sd)

= η(x1, y1, . . . , xn, yn, s1, . . . , sd ,ϕ1(x, y, s), . . . ,ϕd(x, y, s)),
we obtain

∂ 2ηo

∂xj∂xk
= ∂ 2η

∂xj∂xk
+

d∑
l=1

∂ 2η

∂xj∂tl

∂φl

∂xk
+

d∑
l=1

∂η

∂tl∂xk

∂φl

∂xj

+
d∑
l,m

∂ 2η

∂tl∂tm

∂φl

∂xk

∂φm

∂xj
+

d∑
l=1

∂η

∂tl

∂ 2φl

∂xj∂xk
,

and similarly for ∂2ηo

∂xj ∂yk
and ∂2ηo

∂yj ∂yk
.
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At 0 we have dφj(0) = 0 for all j = 1, . . . , d. Hence, at 0,

∂ 2ηo

∂xj∂xk
= ∂ 2η

∂xj∂xk
+

d∑
l=1

∂η

∂tl

∂ 2φl

∂xj∂xk
, (A.2)

and similarly

∂ 2ηo

∂xj∂yk
= ∂ 2η

∂xj∂yk
+

d∑
l=1

∂η

∂tl

∂ 2φl

∂xj∂yk
,

∂ 2ηo

∂yj∂yk
= ∂ 2η

∂yj∂yk
+

d∑
l=1

∂η

∂tl

∂ 2φl

∂yj∂yk
.

Let rm(x, y, s, t) = tm−ϕm(x, y, s) for 1≤ m ≤ d. We apply (A.2) to the func-
tion η = rm. Since r om = rm|A(N ) = 0, at 0 we have

∂ 2r om

∂xj∂xk
= ∂ 2rm

∂xj∂xk
+

d∑
l=1

∂rm

∂tl

∂ 2φl

∂xj∂xk

and also
∂ 2r om

∂xj∂yk
= ∂ 2rm

∂xj∂yk
+

d∑
l=1

∂rm

∂tl

∂ 2φl

∂xj∂yk
,

∂ 2r om

∂yj∂yk
= ∂ 2rm

∂yj∂yk
+

d∑
l=1

∂rm

∂tl

∂ 2φl

∂yj∂yk
.

Since rm = tm − ϕm(x, y, s), we have
∂rm

∂tl
= δml. Hence

− ∂ 2rm

∂xj∂xk
(0) = ∂ 2φm

∂xj∂xk
(0),

and similarly

− ∂ 2rm

∂xj∂yk
(0) = ∂ 2φm

∂xj∂yk
(0) and − ∂ 2rm

∂yj∂yk
(0) = ∂ 2φm

∂yj∂yk
(0).

These equations, together with (A.2), lead to the following equations at 0:

∂ 2η

∂xj∂xk
= ∂ 2ηo

∂xj∂xk
+

d∑
l=1

∂η

∂tl

∂ 2rl

∂xj∂xk
, (A.3)

∂ 2η

∂xj∂yk
= ∂ 2ηo

∂xj∂yk
+

d∑
l=1

∂η

∂tl

∂ 2rl

∂xj∂yk
,

∂ 2η

∂yj∂yk
= ∂ 2ηo

∂yj∂yk
+

d∑
l=1

∂η

∂tl

∂ 2rl

∂yj∂yk
.

Let v be a tangent vector at 0 in�′ that is in the span of
{

∂

∂xj

∣∣
0, ∂

∂yj

∣∣
0,1≤ j ≤ n

}
.

For such v, by using the interpretation stated in Remark A.1 and (A.3) we obtain,
at 0,
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〈D2η(P ′
∗v),P

′
∗v〉 = 〈D2ηov, v〉 +

d∑
l=1

∂η

∂tl
〈L0(rl)P

′
∗v,P ′

∗v〉. (A.4)

Because the functions rl #A (1≤ l ≤ d) define N near 0, we can find C∞ func-
tions clk such that

rl # A =
d∑

k=1

clkρk for 1≤ l ≤ d.

By invariance of the Levi form under biholomorphic maps, this implies that

〈L0(rl)P
′
∗v,P ′

∗v〉 = 〈L0(rl # A)(BP ′
∗v),BP

′
∗v〉

=
∑
k

clk〈L0(ρk)(BP
′
∗v),BP

′
∗v〉. (A.5)

From (A.4) and (A.5) it follows that

〈D2η(P ′
∗v),P

′
∗v〉 =

〈
D2ηov, v〉 +

d∑
k=1

( d∑
l=1

∂η

∂tl
clk

)
〈L0(ρk)BP

′
∗v,BP ′

∗v〉. (A.6)

Observe next that BP ′∗v = P∗R∗v and, since θ o has a critical point at 0,

〈D2ηov, v〉 = 〈D2θ o(R∗v),R∗v〉.
Moreover, since η = θ # B, we have

〈D2η(P ′
∗v),P

′
∗v〉 = 〈D2θ(P∗(R∗v)), (P∗(R∗v))〉.

These observations and (A.6) establish (A.1).
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