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Polynomial Convexity and
Rossi’s Local Maximum Principle

JEAN-PIERRE RoOsAy

Polynomial convexity is an old and fundamental topic in the theory of complex
variables. If K is a compact set in C" then its polynomial hull, denoted by K, is
the set of z € C" such that | P(z)| < Supg| P| for every (holomorphic) polynomial
P.If K = K then K is said to be polynomially convex. Itis my opinion that some
very basic questions are still worth revisiting. I illustrate this with two examples.

In Part A, I discuss Rossi’s local maximum principle. I noticed only recently
that this principle becomes a totally trivial exercise if the hull is characterized in
terms of plurisubharmonic functions. Rossi’s principle then generalizes to almost
complex manifolds.

In Part B, which is far less successful, I discuss the old result of polynomial con-
vexity of (smooth enough) arcs. It is a deep result—still with no easy proof—and
with an unsatisfactory conclusion, as will be explained later. I would like to see
the polynomial convexity of arcs established by some kind of construction simi-
lar to the one in Part A (with the soft tool of plurisubharmonic functions). Part B
is still far from that goal, but I hope the proof presented there is somewhat more
pleasant than previous proofs. Some of its ingredients may be useful.

PART A

1. Introduction

Rossi’s maximum principle [15] is an important result in complex analysis. One
version reads as follows.

THEOREM. Let K be a compact set in C", and let K be its polynomial hull. Let
zek \ K,andletV be a relatively compact neighborhood of z that does not inter-
sect K. Then, for every polynomial P, |P(z)| < Supgp,y|P| (Where bV denotes
the boundary of V).

Thus, although the polynomial hull may not carry any analytic structure [16; 3,
Chap. 24], still the maximum principle holds along K. Following Rossi’s origi-
nal proof [15], proofs such as those for [3, Thm. 9.3] and [8, Thm. 3.2.11] rely on
solving 3.
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It is a nontrivial but truly fundamental fact that the polynomial hull is the same
as the hull with respect to plurisubharmonic functions. This is a transparent con-
sequence of Bremmerman’s theorem on plurisubharmonic functions and the Har-
togs functions (Sup(c; log| fj1), c; > 0, f; holomorphic) (see [4]; see also [9, Thm.
4.2.13] or [7, Sec. Q, Thm. 9]). For an L? approach, see Theorem 4.2.7 and Corol-
lary 4.2.8 in [9] (and [8, Thm. 4.3.4]).

More precisely, for z € C", the following are equivalent:

(1) |P(z2)| < Supg|P]| for all polynomials P;
(2) u(z) < Supg u for all plurisubharmonic functions « on C”;
(2) u(z) < Supg u for all continuous plurisubharmonic functions u# on C”.

I only recently noticed that, by using the equivalence of (1) and (2'), proving
the version of Rossi’s theorem given here becomes a trivial exercise. This exer-
cise is completed in Section 3. It should be pointed out that this leads, moreover,
to a natural generalization of the local maximum principle to arbitrary complex or
almost complex manifolds.

The analysis of plurisubharmonic functions on almost complex manifolds seems
to be going through some new developments. See in particular [5; 6; 11; 14].
Whether the study of plurisubharmonic hulls in almost complex manifolds will
continue to be of interest remains to be seen. In the next section, we state the gen-
eralized result.

2. Definitions; Generalized Local Maximum Principle

2.1. REVIEw. Here we summarize material for the convenience of readers who
may not be familiar with the theory of plurisubharmonic functions on almost com-
plex manifolds. Elementary proofs of the results discussed in this Section 2.1 may
be found in [11].

An almost complex manifold is a smooth manifold X (manifolds are assumed
to be Hausdorff and to have a countable base of topology), of even real dimen-
sion 2n, whose (real) tangent space is equipped at each point p with a complex
structure—that is, an endomorphism J( p) satisfying J(p)> = —1. For simplic-
ity we assume that the map p — J(p) is of class C1¢ (first derivatives of Holder
class «) for some @ > 0. A J-holomorphic disc is a map ® from the unit disc D
in C into X whose differential is (C — J)-linear. This means that, for every z € D
and for every tangent vector (a, b) to R? (~ C) at z, we have D®(p)(—=b,a) =
J(®(p))DP(p)(a,b). Long before pseudo-holomorphic curves were made fa-
mous by Gromoyv, it was proved by Nijenhuis and Woolf [13] that, if p € X and
T is a tangent vector to X at p, then there exists a J-holomorphic disc ® with
®(0) = pand DP(0)(1,0) = AT for some A > 0. The J-holomorphic maps are
of class C¥+1¢ if J is C*“. An upper semicontinuous function u defined on some
open set in X is said to be plurisubharmonic (J-plurisubharmonic if more preci-
sion is needed) if its restriction to any J-holomorphic disc (i.e., the function u o )
is subharmonic on D in the usual sense.

At least for C>-functions, there is a characterization of plurisubharmonicity that
is similar to the usual characterization in C" in terms of the complex Hessian.
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One introduces on X the differential operator d, which is obtained by twisting the
de Rham operator d with the complex structure. If f is a function on X then dj f
is the 1-form defined as follows. For any tangent vector 7 at a point p € X, set

d; )p(T) = —df,(J(P)T).

For the standard complex structure on C" with coordinates z; = x; + iy,
af af
d’f = E ———dx; + —dy;

andsod‘ = al;a Plurisubarmonicity of f is equivalent to the positivity condition
(for arbitrary tangent vector T at a point p):

dd; f,(T, J(p)T) = 0.

Observe that we have avoided any complexification of the tangent space. How-
ever, by complexifying the tangent space (one more complex structure to deal
with!) one can give a characterization in terms of id, 9, instead of dds.

The case of nonsmooth functions is surprisingly much harder to deal with. See
[14], where the problem is solved at least for continuous functions.

In real dimension > 2, almost complex manifolds do not carry “J-holomorphic
functions” in the absence of an integrability condition. Roughly speaking, com-
plex holomorphic objects can be found only in dimension 1. However, at least lo-
cally, plurisubharmonic functions are abundant. It is fairly obvious that the square
of the distance to p (in any given Riemannian metric) is plurisubharmonic near
p. An interesting nontrivial example with a pole, which has been used in [6] and
[11], is due to Chirka. Let J be an almost complex structure defined near 0 in
R2" ~ C" such that J (0) is the standard structure; then, for A > 0 large enough,
log|Z| + A|Z] is plurisubharmonic near O [11, Lemma 1.4]. Note that log|Z| need
not be J-plurisubharmonic (since it is not strictly plurisubharmonic for the stan-
dard structure, a perturbation of the structure allows one to destroy positivity).

Although several results for almost complex manifolds are very similar to the
corresponding results for complex manifolds, there are important differences. The
question of Levi foliation of a hypersurface {p = 0} is such an instance. From
[11, Sec. 6] we know that the condition ddjp (T, JT) = 0 for all complex-tangent
vectors T is not equivalent to the Frobenius condition dd{p(T,T’) = 0 for all
complex-tangent vectors T and 7. In the 39 approach followed by Pali and others,
we remark that 9,9, p need not be a closed form.

2.2. THE LocAL MAXIMUM PRINCIPLE ON ALMOST COMPLEX MANIFOLDS. Let
X be an almost complex manifold and let K be a compact set in X. We define
13, the p.s.h. hull of K, to be the set of x € X such that u(x) < Supg u for every
continuous plurisubharmonic function # on X. This is consistent with the same
notation already used in C".

We consider only continuous plurisubharmonic functions. On almost complex
manifolds, even the local regularization of noncontinuous plurisubharmonic func-
tions seems to raise serious difficulties.

Exactly as in C”, there are some trivial observations to be made as follows.



430 JEAN-PIERRE RosAYy

LEmMMA. IfK is a compact set in an almost complex manifold X, then there exists
a continuous plurisubharmonic function p on X such that p =0on K and p > 0

off K.

Proof. Forany x € X \ K, there exists a continuous plurisubharmonic function v,
on X such that v,(x) > Supg v,. By addition of a constant, we can assume that
vy(x) > 0 > Supg v,.

Now u, = Max(v,,0) satisfies u, = 0 on 1%; moreover, u, > 0 and u,(x) >
0. Finally one can take p = ) jen Ejlly; where the x; are chosen so that, at any
point of X \ K, there is at least one function u,; > 0 as well as ¢; > 0 for &; small
enough. O

Next we state the generalized maximum principle.

PROPOSITION.  Let K be a compact set in an almost complex manifold X, and let
K be its p.s.h. hull. Let x € K \ K. For any relatively compact neighborhood V
of x that does not intersect K and for any continuous plurisubharmonic function
u defined on a neighborhood of V,

u(x) < Supgq,y U.

3. Proofs

In this section we prove the proposition of Section 2 and thus the theorem of Sec-
tion 1.

In order to reach a contradiction, assume that there exists a continuous plurisub-
harmonic function u, defined on a neighborhood of V, such that u(x) > Sup enpy U-
By addition of a constant and multiplication by a positive constant, we can assume
that u(x) = land u < O on KN bV Let p be a contmuous plurisubharmonic
function on X such that p = 0 on K and o > 0 off K (i.e., assume the lemma of
Section 2). For C > O and z € V, set

A(z) = Max(u(z), Cp(2)).

Then A(x) = 1 and, if C is large enough, we have A(z) = Cp(z) near bV.
Therefore, A extends to a continuous global plurisubharmonic function Xon X
provided we set A(z) = Cp(2) for z ¢ V. Hence A(x)=1buti =Cp=0onK,
a contradiction.

PART B

4. Preliminaries

Following groundbreaking work of Wermer, Stolzenberg proved the following
statement.

THEOREM [17;20]. C! arcs in C" are polynomially convex.
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By “arc” we mean the injective image of [0, 1] in C". Alexander [1] extended the
result to rectifiable arcs, but some smoothness is needed; this is well known [19].
Polynomial convexity of arcs is a deep result with no simple proof known, and the
failure of polynomial convexity for (big) totally real discs (see [10, Ex. 6.1, p. 20])
illustrates that point.

A good reference for a proof is [3, Sec. 12]. In my view, this proof is highly
nonconstructive. It amounts to a careful study of the structure of a hypothetical
hull (it would be a Riemann surface with singularities) that allows global reason-
ing using a variation of the argument; there is no construction of polynomials or,
what should be easier, of appropriate plurisubharmonic functions.

Consequently that proof does not allow one to give satisfactory answers to such
questions as the following. Consider a smooth arc I' in C" and let d denote the
distance function to I'. Then d? is a plurisubharmonic function defined in a neigh-
borhood W of I". Choose a neighborhood W of I relatively compact in W. Since
I" is polynomially convex, it is easy to construct a plurisubharmonic exhaustion
function p > 0, defined on C", such that p = 0 on a neighborhood of I" and p >
0 off W;. Then, for A > 0 large enough, the function defined by Max(d?, Ap)
on W and coinciding with Ap off W is a plurisubharmonic function. For ¢ > 0
small enough, the e-neighborhood of y is a sublevel set of that function and hence
this e-neighborhood is polynomially convex. The question is: How small must &
be to ensure that the e-neighborhood of the arc is polynomially convex? Roughly
speaking, if one bounds curvature and avoids near crossing then there is a uni-
versal ¢, as shown by a normal family argument. Of course, the argument gives
absolutely no estimate. We shall restrict our attention to C? arcs.

I have been unable to devise a proof that I find truly satisfactory. However, I
have come up with a rewriting of the proof of polynomial convexity. I do not know
whether readers will agree that this new writing is clearer and easier. The proof
unfortunately still uses a study of the structure of a hypothetical hull, but it uses
only the first transparent (purely local) step in that study—before things become
more complicated to describe. This new proof replaces most of the discussion on
Riemann surfaces by “soft” arguments concerning the index of linear maps, and
it totally avoids the reasoning based on variation of the argument.

5. Notation

Let I" be a C? arc in C" = C, x C"". The projection of C" onto C will be de-
noted by I, I[1(z, w) = z. By abuse of language, I" will be used to denote the map
I': [0,1] — C" as well as just its geometric image. As before, the polynomial
hull of " will be denoted by 1" it is the set of points p € C” such that | P( p)l <
Supr| P| for any polynomial P. Of course [' O T, but our goal is to prove that [=
I'. In order to reach a contradiction we shall assume that I’ #TI.

Shortening the arc if needed, we can assume that I'([e,1]) is polynomially
convex for any ¢ > 0. This will allow us to finish the proof using a purely
local argument and without having to consider several cases (this assumption
should be useful also in a “semiconstructive” proof when constructing appropriate
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plurisubharmonic functions). Because the hull of a curve (or, more generally, of
a totally real submanifold) cannot stay in a “small” neighborhood of the arc (for
a variety of reasons), it is indeed easy to see that the set of e-values for which the
arc I'([e, 1]) is not polynomially convex is closed.

We denote by y the projection of I on C,. Given an appropriate (generic) choice
of coordinates, we can assume that y is a curve in C with only finitely many cross-
ings and that all the crossings are simple. We can also assume that the endpoints
of y are not crossing points. Then C \ y consists of finitely many components
Qo, Q1,..., 2y, where 2; is the unbounded component and €2 is the component
that contains the endpoint IT(I"(0)). Under our assumptions for a proof by con-
tradiction, it follows that Q¢ # ; (but we won’t need this); it is precisely the
essential difficulty of the problem that one cannot assume IT(I"(0)) belongs to the
unbounded component of C \ y. Adjacent components are separated by (relatively
open) subarcs that we denote yy, ..., yx. Finally, let y( be the arc y N R, an arc
in Q2 that does not disconnect 2. We will denote by I'; the subarc of I" whose
projection is y;. See Figure 1.

Q

Figure 1

6. Sketch of the Proof

We denote by A the closed subalgebra of C(I") generated by polynomials. Once
the theorem is proved we shall know that A = C(I"), by the Oka-Weil theorem,
since every continuous function on a C' curve can be approximated by holomor-
phic functions defined on a neighborhood. (Whether there is polynomial approx-
imation on a nonsmooth polynomially convex arc is still an open question.)

(a) For a € C\ y, define the index of a to be the codimension of (z —a)A in A.
Note that (z — a)A is obviously a closed subspace of A. Totally soft arguments
show that the index is constant on each connected component of C \ y. One can
therefore speak about the index of each component €2;; this index is the essential
tool of the proof.

If finite, the index is the maximum number of functions in A that are linearly
independent in A/(z — a)A. By approximation for any dense subalgebra B of A,
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the index is also the maximum number of elements of B that are linearly indepen-
dent in A/(z — a)A. Several times we will take B, the algebra of polynomials,
but in Section 8.3 we take the algebra of functions that are holomorphic on a fixed
neighborhood of I

(b) One needs to understand how the index may change when crossing an arc
v;. If the arc is real-analytic (much less is needed, as will be seen), then a soft
argument still shows that when crossing the arc the index may not change or may
change by *1 (and so is always finite). See Section 7.

(c) To finish with real-analytic arcs, one may show (using our minimality as-
sumption) that when crossing y the index should jump by %1 but when crossing y
one stays in the same connected component £2( on which the index is constant—a
contradiction. For this part of the proof (see Section 8), I have not been able to
avoid the beginning (but just the easy beginning) of a study of a hypothetical hull.

(d) The case of a non-real-analytic arc can be somewhat reduced to the real-
analytic case by making a distinction between the subarcs y;. Soft arguments show
that, in some sense, some of these arcs are not essential (e.g., because they would
not contain any peak point). The other arcs that are essential, and y, would be one
of them, can (partly) be replaced by real-analytic arcs. Here the proof again uses
the previous easy partial study of the structure of the hull. Although nothing really
difficult is done in (d), I cannot say that I am very pleased with it.

Section 7 contains the soft arguments that lead to (a) and (b). Section 8 deals
with the well-known first step in the study of the polynomial hull of I" and con-
cludes the proof for the real-analytic case. The case of non—real-analytic arcs is
treated in Section 9.

We retain the notation used so far. All steps in the proof, except the final one,
are valid for closed curves as well. Some more general statements could obviously
be given, but we avoided going in that direction.

7. Soft Arguments

7.1. PrROOF OF (a). First assume that, for some pointa € C \ y, (z — a)A has
finite codimension equal to k in A. Let fi,..., fx € A be such that the map
(g Al ) > (z—a)g + A fi+ -+ A fr is a bijective map from A x Ck
onto A. For b close to a, the map (g, Ay, ..., Ax) = (z—b)g+ i fi+ -+ i fx
is still an isomorphism and so the set of points a € C \ y with index k is open.
Since we have not yet ruled out that the index may be infinite, note that the exact
same reasoning with injective instead of bijective maps (taking into account that
(z —a)A is closed in A) shows that the set of all a with index > k is also open in
C \ y. Therefore the set of all @ having a given index k is both open and closed in

C\y.

7.2. PrROOF OF (b). Consider the case when I has a real-analytic subarc. Let
then ¢ = («, B) be a nonconstant map from the unit disc D (with variable ¢) into
C" = C x C" ' such that ¢((—1,+1)) C [y and a(¢) ¢ v if ¢ ¢ R. Assume that,
for some ¢y ¢ R, (z — «(&p))A has codimension > (k 4+ 1) > 1in A. Then, by
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approximation, there exist k 4+ 1 polynomials in (z, w) that are linearly indepen-
dentin A/(z — @(£o))A. Hence there exist at least k polynomials Py, ..., P; that
are linearly independent in A/(z — «(&p))A and that satisfy P;(¢ (o)) = 0. Asa
result, the functions F;(z,w) = P;(z,w)/(z — «(&p)) defined on I' are linearly
independent in C(I")/A and so there exist k£ continuous linear forms on C(X),
Y, ..., Yy, that are vanishing on A but such that the determinant of the matrix

(wm(Fl))(m,l) 75 0.
Consider the holomorphic function 4 defined on D \ R by

Pi(z.w) — P
ho) :det<1ﬁm< 1(z Z))_a(;)(sﬂ(@))>>.

Thus k(o) # 0. Next observe that 4 is holomorphic on D \ R and extends holo-
morphically across R. This is why we dropped from k + 1 to k in order to have
the needed vanishing of the numerator in (P;(z, w) — Pj(¢(£)))/(z —a({)) if z =
a(¢)and (z,w) €' (so (z,w) = ¢(¢)). Therefore, h # 0 except at isolated zeros.
Butif ¢ ¢ R and h(¢) # 0, then the functions (P;(z, w) — Pj(¢({)))/(z — a({))
(j = 1,...,k) are k functions on I" that are linearly independent in C(I")/A.
Hence the polynomials Q;(z, w) = P;(z,w) — P;j(¢(¢)) are linearly independent
in A/(z —a(¢))A. For such a point, the codimension of (z — «(£))A in A is thus
not less than k. In view of (a), (b) follows trivially.

CoMMENT. More is accomplished by these soft arguments than may appear to be
the case. For example, if the hull is trivial on one side of the curve then our argu-
ment shows that, on the other side, the hull is trivial or parameterized by the map
@. If the hull is not trivial then it shows P(¢(¢)) = O provided that P/(z — «(¢)) is
the uniform limit of a polynomial on I'. Treated directly (e.g., via a Cousin prob-
lem with bounds, since local approximation on [" is then clear), this is not such an
obvious fact! Neither is it obvious from an abstract point of view, since there exist
nonlocal uniform algebras [12; 18, Sec. 8.4].

8. Next Steps and the Real-Analytic Case

In proving (c), we are unable to avoid the beginning of a study of a hypothetical
hull. The reader should note that, unless stated otherwise, it is not necessary to
assume real analyticity in 8.1-8.3.

8.1.  We first discuss the hull near a point in I" whose projection (on y) is on (the
regular part of ) the boundary of 2; (the unbounded component of C \ y) or, more
generally, on the boundary of any component €2;, whose index is 0.

Assume that 2 is one of the bounded components of C \ y that has a common
boundary y, (for some r € {1, ..., K}) with Q; . It follows from the local maxi-
mum principle that I '(y)nN [= I',; that is, the fiber of [ overze y, 1s trivial.
Then, either I' N TT71Q is empty or there exists a holomorphic map ¥ from 2
into C"~!, extending continuously to y,, such that [ NII'Q is the graph of W
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and such that the restriction of W to y, gives a parameterization of I',. Although
this has been shown by other techniques in the early works of Wermer (and in
the real-analytic case it follows rather easily from the fact that, on €2, the index
is at most 1), I believe the Alexander—Wermer characterization [2] of hulls of sets
fibered over the circle with convex fibers provides the most transparent explana-
tion. By the local maximum principle, [' N IT7'(R) is included in the polynomial
hull of the set fibered over the boundary of 2 whose fiber over z is reduced to the
point in T" over z if z € y,; otherwise, whose fiber is, say, a large ball in cr1,
Clearly, there can be only one Alexander—Wermer disc in the present situation.

8.2. From 8.1 we may derive two easy generalizations as follows.

8.2.1. Consider the hull near a (peak) point p € I" such that, for some polynomial
P, P(p) =1but|P| < lonT \{p}and p is not a critical point for P on I'. Then,
map I" into an arc [ in C"+! by the map (z,w) +— (z,w,t) = (z,w, P(z,w)) €
C x C" x C. Because P is a polynomial, it maps I" to the hull of I". Now, instead
of using the projection of the first factor C,, use the projection on the last factor
C,. Then the point (p, P(p)) has its projection at the boundary of the unbounded
component, as in 8.1.

We conclude that if p is as just described and if, near p, [ is not reduced to T
then, near p, [ is given by a holomorphic disc (on one side of y) attached to I"
(continuously along part of its boundary).

Let us state this conclusion more precisely for the case when arc I' is real-
analytic near p. There exists a holomorphic map ¢ = («, 8) from D into C”" as
in 7.2 and so (using ¢), near p, the arc y; is parameterized by [—1, +1] and [is
parameterized by the upper half-disc.

8.2.2. Let P be a polynomial. For simplicity we shall assume that the image of
I" under P is a curve with only simple crossing (a genericity hypothesis). Let A =
{(z,w) € T'; |P(z,w)| > 1}. Then, by 8.1 and the reasoning in 8.2.1, either the
hull of T" is trivially reduced to I" near any point of A or there is a point in A near
which the hull is given by a holomorphic disc attached (on one side) to I'.

8.3. Jump oF THE INDEX. We now consider the case of the subarcs y; that con-
tain a p such that, near p, I' is real-analytic. We assume that, near p, [ is given
by a holomorphic disc (on one side of y) attached to I'. (The disc, but not the hull,
extends across I".) We know that the index changes by at most 1 when crossing y;.
We shall prove that if the index is finite (as we already know it is for real-analytic
arcs) then the index cannot stay constant: it must change by =£1.

For this, we go back to 7.2 but now substituting, for the algebra of polynomi-
als, the algebra B of holomorphic functions on a neighborhood W of I. We take a
connected Runge neighborhood W of I such that, for any (z,w) in some neigh-
borhood of p, the connected component of {z} x C"~! N W that contains (z, w)
does not contain any point of I except the point on the half-disc parameterized by
¢ when z is on the right side of y.
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The argument used in 7.2 shows that, if we look at the maximum number of P
(with P € B and P(¢(¢)) = 0) that are linearly independent in A/(z — «({))A,
then that number does not change when « (&) crosses y; (with possible isolated ex-
ceptions). We restrict the domain of ¢ so that ¢ (¢) € W. Hence the whole question
is whether there exist any P € B, with P(¢(¢)) # 0, that belong to (z — «({))A.
The answer is simple: if ¢(¢) € ﬁ it is obviously impossible. On the other hand,
if () ¢ [ and if ¢ =~ 0 then there exists a P € B such that, as a function of w,
P(a(¢), w) = 0 on a neighborhood of r yet P(¢(¢)) # 0. By the Oka-Weil theo-
rem, such a P belongs to (z —a(¢)) A because P/(z —«(¢)) defines a holomorphic
function on a neighborhood of K. This creates the jump of +1.

The details may be painful but the outline is clear. The presence of a disc in the
hull on one side of the curve has created one additional condition for the approxi-
mation of P/(z — a) by imposing the vanishing of P at the appropriate point.

8.4. CONCLUSION OF THE REAL-ANALYTIC CASE. There could be points in p €
Iy in the neighborhood of which the hull of T is trivial (reduced to I'). We de-
note the set of such points by  (for inessential), which is a relatively open subset
of I'. If p € I then, by Rossi’s local maximum principle, there exists a polyno-
mial P such that |P(p)| > Supf\V|P|. Of course, we can impose the condition
that p not be a critical point of P|I". By the elementary theory of single complex
variables, any continuous function f on P(I") thatis O on a neighborhood of the
closure of P(I" \ T) (so its support is made of images of arcs) can be approximated
by holomorphic functions defined on a neighborhood of P(I"). Hence fo P € A.
Therefore, any continuous function on I' coincides in a sufficiently small neigh-
borhood of p with a function belonging to A.

It follows that the hull of I' is simply the union of I and of the hull of " \ I.
Various reasons can be given. One of them is that any Jensen representing mea-
sure whose support contains a point p (as described here) must be a point mass.

Because the arc I" has been chosen to be minimal, I" \ Iy is polynomially con-
vex. We know that Iy \ I cannot be empty and must contain peak points for A (a
general fact of function algebras). Hence there exists a polynomial P (as in 8.2.2)
such that Supr\;|P| > 1 > Supr\r,|P|. By 8.2.2 there is a point p € Iy near
which the hull is given by a holomorphic disc (on one side of y) attached to I'.
By 8.3, the index must change by 41 when crossing yy, leading to a contradiction
as already explained in (c).

9. The Smooth Case

We should first eliminate the subarcs u of I' that, roughly speaking, do not con-
tribute to the existence of a nontrivial hull. First, there are those arcs w in the
neighborhood of which the hull of T is reduced to I'; they have been studied in the
previous section. Other nonessential subarcs are those arcs u that do not contain
any peak point for A. Then convergence of a sequence of polynomials on I' \
implies convergence on I'. It is clear that, when crossing one of the arcs y; that
contains a (nonempty!) subarc of one of these two kinds, the index cannot change.
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The index can change only when crossing an arc that contains a peak point. Then,
as shown in Section 8, a nontrivial hull near some point p will be described by
a holomorphic disc attached on one side. We can then deform the arc I" near p
by pushing it and pushing the point p in this analytic disc, making a portion of
the new I' real-analytic near the new point p. By Rossi’s local maximum princi-
ple, this will not destroy the supposed nontriviality of I, and the set of inessential
points can only increase. Creating such a deformation along each subarc where
this is needed, we now have that the index changes by at most 1 when crossing any
of the arcs y;. Therefore, the index is finite. When crossing yy it should jump by
1, given the reasoning of 8.4 (after a local real-analytic modification of the arc).
This leads to the same contradiction.

Added in proof. Our goal has been to obtain a clearer proof of the polynomial
convexity of arcs, not to obtain the sharpest possible results. We restricted our
attention to C? arcs so that, after a simple linear change of coordinates, one can
assume that IT (the projection of C x C"~! on C) defines a global immersion of
I' into C.

By an automorphism of C”, any smooth arc in C" (n > 1) can be approxi-
mately straightened to a line segment. (See J.-P. Rosay, Straightening of arcs,
Astérisque 217 (1993), 217-225; see also F. Forstneric and J.-P. Rosay, Approxi-
mation of biholomorphic mappings of C", Invent. Math. 112 (1993), 323-349 [and
erratum in Invent. Math. 118 (1994), pp. 573-574].) After straightening, polyno-
mial convexity of the arc is totally obvious, but polynomial convexity is the hard
result needed for the proof of straightening.
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