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1. Introduction

In [DFo1] Diederich and Fornæss constructed support functions for convex do-
mains of finite type. This result together with a good knowledge of the local
geometry of convex domains of finite type has been used in [DFFo] to prove op-
timal Hölder estimates for a solution of the Cauchy–Riemann equation in such
domains. Hefer [H] has extended and refined this result by using information on
the multitype of the domain. Further results on solution operators based on the
support functions of [DFo1] can be found in [A; DM1; DM2; F1].

A different approach is attributable to Cumenge: in [Cu1] and [Cu2] she uses the
Bergman kernel to construct solution operators for the Cauchy–Riemann equation
in convex domains of finite type. Using these operators and some precise estimates
(due to McNeal [Mc]) of the Bergman kernel at the boundaries of the domains,
she also proves optimal Hölder estimates and some other results.

All results mentioned so far have one feature in common. The hypotheses on the
given functions and forms and the conclusions of the papers are isotropic, whereas
the proofs are quite nonisotropic in that the respective estimates necessarily take
into account the different behavior of the geometry of the domains in different di-
rections, even of the holomorphic tangent spaces. Introducing nonisotropy into
the conclusions was first considered in [F2], where optimal nonisotropic Hölder
estimates for certain solutions of the ∂̄-equation are proved for bounded data.

Recently the larger class of lineally convex domains of finite type has received
much attention. A smooth lineally convex domain differs from a (linearly) convex
domain in that, with the former, only the complex tangent space at each boundary
point is supposed to lie outside of the domain.

Diederich and Fornæss [DFo2] have constructed a smooth family of holomor-
phic support functions with best possible nonisotropic estimates for lineally convex
domains of finite type. It has been shown by Conrad [C] that the local geometry
of such domains shares all essential properties with convex domains of finite type.

In this paper we shall use these support functions to establish both isotropic and
nonisotropic Hölder estimates on lineally convex domains of finite type. In doing
so we can follow rather closely the proofs given in [DFFo; F2] for the correspond-
ing results in the linearly convex case.
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Theorem1.1. LetD ⊂⊂ C
n be a lineally convex domain with C∞-smooth bound-

ary of finite type m. We denote by C 0
(0,q)(D̄) the Banach space of (0, q)-forms with

continuous coefficients on D̄ and by 

1/m
(0,q)(D) the Banach space of (0, q)-forms

whose coefficients are uniformly Hölder continuous of order 1/m on D. Then there
are bounded linear operators

Tq : C 0
(0,q+1)(D̄) → 


1/m
(0,q)(D)

such that ∂̄Tqf = f for all f ∈C 0
(0,q+1)(D̄) with ∂̄f = 0.

It is more appropriate to work with the nonisotropic Hölder norm that comes from
the pseudodistance d associated to the domain D. (See Section 2 for an exact def-
inition of d.) We can prove that the solution operators of Theorem 1.1 are (1/m)-
Hölder continuous with respect to this pseudodistance.

Theorem 1.2. Let D, Tq , and f be as in Theorem 1.1. Then, for every ε > 0,
there exists a constant C such that the solution u := Tqf of the Cauchy–Riemann
equation ∂̄u = f satisfies the following nonisotropic Hölder estimate:

|Tqf(z0) − Tqf(z1)| ≤ C‖f ‖∞ max{d(z0, z1)
1/m, |z0 − z1|1−ε}.

We also want to mention that both results are optimal. It is well known that Theo-
rem 1.1 gives the best possible isotropic Hölder estimates for finite-type domains,
and an example for the optimality of the nonisotropic Hölder estimates in Theo-
rem 1.2 is given in [F2].

This paper is organized as follows. In Section 2 we give the definition of the
solution operators Tq. We split them into several parts and first formulate their re-
quired estimates as Lemma 2.1; then we use these estimates to prove Theorem 1.1
and Theorem 1.2. The proof of Lemma 2.1 will be given in the remaining sections.
In Section 3 we first describe several properties of the local geometry of lineally
convex domains of finite type; then we use the result from [DFo2] to prove an
appropriate estimate for the support function. Finally, in Section 4 the proof of
Lemma 2.1 is completed in the same way as in [F2].

2. Solution Operators

In this paper we use exactly the same integral operator as in [DFFo]. (Of course,
the definition of the support function and hence also of the solution operator de-
pends on the given domain.) In [DFFo] we used the support function from [DFo1],
which was defined only for convex domains of finite type. Using the results from
[DFo2], we will see that the same definition also makes sense on lineally convex
domains of finite type once we put in the support function of [DFo2].

Throughout this paper we will assume that D := {z ∈ C
n : �(z) < 0} and that

the defining function � is chosen in such a way that, for all −2ε0 < t < 2ε0, the
domains Dt := {z ∈ C

n : �(z) < t} are lineally convex and of finite type ≤ m.

We will also use the notation U := {z∈ C
n : |�(z)| < ε0}.



Hölder Estimates on Lineally Convex Domains of Finite Type 343

We write lζ(z) = �(ζ)(z − ζ), where �(ζ) is a unitary matrix depending
smoothly on ζ ∈ ∂D such that the unit outer normal vector to ∂D will be turned
into (1, 0, . . . , 0). As in [DFo2], we define

rζ(w) := �(l−1
ζ (w)), aα(ζ) := 1

α!

∂ |α|rζ
∂wα

(0),

Sζ(w) := 3w1 + Kw2
1 − c

m∑
j=2

M 2j

σj
∑
|α|=j
α1=0

aα(ζ)w
α, (1)

where M and K are large constants, c is a small constant, and σj = Re ij. Finally,
we set

S(z, ζ) := Sζ(lζ(z)).

Next we give a decomposition of S(z, ζ) such that

S(z, ζ) =
n∑

j=1

Qj(z, ζ)(zj − ζj ).

For this we simply define
Q1

ζ(w) := 3 + Kw1 (2)

and (for k > 1)

Qk
ζ (w) := −c

m∑
j=2

M 2j

σj
∑
|α|=j

α1=0,αk>0

αk

j
aα(ζ)

wα

wk

(3)

and then set
Q(z, ζ) := �T(ζ)Qζ(lζ(z)),

where we use the notation Qζ = (Q1
ζ , . . . ,Q

n
ζ ) and Q = (Q1, . . . ,Qn).

Now we introduce Cauchy–Fantappiè integral operatorsRq based on the support
function S and its Leray decomposition Q(z, ζ). We define the Cauchy–Fantappiè
form

W(z, ζ) :=
∑
i

Qi(z, ζ)

S(z, ζ)
dζi .

Let

B = b

|ζ − z|2 =
∑
i

ζ̄i − z̄i

|ζ − z|2 dζi

be the usual Martinelli–Bochner form and let Kq be the corresponding Martinelli–
Bochner operator. Furthermore, put

Rqf :=
n−q−2∑
k=0

c
q

k

∫
ζ∈∂D

f ∧ W ∧ B ∧ (∂̄ζW )k ∧ (∂̄ζB)n−q−k−2 ∧ (∂̄zB)q

=
n−q−2∑
k=0

c
q

k

∫
ζ∈∂D

f ∧ Q ∧ b ∧ (∂̄ζQ)k ∧ (∂̄ζ b)
n−q−k−2 ∧ (∂̄zb)

q

S k+1|ζ − z|2(n−k−1)
. (4)
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In the last line we used the convention of denoting the (1, 0)-form
∑

i Qi(z, ζ) dζi
again by Q. It is well known (see e.g. [R] or [DFoW]) that the operators Tq =
Rq + Kq are solution operators, meaning that ∂̄Tqf = f for all ∂̄-closed forms
f ∈C 0

(0,q+1)(D̄).

While estimating our solution operators we must make use of the special local
geometry of the given domain D. For this we let ζ ∈U and ε < ε0, choose some
unit vector γ, and define the complex directional level distances by

τ(ζ, γ, ε) := max{c : |�(ζ + λγ ) − �(ζ)| < ε for all λ∈ C, |λ| < c}.
For a fixed point ζ and a fixed radius ε we define the ε-extremal basis (v1, . . . , vn)

or, more precisely, (v1(ζ, ε), . . . , vn(ζ, ε)) centered at ζ as in [C], which is ba-
sically the same construction as in [Mc, Prop. 2.1] and [H, Def. 2.5]. The first
vector v1 is always the unit outward normal at ζ. After that, the unit vectors vk

are recursively chosen in the orthogonal complement of v1, . . . , vk−1 in such a
way that they minimize (in [Mc], maximize) the function τ(ζ, ·, ε). Using the
abbreviation τk(ζ, ε) := τ(ζ, vk , ε), we see immediately that τ1(ζ, ε) ≈ ε and
τk(ζ, ε) � τ1(ζ, ε) for all k = 2, . . . , n and small enough values of ε. We now can
define the ε-distinguished polydiscs

APε(ζ) :=
{
z = ζ +

∑
λkvk(ζ, ε) : |λk| ≤ Aτk(ζ, ε) for k = 1, . . . , n

}

and the pseudodistance

d(ζ, z) := inf{ε : z∈Pε(ζ)}.
Note that these definitions are exactly analogous to those given for convex domains
of finite type. The fundamental properties of these objects on lineally convex do-
mains of finite type will be listed in the next section. Here we will continue the
investigation of our solution operator Tq.

The Martinelli–Bochner operator Kq is known to satisfy (isotropic) α-Hölder
estimates for all α < 1. This is good enough for both Theorems 1.1 and 1.2, so it
remains to estimate Rqf. In order to do so we consider z-derivatives of this form.
For a z-derivative δγ in the direction of γ it is easy to see that δγ ∂̄ζ b = δγ ∂̄zb =
0. Thus δγRqf can be written as a sum of integrals of the form∫

∂D

f ∧ δγQ ∧ b ∧ (∂̄ζQ)k ∧ (∂̄ζ b)
n−q−k−2 ∧ (∂̄zb)

q

S k+1|ζ − z|2(n−k−1)
,

∫
∂D

f ∧ Q ∧ δγ b ∧ (∂̄ζQ)k ∧ (∂̄ζ b)
n−q−k−2 ∧ (∂̄zb)

q

S k+1|ζ − z|2(n−k−1)
,

∫
∂D

f ∧ Q ∧ b ∧ δγ(∂̄ζQ) ∧ (∂̄ζQ)k−1 ∧ (∂̄ζ b)
n−q−k−2 ∧ (∂̄zb)

q

S k+1|ζ − z|2(n−k−1)
,

∫
∂D

f ∧ Q ∧ b ∧ (∂̄ζQ)k ∧ (∂̄ζ b)
n−q−k−2 ∧ (∂̄zb)

q

S k+2|ζ − z|2(n−k−1)
δγ S,

∫
∂D

f ∧ Q ∧ b ∧ (∂̄ζQ)k ∧ (∂̄ζ b)
n−q−k−2 ∧ (∂̄zb)

q

S k+1|ζ − z|2(n−k−1)+1
δγ |ζ − z|,

where the third integral appears only for k > 0.
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These integrals must be estimated. We majorize f by ‖f ‖∞ and observe that
δγ b � 1 and δγ |ζ − z| � 1. Hence the second and the fifth integral can each be
replaced by ‖f ‖∞Ia with

Ia :=
∫
∂D

|[Q ∧ (∂̄ζQ)k ∧ β]t |
|S|k+1|ζ − z|2(n−k−1)

dσ2n−1,

where β is a differential form that contains all the remaining dζj and dζ̄j such that
Q ∧ (∂̄ζQ)k ∧ β is of bidegree (n, n − 1) in ζ. Here [Q ∧ (∂̄ζQ)k ∧ β]t denotes
the tangential part of the form Q∧ (∂̄ζQ)k ∧ β, which is the only part of the form
that contributes to the integral over ∂D.

For the other three integrals we must consider

Ib :=
∫
∂D

|[δγQ ∧ (∂̄ζQ)k ∧ β]t |
|S|k+1|ζ − z|2(n−k−1)−1

dσ2n−1,

Ic :=
∫
∂D

|[Q ∧ δγ(∂̄ζQ) ∧ (∂̄ζQ)k−1 ∧ β]t |
|S|k+1|ζ − z|2(n−k−1)−1

dσ2n−1,

Id :=
∫
∂D

|[Q ∧ (∂̄ζQ)k ∧ β]t ||δγS|
|S|k+2|ζ − z|2(n−k−1)−1

dσ2n−1,

where again β is an appropriate differential form and [·]t denotes the tangential
part of the form in brackets.

We proceed by formulating the estimates for these integrals, which are needed
in the proof of Theorem 1.1 and Theorem 1.2.

Lemma 2.1. If � = |�(z)| and 0 < σ ≤ 1, then

|Ia| � �σ(1/m−1). (5)

The remaining integrals—where the derivative in the γ -direction is applied to
either Q, ∂̄ζQ, or S—satisfy the estimate

|Ib|, |Ic|, |Id | �
�1/m

τ(z, γ, �)
. (6)

The proof of the main theorems follows from these estimates and some basic facts
concerning the pseudodistance, which will be discussed in Section 3. Note that
Lemma 2.1 will be proved only for z close to the boundary. It could be general-
ized for all z∈D by some compactness argument, but in fact it is needed only for
z in a neighborhood of the boundary (and small values of �) because it is enough
to establish the Hölder estimates there. In the proof of Theorem 1.2 we can also
assume that z0 and z1 are close to each other and in a given neighborhood of the
boundary.

Proof of Theorem 1.1. The theorem follows from Theorem 1.2 because we have
the estimate d(z, ζ) � |z−ζ|. Alternatively, the theorem can be proved directly as
follows. Using the relation ε � τ(z, γ, ε), which is a consequence of Lemma 2.1
and the definition of the ε-extremal basis (see also Proposition 3.1(v)), we ob-
tain |I∗| � �1/m−1 for all the integrals Ia , . . . , Id . Since � = |�(z)| is comparable
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to dist(z, ∂D) we have |δγRqf | � ‖f ‖∞ dist(z, ∂D)1/m−1, and the (1/m)-Hölder
continuity of Rqf follows from the Hardy–Littlewood lemma.

Proof of Theorem 1.2. First let u be that part of Rqf whose derivative we have
shown to be majorized by a multiple of Ia. Let α < 1 and choose σ so small that
σ(1/m−1) > α−1. Then Lemma 2.1implies that |δγ u(z)| � ‖f ‖∞ dist(z, ∂D)α−1

and hence the Hardy–Littlewood lemma implies that u is isotropically α-Hölder
continuous for every α < 1.

Next let u be one of those parts of Rqf whose δγ -derivative has been majorized
by a multiple of one of the integrals Ib, Ic, or Id . Let A = d(z0, z1) and γ =
(z1 − z0)/|z1 − z0|, and let ν be the inward normal direction at ζ0 = π(z0).

Consider the additional points z̃0 = z0 +Aν and z̃1 = z1 +Aν. Then we estimate

|u(z0) − u(z1)| ≤ |u(z0) − u(z̃0)| + |u(z̃0) − u(z̃1)| + |u(z̃1) − u(z1)|

≤
∫ z̃0

z0

|δνu(t)| dt +
∫ z̃1

z̃0

|δγ u(t)| dt +
∫ z̃1

z1

|δνu(t)| dt.
In the first and the third integral of the right side we have the worst case, because
ν is approximately the normal direction and thus Proposition 3.1(v) implies that
τ(t, ν, |�(t)|) ≈ |�(t)|. Nevertheless, from (6) we derive the estimate∫ z̃0

z0

|δνu(t)| dt ≤
∫ A

0
|δνu(z0 + sν)| ds �

∫ A

0
s1/m−1 ds � A1/m.

(The same is true for the third integral.)
To estimate the second integral, first observe that d is a pseudodistance (see

Proposition 3.1(x)) and therefore satisfies the approximate triangle inequality
d(z̃0, z̃1) � d(z̃0, z0)+d(z0, z1)+d(z1, z̃1) � A. Thus z̃1 and the whole line from
z̃0 to z̃1 belong to some polydisc PCA(z̃0). Proposition 3.1(viii) then gives the re-
lation τ(ζ, γ,A) ≈ τ(z̃0, γ,A) for all those ζ. On the other hand, |�(z̃0)| � A and
so |δγ u(ζ)| � A1/m/τ(z̃0, γ,A) for all ζ on the line to z̃1. Thus by (6) it follows that∫ z̃1

z̃0

|δγ u(t)| dt �
∫ τ(z̃0,γ,A)

0
|δγ u(z̃0 + sγ )| ds

�
∫ τ(z̃0,γ,A)

0

A1/m

τ(z̃0, γ,A)
ds � A1/m,

and together with the estimates for the first and third integral this yields

|u(z0) − u(z1)| ≤ d(z0, z1)
1/m.

Now recalling that the other parts of Rqf are isotropic α-Hölder continuous for
every α < 1 completes the proof of the theorem.

3. The Pseudodistance and Estimates
for the Support Function

We will start this section by listing some properties of τ(z, γ, ε), Pε(z), and d(z, ζ)
as defined previously (some of them have already been used in the proofs of
Theorem 1.1 and Theorem 1.2). The following results have been proved in [C].
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Proposition 3.1. Let D = {z : �(z) < 0} be a lineally convex domain of finite
type m. Then the following statements hold.

(i) There is a constant c such that cP|�(ζ)|(ζ) ⊂ D for all ζ ∈D.

(ii) Let w be any orthonormal coordinate system centered at z and let vj be the
unit vector in the wj -direction; then∣∣∣∣∂

|α+β|�(z)
∂wα∂w̄β

∣∣∣∣ �
ε∏

j τ (z, vj , ε)αj+βj

for all multi-indices α and β with |α + β| ≥ 1.
(iii) If γ = ∑n

j=1 ajvj , where (v1, . . . , vn) is the ε-extremal basis at ζ, then

1

τ(ζ, γ, ε)
≈

n∑
j=1

|aj |
τj(ζ, ε)

;

in particular, for every unit vector γ we have τ(ζ, γ, ε) � τk(ζ, ε)/|ak| for
all k.

(iv) Let γ be a unit vector and let

a
γ

αβ(ζ) := ∂ α+β

∂λα∂λ̄β
�(ζ + λγ )|λ=0;

then ∑
1≤α+β≤m

|aγ

αβ(ζ)|τ(ζ, γ, ε)α+β ≈ ε

uniformly for all ζ, γ, and ε.

(v) τ1(ζ, ε) ≈ ε and τ(ζ, γ, ε) � ε1/m for every unit vector γ, and if γ is a unit
vector in complex tangential direction then also ε1/2 � τ(ζ, γ, ε).

(vi) If γ is a complex directional unit vector and 0 < ε < δ, then(
ε

δ

)1/2

τ(ζ, γ, δ) � τ(ζ, γ, ε) �
(
ε

δ

)1/m

τ(ζ, γ, δ).

(vii) For every k > 0 there exist constants c(k) and C(k) such that

c(k)Pε(ζ) ⊂ Pkε(ζ) ⊂ C(k)Pε(ζ) and Pc(k)ε(ζ) ⊂ kPε(ζ) ⊂ PC(k)ε(ζ).

(viii) For every z∈Pε(ζ) we have τ(ζ, γ, ε) ≈ τ(z, γ, ε).
(ix) There is a constant C such that Pε(ζ) ∩ Pε(z) �= ∅ implies

Pε(ζ) ⊂ CPε(z) and Pε(z) ⊂ CPε(ζ).

(x) The pseudodistance d(z, ζ) satisfies the properties

d(z, ζ) ≈ d(ζ, z) and

d(z, ζ) � d(z,w) + d(w, ζ).

Note that Proposition 3.1(vii) implies that there exist constants C > 1 and 0 <

c < 1 such that CPε/2(ζ) ⊃ 1
2Pε(ζ) and CPt(ζ) ⊂ Pε(ζ) for all t < cε. We can

therefore use the polyannuli

P i
ε (ζ) := CP2−iε(ζ) \ 1

2P2−iε(ζ)
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to construct two coverings. This yields

∞⋃
i=0

P i
ε (ζ) ⊃ Pε(ζ) \ {ζ} and

i0(ε)⋃
i=0

P i
1(ζ) ⊃ P1(ζ) \ Pε(ζ), (7)

where i0(ε) is a finite number depending only on ε and satisfying i0(ε)<−log2(cε)

for another small constant c.
Now we recall the support function of [DFo2]; more precisely, we want to make

use of the explicit support function given in [DFo2, Thm. 2.6]. For this we must
introduce another transformation of the form ŵ = λζ(w) with ŵ1(1 − Aζ(ŵ)) =
w1 and ŵj = wj for j > 1. Here Aζ(ŵ) is a smooth family of holomorphic poly-
nomials depending only on ŵ2 , . . . , ŵn and satisfying Aζ(0) = 0. Writing l̂ζ =
λζ � lζ , we then have

r̂ζ(ŵ) := �(l̂−1
ζ (ŵ)) − �(ζ), âα(ζ) := 1

α!

∂ |α|r̂ζ(ŵ)

∂ŵα

∣∣∣∣
ŵ=0

Ŝζ(ŵ) := ŵ1 + Kŵ2
1 − c

m∑
j=2

M 2j

σj
∑

|α|=j,α1=0

âα(ζ)ŵ
α,

and finally Ŝ(z, ζ) = Ŝζ(l̂ζ(z)). Theorem 2.6 of [DFo2] supplies the following
estimate.

Proposition 3.2. Let γ be a unit vector in complex tangential direction in ζ,
and define

â
γ

j (ζ) :=
∑

α+β=j

∣∣∣∣ ∂ α+β

∂λα∂λ̄β
r̂ζ(λγ )|λ=0

∣∣∣∣.

Then there exists a smooth function ĥ(ζ, ŵ) that is positive and bounded away
from 0 such that, for every ŵ = µnζ + λγ (where nζ is the unit normal at ζ),

Re Ŝζ(ŵ) ≤ r̂ζ(ŵ)ĥ(ζ, ŵ) − K

2
(Imµ)2 − ĉc

m∑
j=2

â
γ

j (ζ)|λ|j.

We use this result to derive some estimates for the support function S.

Lemma 3.3. Let z be in D ∩ U and assume that ε is smaller than ε0. Then

|S(z, ζ)| � ε for all ζ ∈ ∂D ∩ P 0
ε (π(z)), (8)

|S(z, ζ)| � |�(z)| for all ζ ∈ ∂D ∩ P|�(z)|(π(z)). (9)

Proof. To prove the lemma we must consider the difference between Sζ(w) and
Ŝζ(λζ(w)). Recall that ŵj = wj for j > 1. Moreover, since derivatives are only
in complex tangential directions and evaluation is at ŵ = w = 0, it follows that
âα(ζ) = aα(ζ). Thus we have

Sζ(w) − Ŝζ(λζ(w)) = w1

( −Aζ(w)

1 − Aζ(w)

)
+ Kw2

1

(−2Aζ(w) + A2
ζ(w)

(1 − Aζ(w))2

)

and, for every c̃ > 0, there exists some ε̃ such that
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|Sζ(w) − Ŝζ(λζ(w))| ≤ c̃(|Rew1| + |Imw1|)
for all z∈Pε̃(ζ). Therefore,

Re Sζ(w) ≤ rζ(w)h(ζ,w) + c̃|Reµ| − K

2
(Imµ)2 + c̃|Imµ| − ĉc

m∑
j=2

a
γ

j (ζ)|λ|j.

Now we observe (a) that ∂rζ(µnζ + λγ )/∂ Reµ is positive and bounded away
from zero and (b) that Proposition 3.1(iv) and the definition of τ(ζ, γ, ε) imply that
rζ(λγ ) �

∑
a
γ

j (ζ)|λ|j. Hence, for every point w = µnζ + λγ in D ∩ Pε̃(ζ),

Re Sζ(w) ≤ c ′rζ(w) − K

2
(Imµ)2 + c̃|Imµ| − c ′′

m∑
j=2

a
γ

j (ζ)|λ|j

≤ c̃|Imµ| − c ′′
m∑

j=2

a
γ

j (ζ)|λ|j. (10)

Here c̃ still depends only on ε̃, and after fixing c̃ we can simply assume that ε0 < ε̃.

Now let ζ ∈ ∂D and ε be fixed, let 0 < 9 < L be some fixed constants with 90

a small constant to be chosen later. As before, we write z = µnζ + λγ and define

P̃ 0
ε (ζ) := {z : |Reµ| < 90, (z − Reµnζ )∈LPε(ζ), (z − Reµnζ ) /∈ 9Pε(ζ)}.

We will show that, for every pair 0 < 9 < L, there exist constants 90 and c0 such
that

|S(z, ζ)| ≥ c0ε for all z∈ P̃ 0
ε (ζ). (11)

Here 90 and c0 do depend on 9 and L but not on ζ or ε.
By Proposition 3.1(iii), there clearly exists a constant k ′

1 such that |Imµ| ≤
k ′

1τ(ζ, nζ , ε) and |λ| ≤ k ′
1τ(ζ, γ, ε) imply (z − Reµnζ ) ∈ 9Pε(ζ). Thus we have

either |λ| ≥ k ′
1τ(ζ, γ, ε) or |Imµ| ≥ k ′

1τ(ζ, nζ , ε) or both. Let k1 < k ′
1 be a constant

to be chosen later. If |λ| ≥ k1τ(ζ, γ, ε) then we can use estimate (10), Proposition
3.1(iv), and |Imµ| ≤ Lτ(ζ, nζ , ε) ≤ CLε to obtain

|S(z, ζ)| ≥ −Re Sζ(w) ≥ c ′′
m∑

j=2

a
γ

j (ζ)|λ|j − c̃|Imµ| ≥ c ′′′ε − c̃CLε.

Choosing c̃ small enough we finally get |S(z, ζ)| � ε for the case |λ| ≥ k1τ(ζ, γ, ε).
If |λ| ≤ k1τ(ζ, γ, ε) then necessarily |Imµ| ≥ k ′

1τ(ζ, nζ , ε) ≥ k2ε. Considering
now the imaginary part of S yields

|S(z, ζ)| ≥ |Im S(z, ζ)|
≥ |3 Imµ| − |2K Reµ Imµ| − c

m∑
j=2

a
γ

j (ζ)|λ|j.

Using the estimate for λ and again Proposition 3.1(iv), the last term of this inequal-
ity can be estimated by k2

1 cε. Now we can choose k1 so small that k2
1 cε < k2ε.

By the definition of P̃ 0
ε (ζ), we also have |Imµ| < Lτ(ζ, nζ , ε) ≤ CLε. Hence the

second term can be estimated by 2Kk0CLε and k0 can be chosen so small that
2Kk0CLε < k2ε. Altogether we have
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|S(z, ζ)| ≥ 3k2ε − k2ε − k2ε � ε,

and the proof of (11) is complete.
To prove (8) we need only observe that ζ ∈P 0

ε (π(z)) implies both ζ ∈CPε(π(z))

and ζ /∈ 1
2Pε(π(z)). Using Proposition 3.1(ix) and (vii) then yields π(z)∈CPε(ζ)

and π(z) /∈ cPε(ζ) for certain constants c and C. If z is close enough to the bound-
ary and ε is small enough, this implies z ∈ P̃ 0

ε (ζ) for still some other constants 9

and L. The first statement of the lemma now follows from (11).
The estimate (9) also follows from (11) in a similar way. First, Proposition

3.1(i) implies that ζ ∈ ∂D does not belong to some cP|�(z)|(z) and therefore z /∈
9P|�(z)|(ζ). On the other hand, ζ ∈ P|�(z)|(π(z)) and π(z) ∈ P2|�(z)|(z); using
Proposition 3.1(ix) and (vii), this implies z∈LP|�(z)|(ζ). So z belongs to P̃ 0|�(z)|(ζ)
for certain constants 0 < 9 < L, and the second statement of the lemma follows
from (11).

4. Proof of Lemma 2.1

The rest of the proof of Lemma 2.1 is exactly the same as in [F2]. First we fix
some ζ0 ∈ ∂D and some ε < ε0 and then define �∗ to be the matrix that transforms
our coordinates to the ε-extremal coordinates at ζ0. Thus �∗ is a constant unitary
matrix. Further, we define w∗ = �∗(z− ζ0) and η∗ = �∗(ζ − ζ0). We also make
use of a condition (∗), which says that |η∗

k | ≤ C∗τk(ζ0, ε) for k = 1, . . . , n and
that |w∗

1 | ≤ C∗ and |w∗
k | ≤ C∗τk(ζ0, ε) for k > 1. Notice that condition (∗) is

satisfied if ζ0 = π(z) and ζ ∈Pε(ζ0).

Next we use the fact that Q is invariant under additional rotations of the complex
tangent space and provide a special family of smooth unitary matrices �(ζ) :=
<(�∗(ζ − ζ0))�

∗, where <(η∗) is a unitary matrix smoothly depending on η∗
and with entries that are obtained directly from derivatives of the defining func-
tion (see [DFFo] for details). Using some estimates for <(η∗) and writing Q with
respect to the ε-extremal coordinates at ζ0 as

Q∗(w∗, η∗) = �̄∗Q(ζ0 + (�̄∗)Tw∗, ζ0 + (�̄∗)Tη∗)

yields the following lemma.

Lemma 4.1 [F2, Lemma 3.1]. For all w∗ and η∗ satisfying condition (∗):
|Q∗

k(w
∗, η∗)| �

ε

τk(ζ0, ε)
,

∣∣∣∣ ∂

∂w∗
i

Q∗
k(w

∗, η∗)
∣∣∣∣ �

ε

τk(ζ0, ε)τi(ζ0, ε)
,

∣∣∣∣ ∂

∂η∗
j

Q∗
k(w

∗, η∗)
∣∣∣∣ �

ε

τk(ζ0, ε)τj(ζ0, ε)
,

∣∣∣∣ ∂ 2

∂w∗
i ∂η

∗
j

Q∗
k(w

∗, η∗)
∣∣∣∣ �

ε

τk(ζ0, ε)τi(ζ0, ε)τj(ζ0, ε)
.

This lemma leads to the following integral estimates.
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Lemma 4.2 [F2, Lemma 3.14]. For every σ with 0 < σ ≤ 1 we have the estimate∫
∂D∩Pε(ζ0)

|[Q ∧ (∂̄ζQ)k ∧ β]t |
|ζ − z|2n−2k−3+(1−σ)

dσ2n−1 � εσ/m+k+1.

Moreover, ∫
∂D∩Pε(ζ0)

|[δγQ ∧ (∂̄ζQ)k ∧ β]t |
|ζ − z|2n−2k−3

dσ2n−1 �
ε1/m+k+1

τ(ζ0, γ, ε)
,

∫
∂D∩Pε(ζ0)

|[Q ∧ δγ(∂̄ζQ) ∧ (∂̄ζQ)k−1 ∧ β]t |
|ζ − z|2n−2k−3

dσ2n−1 �
ε1/m+k+1

τ(ζ0, γ, ε)
.

For derivatives of S we have another lemma as follows.

Lemma 4.3 [F2, Lemma 3.10]. Let δγ be the z-derivative in the γ -direction.
Then, for all w∗ and η∗ satisfying condition (∗),

|δγS ∗(w∗, η∗)| �
ε

τ(ζ0, γ, ε)
.

Finally we make use of the fact that a small neighborhood of ζ0 can be covered by a
family of polyannuli as in (7). In each of those polyannuli we can use Lemma 3.3,
which together with the estimates from Lemma 4.2 and Lemma 4.3 gives the de-
sired estimates for Lemma 2.1 in exactly the same way as in [F2].

5. Additional Remarks

In this paper we have seen that the proof of optimal nonisotropic Hölder estimates
for solutions of the Cauchy–Riemann equation in lineally convex domains of fi-
nite type is very close to the corresponding proof in convex finite type domains.
This is due to the domain’s geometry entering at two places only. First we need a
smooth family of holomorphic support functions with the right estimates; second,
the domain’s boundary must admit a pseudodistance satisfying certain properties.
Once these ingredients have been provided, everything else carries over almost
automatically.

Thus, considering the nonisotropic Hölder estimates of Theorem 1.2 as a test
case, it can be predicted that other estimates (e.g., those in [A; DM1; DM2; F1;
H]) will also be true on lineally convex domains of finite type.

On the other hand, it is not clear whether the method of Cumenge can modi-
fied to work also for lineally convex domains; it seems that convexity is used in a
more essential way in the construction of her solution operators. In any case, the
main estimates from [Mc] would first have to be carried over to the case of lineally
convex domains of finite type.
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