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Holomorphic Extension of Decomposable
Distributions from a CR Submanifold of CL

Nicolas Eisen

1. Introduction

1.1. Statement of Results

Let N be generic submanifold of C
k+m with CR dimension k, and let h be a CR

map from N into some C
n verifying dh(0) = 0. Setting L = k +m+ n, we con-

struct a CR submanifold N of C
L near the origin as the graph of h over N; that is,

N = {(N ,h(N))}. It turns out that any nongeneric CR submanifold of C
L can be

obtained in this fashion (see e.g. [2]). The main question we address in this paper
is the possible holomorphic extension of a CR distribution of N to some wedge
W in a complex transverse direction. Our aim is to give a proof of an extension
result using only elementary tools. The CR structure of N is determined by N , so
any CR distribution on N is a CR distribution on N.

Definition 1.1. (a) Let N be a smooth generic submanifold of C
L. A CR distri-

bution u on N is decomposable at the point p ∈ N if, near p, u = ∑K
j=1Uj ; here

theUj are CR distributions extending holomorphically to wedges Wj in C
k+m with

edges N. We shall say that a distribution u on N is decomposable at a point p =
(p ′,h(p ′)) if u is decomposable at p ′ on N.

(b) We say that v is complex transversal to N at p if v /∈ spanC TpN.

Our main result is the following theorem.

Theorem 1.2. Let N = {(N ,h(N))} be a nongeneric smooth (C∞) CR subman-
ifold of C

k+m+n such that the map h is decomposable at some p ′
0 ∈ N. Let v be a

complex transversal vector to N at p0 = (p ′
0,h(p ′

0)). If f is a decomposable CR
distribution at p0 ∈N then, near p0, there exists a wedge W of direction v whose
edge contains a neighborhood of p0 in N as well as an F ∈ O(W ) such that the
boundary value of F is f. Furthermore, there exist {Fl}nl=1 with Fl ∈ O(W ) such
that dF1 ∧ · · · ∧ dFn �= 0 on W and each Fl vanishes to order 1 on N.

The boundary value of a holomorphic function F is defined by

lim
λ→0+

∫
N

F(x + λv)ϕ(x) dx,
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where v ∈ W. It turns out that if F has slow growth in a wedge W—that is, if there
exist a constant C > 0 and a positive integer l such that

|F(z)| ≤ C

|dist(z,M)| l ,
where dist(z,M) denotes the distance from a point z to M—then the boundary
value of F defines a CR distribution on N (see e.g. [1]). We call this integer l the
growth degree of F.

Remarks on the Smoothness of N. Note that N need not be smooth in order
for us to define a decomposable CR distribution on N. Indeed, suppose that F is
a holomorphic function of (slow) growth degree l; then one can prove, following
[1, Thm. 7.2.6], the next result.

Proposition 1.3. Let F be as before and suppose that the edge of the wedge N
is of regularity l + 1. Then the boundary value of F defines a CR distribution of
order l + 1 on N.

We thus define the growth degree for a decomposable distribution u = ∑
bvFj to

be the maximum of the growth degrees of the Fj . We see that if the growth degree
of a decomposable distribution u is l then it makes sense to speak of a decompos-
able distribution on a manifold of smoothness l + 1. Hence, in Theorem 1.2, the
hypothesis of smoothness on N can be replaced by smoothness on l + 1.

If instead of a CR distribution we wish to consider functions, then we can reduce
the smoothness hypothesis in Theorem 1.2. A C 0 function u that is decomposable
near a point p is not the sum of C 0 functions Uj extending holomorphically. On
the other hand, for u∈ C α (α /∈ N), if u extends holomorphically at some p into a
wedge Wj of direction wj then the wedge Wj can be written as (N ∩ Vp) + i"j ,
where Vp is a neighborhood of p and "j is a conical neighborhood of wj in the
normal space to N at p. The wave-front set of u (with respect to any micro-local
class) at p is contained in the dual cone of "j , denoted by "0

j . So if u ∈ C α is de-
composable at some p then, since the "0

j are pairwise disjoint, the regularity of
the sum of the Uj cannot be any better than the regularity of each Uj . Therefore,
if u = ∑

Uj is a C α decomposable function, then each Uj has at least the same
regularity as U. This means that, if we wish to study the problem of holomorphic
extension from the point of view of functions rather than distributions, we can re-
place the smoothness of the manifold N by C1+α and study the extension of C 0+α
decomposable CR functions. We obtain the following result.

Theorem 1.4. Let N = {(N ,h(N))} be a nongeneric C1+α CR submanifold of
C
k+m+n such that the map h is decomposable at some p ′

0 ∈ N. Let v be a com-
plex transversal vector to N at p0 = (p ′

0,h(p ′
0)). If f is a C 0+α decomposable

CR function at p0 then, near p0, there exists a wedge W of direction v whose edge
contains a neighborhood of p0 in N and also an F ∈ O(W ) such that F |N = f.

Furthermore, there exist {Fl}nl=1 with Fl ∈ O(W ) such that dF1 ∧ · · · ∧ dFn �= 0
on W and each Fl vanishes to order 1 on N.
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Theorem 1.2 also yields the following corollaries. The first one follows because
any continuous CR function is decomposable on a smooth hypersurface.

Corollary 1.5. Let N = {(N ,h(N))} be a smooth (C∞) nongeneric CR sub-
manifold of C

k+1×C
n such that N ⊂ C

k+1 is a hypersurface. If f is a continuous
CR function on N then, for any p ∈N and any v that is complex transversal to N
at p, there exists a wedge W of direction v whose edge contains a neighborhood
of p in N as well as an F ∈ O(W ) such that the boundary value of F on N is f.

Note. One can replace “continuous CR function” with “CR distribution”, but
the proof of the decomposability of CR distributions is harder and is not the focus
of this paper (see [3] for the proof ).

Corollary 1.6. LetM be a C∞ generic submanifold of C
L containing, through

some p0 ∈ M, a proper C∞ CR submanifold N = (N ,h(N)) of the same CR
dimension p0 = (p ′

0,h(p ′
0)) with p ′

0 ∈ N. Assume that the function h is decom-
posable at p0, and let v ∈ Tp0M \ [spanC Tp0N ]. If f is a CR distribution on N
that is decomposable at p0, then there exists a wedge W inM of direction v whose
edge contains a neighborhood of p0 inN and also a C∞ CR function F on W such
that F |N = f. Furthermore, there exists a collection of C∞ CR functions {gl}nl=1
vanishing to order 1 on N and such that dg1 ∧ · · · ∧ dgn �= 0 on W.

Corollary 1.6 does not hold in the abstract CR structure case, and we shall con-
clude this paper by constructing an abstract CR structure on which there is no CR
extension. More precisely, set L = ∂

∂z̄
+ C(z, s, t) ∂

∂s
+ tD(z, s, t) ∂

∂t
and define

L0 = L|t=0. The question we now address is: If f = f(z, s) is such thatL0(f ) =
0, does there exist a g such thatL(f + tg) = 0? The answer in general is negative.

Proposition 1.7. There existL as before and h a real analytic function such that
L0(h) = 0 and the equation L(h+ tg) = 0 has no solution for g ∈ C1.

1.2. Remarks

As pointed out in [3], this type of extension result is well known in the totally real
case and is essentially due to Nagel [7]. It can be restated as follows.

Theorem 1.8. Let N be a nongeneric totally real smooth submanifold of C
L,

and let v ∈ C
L be complex transversal to N at p. Then, for any continuous func-

tion f on a neighborhood of p inN, there exists Wv , a wedge of direction v whose
edge contains N, such that f has a holomorphic extension to Wv.

This paper provides the easiest and simplest proof of this result because any con-
tinuous function on a totally real submanifold is decomposable.

We wish to point out the main differences between this paper and [3], where
we obtain similar results but with entirely different techniques that yield extension
results for nondecomposable CR distributions. Also, the size of the wedges ob-
tained in [3] are much larger than that obtained here; roughly speaking, in [3] the
wedges contain (N × R

n) ∩ {t1 > 0}.
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As noted in [9], all CR functions are decomposable on most CR submanifolds
of C

L; hence the hypotheses of Theorem 1.2 hold in a generic sense for CR dis-
tributions. However, there are examples of CR submanifolds of C

L on which
indecomposable CR functions exist.

Theorem 1.2 implies that the extension obtained is not unique, which differs
greatly with the holomorphic extension results obtained for generic submani-
folds—where the extension (if it exists) is always unique. Observe that the ques-
tion of CR extension can be viewed as a Cauchy problem with Cauchy data on a
characteristic set N.

1.3. Background

For a general background on CR geometry, we refer the reader to the books of
Baouendi, Ebenfelt, and Rothschild [1], Boggess [2], and Jacobowitz [6].

Most of the results on holomorphic extension deal with generic submanifolds
of C

n. In a general way, these results imply a forced unique extension of CR func-
tions under such hypotheses on the manifold M as Lewy nondegenerateness or,
more generally, minimality. Under these hypotheses, one can show that it is pos-
sible to fill a wedge having edge M with analytic discs attached to M. Using the
maximum principle and the fact that continuous CR functions are uniform limits
of polynomials, one obtains a unique extension for continuous CR functions (see
e.g. the survey paper by Trépreau [10]). The subject of decomposable CR func-
tions has been studied by many authors, and it was believed that all such functions
were decomposable. Yet in [9] Trépreau produced examples of nondecomposable
CR functions (an elementary explanation of this can be found in a paper by Rosay
[8]). However, one should note that any CR function is decomposable on most
CR submanifolds of C

n.

The subject of CR extension has not been studied in as much depth as the holo-
morphic extension has. When studying CR extension from a submanifold of lower
CR dimension, the tools involving analytic discs still work (see e.g. [4; 11]), but
this is not the case when the CR dimensions are equal (see [3]).

Acknowledgments. The author would like to thank Jean-Pierre Rosay for some
helpful remarks and fruitful discussions as well as Jean-Marie Trépreau for his an-
swers to some questions.

2. Proof of the Extension Theorem

Proposition 2.1. Let N = {(N , 0)} be a smooth nongeneric CR submanifold of
C
k+m+n. Let W̃ be a wedge in C

k+m with edge N near p ′
0 ∈ N. Suppose F is a

holomorphic function in W̃ that is of slow growth, and denote by f its boundary
value on N. For any v complex transversal to N at p0, there exists a wedge Wv of
direction v whose edge contains N such that f extends holomorphically to Wv.

Proof. We begin with a choice of local coordinates on N , which is a generic man-
ifold in C

k+m. We introduce local coordinates near p0. We may choose a local
embedding so that p0 = 0 and N is parameterized in C

k+m = C
k
z × C

m
w ′ by
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N = {(z,w ′)∈ C
k × C

m : Im(w ′) = a(z, Re(w ′)), a(0) = da(0) = 0}. (2.1)

We set s = Re(w ′)∈ R
m, which yields

N = {(z, s + ia(z, s)} ⊂ C
k × C

m, T0N = C
k × R

m. (2.2)

Define CTpN = TpN ⊗ C and T 0,1
p N = T 0,1

p C
k+m ∩ CTpN. We say that N is

a CR manifold if dimC T
0,1
p N does not depend on p. The CR vector fields of N

are vector fields L on N such that, for any p ∈ N , we have Lp ∈ T 0,1
p N. One can

choose near the origin a basis L of T 0,1N consisting of vector fieldsLj of the form

Lj = ∂

∂z̄j
+

n∑
l=1

Fjl
∂

∂sl
. (2.3)

The wedge W̃ in C
k+m with edge N on which F is defined is given in a neigh-

borhood of the origin by
W̃ = (U + i"),

where U is a neighborhood of the origin in N and " is a conic neighborhood of
some vector µ in R

m \ {0}. Note then that F admits (trivially) a holomorphic
extension to the region W̃ × C

n ⊂ C
k+m+n. This region is much more than a

wedge. Yet it clearly contains a wedge in C
k+m+n with direction uwhenever u is a

vector of u = (u′, u′′)∈ C
k+m × C

n with u′ ∈ W̃. By (2.1), complex transversility
of v = (v ′, v ′′) means that v ′′ �= 0.

Fix a vector u∈ W̃. Consider a C-linear change of variables T that is the iden-
tity on C

k+m × {0} and such that T(v) = (u, v ′′). The desired extension of f to a
wedge of direction v is then given by F(T (z,w)). We now need to show that the
boundary value of F(T (z,w)) on N is f. The boundary value of F on the wedge
W is defined to be

〈f ,ϕ〉 = lim
λ→0+

∫
N

F(x + λγ )ϕ(x) dx (2.4)

for ϕ ∈ C∞
0 (N) and x + λγ ∈ W̃. Write T = (T ′, T ′′) ∈ C

k+m × C
n, and let τ =

τ(x, λ, η) be defined by T ′(x + λη) = (x + λτ(x, λ, η)). Since T is the identity
on C

k+m × {0}, it follows that limλ→0+ λτ(x, λ, η) = 0. The boundary value of
F(T (z,w)) on N on the wedge Wv is then given by

lim
λ→0+

∫
N

F(T (x + λη))ϕ(x) dx, (2.5)

where (x + λη)∈ Wv. We then define

Gτ(λ) =
∫

N

F(x + λτ(x, λ, η))ϕ(x) dx,

Fγ(λ) =
∫

N

F(x + λγ )ϕ(x) dx.

Now, by [1, Prop. 7.2.22, p. 189], we have
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Gτ(λ)− Fγ(λ) = O(λ), λ → 0+.

Hence the boundary value defined by (2.5) is equal to the boundary value defined
by (2.4).

We immediately note that if the boundary value is at least continuous then the
proof of the proposition yields the following statement.

Proposition 2.2. Let N = {(N , 0)} be a C1 nongeneric CR submanifold of
C
k+m+n. Let W̃ be a wedge in C

k+m with edge N near p ′
0 ∈ N. Suppose F is a

holomorphic function in W̃ that has a continuous boundary value on N, and de-
note by f its boundary value on N. For any v that is complex transversal to N
at p0, there exists a wedge Wv of direction v whose edge contains N such that f
extends holomorphically to Wv.

Using Proposition 2.1, we obtain as follows a special case of Theorem 1.2 from
which we will deduce the latter.

Proposition 2.3. Let N = {(N , 0)} be a C∞ (resp. C1+α) CR submanifold of
C
k+m+n. Let v be a complex transversal vector to N at p0. If f is a decompos-

able distribution at p0 (resp. a C 0+α decomposable function) then, near (p0, 0)∈
N, there exists a wedge W of direction v whose edge contains a neighborhood of
(p0, 0) in N and also an F ∈ O(W ) such that bvF = f.

Proof. Let v be a complex transversal vector and let u be a CR distribution on N.

By hypothesis, u = ∑K
j=1Uj for each Uj a boundary value of Fj ∈O(W̃j ), where

Fj is of slow growth (or Fj ∈ C 0+α(N )) and the W̃j are wedges with edge N in
C
k+m. We may thus apply Proposition 2.1 (or Proposition 2.2) to each Uj in order

to obtain a holomorphic extension to wedges W ′
j , all in the direction v. Let W =⋂K

j=1 W ′
j ; we then conclude that the function

∑K
j=1Uj extends holomorphically to

W and that
∑K

j=1Uj = u on N. This concludes the proof of Proposition 2.3.

Proof of Theorem1.2. Use (z,w ′,w ′′) to denote the coordinates in C
k
z×C

m
w ′×C

n
w ′′ .

Recall that N = {(N ,h(N))}, and consider the CR map h : N → C
n. By Propo-

sition 2.3, each hj extends holomorphically to some wedge Wj in any complex
transversal direction v. Set W = ⋂n

j=1 Wj ; then W �= ∅ since v ∈ W. Define
F : (N , 0) → (N , κh(N)), where κ ∈ R

∗, by

F(z,w ′,w ′′) = (z,w ′,w ′′ + κh(z,w ′)).

Clearly there exists a κ �= 0 and so, on �W, the Jacobian of F is nonzero. Hence
F is a biholomorphism from W to F(W ) that extends to a C1+α diffeomorphism
from W ∪ (N × {0}) to F(W ∪ (N × {0})). Observe that, since dh(0) = 0, it
follows that F is tangent to the identity at the origin; hence there exists W ′, a
wedge in C

k+m+n of direction v, such that W ′ ⊂ F(W ). Thus any decompos-
able distribution (with respect to the C 0+α function for Theorem 1.4) onN extends
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holomorphically to the complex transversal wedge W ′. Note then that the func-
tions fj = w ′′

j − hj are holomorphic on a wedge Wv and null on N, which clearly
verifies the desired conclusions.

Proof of Corollary 1.6. LetM andN be as in the hypothesis of the corollary. After
a linear change of variables, we may assume that p0 = 0 and that, near the origin,
M is parameterized by

M = {z, u+ iv(z, u) : (z, u)∈ C
k × R

p−k}.
By the implicit function theorem, we may assume that N is given as a subset of
M by the system{

up−k−n = µ1(z, u1, . . . , up−k−n−1), . . . , up−k = µn(z, u1, . . . , up−k−n−1),

µ(0) = dµ(0) = 0.

Let s = (u1, . . . , up−k−n−1) ∈ R
m and t = (up−k−n, . . . , up−k) ∈ R

n. Setting t ′ =
t −µ, in the (z, s, t ′) coordinates we have N given as a subset of M by t ′ = 0 and

N = {z,w ′(z, s),h(z,w ′) : (z, s)∈ C
k × R

m},
where h is a CR map from N := {z,w ′(z, s)}. We can now apply Theorem 1.2 to
obtain the CR extension as the restriction of the holomorphic extension of f to
W ∩M. The second part of the corollary follows in the same manner.

3. Example with No Extension

We will now construct an example of an abstract CR structure (M,V ) in which
there is no local CR extension property.

SetL = ∂
∂z̄

+C(z, s, t) ∂
∂s

+ tD(z, s, t) ∂
∂t

and defineL0 = L|t=0. Proposition 1.7
states that there exist L as just described and h a real analytic function, with
L0(h) = 0 and such that the equation L(h+ tg) = 0 has no solution for g ∈ C1.

Proof of Proposition 1.7

We first construct L0. Let f : C → R be a real analytic function such that there
exists a g ∈ C∞

0 (Bε(0)) (the neighborhood is taken in R
3) where the equation

L0(u) =
[
∂

∂z̄
− ifz̄

∂

∂s

]
(u) = g

is not solvable in any neighborhood of the origin in R
3 (cf. Hörmander’s theorem

[5, p. 157]).

Lemma 3.1. There exists an η = η(z, s)∈ Cω such that L0(η) �= 0 and the equa-
tion L0(u) = eηg is nowhere solvable.

Proof. Let η ∈ Cω such that L0(η) �= 0. If h∈ Cω is such that L0(h) = 0 and if h
does not vanish in some neighborhood of the origin in R

3, then one of the follow-
ing two equations is not locally solvable:
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L0(u) = eηg;
L0(u) = (eη + h)g.

Indeed, if both of these equations were solvable with solutions u1 and u2 on some
neighborhoodsU1 andU2 of the origin, then onU1∩U2 we would have, by setting
u = u2 − u1,

L0(u) = L0

(
h
u

h

)
= hL0

(
u

h

)
= hg.

Hence we would conclude that L0(u/h) = g, contradicting our choice of L0.

Now assume without loss of generality that L0(u) = (eη + h)g is not locally
solvable. To finish the proof of the lemma, we wish to find h such that h �= 0,
L0(h) = 0, and eη + h �= 0; then we will set eη + h = eη̃. By a result of Cauchy–
Kovalevsky we solve the equation{

L0(v) = 0,

v|Re[z]=0 = eη|Re[z]=0.

We thus have v = eη(0,Im[z],s) + Re[z]ζ and consequently (eη + v)(0, 0, 0) �=
0. Therefore, by eventually shrinking our neighborhoods, we obtain the desired
function. This completes the proof of Lemma 3.1.

We are now ready to define L from L0. Set

L = L0 + t

(
g
∂

∂s
+ L0(η)

∂

∂t

)
.

Claim. The function h = s + if(z) admits no CR extension to (M,L).

Indeed, L0(h) = 0. Suppose there exists a v ∈ C1 such that L(h + tv) = 0 has
a local solution. Then we note that L(h) = −tg, and thus we have L(h + tv) =
−tg + tL(v)+ tvL0(η) = 0. Therefore, −g + L(v)+ vL0(η) = 0. Now set v =
v0(x, s)+ tv1(x, s, t); then L(v) = L0(v0)+ tG. As a result, equating terms with
no t and multiplying by eη, we have

eη(L0(v0)+ v0L
0(η)) = L0(v0e

η) = eηg,

contradicting Lemma 3.1.

Remarks. (a) There are plenty of nonzero CR functions on (M,V ): any holo-
morphic function of z is CR, and we can also find functions of z and t that are CR.
Indeed, if f = f(z, t) then by Cauchy–Kovalevsky one can solve L(f ) = 0 with
nonzero Cauchy data.

(b) The CR structure (M,V ) defined in this section is not realizable in C
3,

where by “realizable” we mean that there do not exist complex-valued functions
51,52 ,53, such that L(5j) = 0 and d51 ∧d52 ∧d53 �= 0 in a neighborhood of
the origin. If (M,V )were realizable then any real analytic CR function on (N,V0)

would admit a CR extension to M, since L0 is real analytic.
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