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Tight Closure Test Exponents
for Certain Parameter Ideals

Rodney Y. Sharp

0. Introduction

Throughout the paper, R will denote a commutative Noetherian ring of prime char-
acteristicp. We shall always denote by f : R → R the Frobenius homomorphism,
for which f(r) = rp for all r ∈ R. Let a be an ideal of R. The nth Frobenius
power a[pn] of a is the ideal of R generated by all pnth powers of elements of a.

We use R◦ to denote the complement in R of the union of the minimal prime
ideals of R. An element r ∈ R belongs to the tight closure a∗ of a if and only
if there exists a c ∈ R◦ such that crp

n ∈ a[pn] for all n � 0. We say that a is
tightly closed precisely when a∗ = a. The theory of tight closure was invented by
M. Hochster and C. Huneke [4], and many applications have been found for the
theory (see [7]). For the definition of the tight closure N ∗

M of a submodule N in
an ambient R-module M (and explanation of the notations N [pn]

M and mpn

for m∈
M and a nonnegative integer n), the reader is referred to [4, (8.1)–(8.3)].

Apw0 -weak test element forR (wherew0 is a nonnegative integer) is an element
c ′ ∈R◦ such that, for every finitely generated R-module M and every submodule
N of M and for m ∈M, we have m ∈N ∗

M if and only if c ′mpn ∈N
[pn]
M for all n ≥

w0. A p0-weak test element is called a test element. A locally stable pw0 -weak
test element (respectively, completely stable pw0 -weak test element) for R is an
element c ′ ∈ R such that, for every prime ideal p of R, the natural image c ′/1 of
c ′ in the localization Rp is a pw0 -weak test element for Rp (respectively, for the
completion R̂p of Rp). When w0 = 0, we omit the adjective “pw0 -weak”. A lo-
cally stable pw0 -weak test element for R is a pw0 -weak test element for R, and a
completely stable pw0 -weak test element for R is a locally stable pw0 -weak test
element for R; see [4, Prop. (8.13)].

It is a result of Hochster and Huneke [5, Thm. (6.1)(b)] that an algebra of finite
type over an excellent local ring of characteristic p has a completely stable pw0 -
weak test element for some w0; furthermore, such an algebra that is also reduced
actually has a completely stable test element.

This paper is concerned with the concept of a test exponent in tight closure the-
ory introduced by Hochster and Huneke in [6, Def. 2.2]. Let c be a test element
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for a reduced commutative Noetherian ring R of characteristic p, and let a be an
ideal of R. A test exponent for c, a is a power q = pe0 (where e0 ∈ N0, the set of
nonnegative integers) such that, if for an r ∈R we have crp

e ∈ a[pe] for one single
e ≥ e0, then r ∈ a∗ (so that crp

n ∈ a[pn] for all n∈ N0). In [6] it is shown that this
concept has strong connections with the major open problem of whether tight clo-
sure commutes with localization; indeed, to quote Hochster and Huneke, “roughly
speaking, test exponents exist if and only if tight closure commutes with localiza-
tion”. Although the question of whether tight closure commutes with localization
is open in general, it is known that it does commute in many particular cases (see
[1]); consequently, the results of Hochster and Huneke in [6] imply (via a rather
circuitous route) that test exponents must exist rather often.

In [6, Disc. 5.1], Hochster and Huneke state that “it would be of considerable
interest to solve the problem of determining test exponents effectively even for pa-
rameter ideals”. The main purpose of this paper is to provide a short direct proof
that, for a test element c for a reduced excellent equidimensional local ring (R, m),
there exists e0 ∈ N0 such that pe0 is a test exponent for c, a for every parameter
ideal a of R. (For such (R, m), a parameter ideal of R is simply one that can
be generated by a subset of a system of parameters for R.) The fact that pe0 is a
test exponent for c, a for every parameter ideal a of R is relevant to [6, Disc. 5.3],
where Hochster and Huneke raise the question of whether there might conceivably
exist (when R (not necessarily local) and c satisfy certain conditions) a “uniform
test exponent” for c, that is, a power of p that is a test exponent for c, b for all
ideals b of R simultaneously.

1. Left Modules over the Skew Polynomial Ring R[x, f ]

1.1. Notation. We shall work with the skew polynomial ringR[x, f ] associated
toR and f in the indeterminate x overR. Recall thatR[x, f ] is, as a leftR-module,
freely generated by (x i)i∈N0 and so consists of all polynomials

∑n
i=0 ri x

i , where
n∈ N0 and r0, . . . , rn ∈R; however, its multiplication is subject to the rule

xr = f(r)x = rpx for all r ∈R.

Note that the decomposition R[x, f ] = ⊕
n∈N0

Rxn provides R with a structure
as a positively graded ring.

We use N to denote the set of positive integers.

Our first lemma enables one to see quickly that, in certain circumstances, an
R-module M has a structure as a left R[x, f ]-module extending its R-module
structure.

1.2. Lemma (see e.g. [8, Lemma1.3]). LetG be anR-module and let ξ : G → G

be a Z-endomorphism of G such that ξ(rg) = rpξ(g) for all r ∈ R and g ∈ G.

Then the R-module structure on G can be extended to a structure of a left R[x, f ]-
module in such a way that xg = ξ(g) for all g ∈G.
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1.3. Definitions. Let H be a left R[x, f ]-module. The R[x, f ]-submodule

�x(H ) := {h∈H : xjh = 0 for some j ∈ N}
of H is called the x-torsion submodule of H. We say that H is x-torsion precisely
when H = �x(H ) and that H is x-torsion-free precisely when �x(H ) = 0.

It is easy to check that, in general, the left R[x, f ]-module H/�x(H ) is x-
torsion-free.

1.4. Definitions. Let H be a left R[x, f ]-module. The annihilator of H will
be denoted by annR[x,f ] H or annR[x,f ](H ). Thus annR[x,f ](H ) = {θ ∈R[x, f ] :
θh = 0 for all h∈H }, and this is a (two-sided) ideal of R[x, f ].

For a two-sided ideal B of R[x, f ], we shall use annH B or annH (B) to de-
note the annihilator of B in H. Thus annH B = annH (B) = {h ∈ H : θh = 0
for all θ ∈ B}, and this is an R[x, f ]-submodule of H.

1.5. Remark. It is easy to see that a subset B of R[x, f ] is a graded left ideal
if and only if there is a family (bn)n∈N0 of ideals of R such that bn ⊆ f −1(bn+1)

for all n∈ N0 and B = ⊕
n∈N0

bnx
n. Similarly, a subset C of R[x, f ] is a graded

two-sided ideal if and only if there is a family (cn)n∈N0 of ideals of R such that
cn ⊆ cn+1 for all n ∈ N0 (so that the sequence (cn)n∈N0 is eventually stationary)
and C = ⊕

n∈N0
cnx

n.

1.6. Lemma. Let G be an x-torsion-free left R[x, f ]-module. Suppose that, for
some w0 ∈ N0 and some ideal c of R, the graded two-sided ideal

⊕
n≥w0

cxn of
R[x, f ] annihilates G. Then G is annihilated by

⊕
n≥0(

√
c)xn.

Proof. Let a ∈ R be such that at ∈ c for some t ∈ N. We show that, for g ∈ G,
necessarily axng = 0 for each n ∈ N0. Choose m ∈ N such that pm ≥ t and m ≥
w0; then xmaxng = ap

m

xm+ng = 0 because ap
m ∈ c and m + n ≥ w0. Since G

is x-torsion-free, it follows that axng = 0.

In this paper, substantial use will be made of the following extension, due to
G. Lyubeznik, of a result of R. Hartshorne and R. Speiser. It shows that, when R

is local, an x-torsion left R[x, f ]-module that is Artinian (or “cofinite”, in the ter-
minology of Hartshorne and Speiser) as an R-module exhibits a certain uniformity
of behavior.

1.7. Theorem ([9, Prop. 4.4]; compare [3, Prop. 1.11]). Suppose that (R, m) is
local, and let H be a left R[x, f ]-module that is Artinian as an R-module. Then
there exists an e ∈ N0 such that xe�x(H ) = 0.

Hartshorne and Speiser first proved this result in the case where R is local and
contains its residue field, and that residue field is perfect. Lyubeznik applied his
theory of F -modules to obtain the result without restriction on the local ring R of
characteristic p.
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The following corollary extends the Hartshorne–Speiser–Lyubeznik theorem to
nonlocal situations.

1.8. Corollary. Let H be a left R[x, f ]-module that is Artinian as an R-
module. Then there exists an e ∈ N0 such that xe�x(H ) = 0.

Proof. Suppose that H �= 0. For each ideal a of R, let

�a(H ) :=
⋃
n∈N

(0 :H an).

The ideas of [11, Exers. 8.48 and 8.49] can be used to show that there are only
finitely many maximal ideals m of R such that �m(H ) �= 0 and that, if we denote
the distinct such maximal ideals by m1, . . . , mt , then H decomposes as a direct
sum of R-submodules

H = �m1(H ) ⊕ · · · ⊕ �mt
(H ).

Let i ∈ {1, . . . , t}. In fact, �mi
(H ) is an R[x, f ]-submodule of H, since if h ∈

�mi
(H ) and mk

i h = 0 for a k ∈ N then (mk
i )

[p]xh = 0. In addition, for s ∈R \ mi

we have mk
i +Rs = R, so there exists an s ′ ∈R such that s ′sh = h. It follows that

multiplication by s provides an R-automorphism of �mi
(H ), so that the latter left

R[x, f ]-module has a natural structure as an Rmi
-module in which (r/s)h, for r ∈

R and s as before, is equal to the unique element h′ ∈H for which sh′ = rh. It can
easily be checked that this structure is such that x(r/s)h = (rp/sp)xh, so it fol-
lows from Lemma 1.2 that this Rmi

-module structure on �mi
(H ) can be extended

to a structure as a left Rmi
[x, f ]-module that is compatible with its structure as a

left R[x, f ]-module. We can now use Theorem 1.7 to deduce that there exists an
ei ∈ N such that xei�x(�mi

(H )) = 0.
Since

�x(H ) = �x(�m1(H )) ⊕ · · · ⊕ �x(�mt
(H )),

the integer e := max{e1, . . . , et} has the property that xe�x(H ) = 0.

1.9. Definition. Let H be a left R[x, f ]-module that is Artinian as an R-
module. By Corollary 1.8, there exists an e ∈ N0 such that xe�x(H ) = 0; we call
the smallest such e the Hartshorne–Speiser–Lyubeznik number (or HSL-number,
for short) of H.

1.10. Lemma. Let H be a left R[x, f ]-module that is Artinian as an R-module,
and let m0 be the HSL-number of H. Let c be an ideal of R and let t0 ∈ N0.

Then annH

(⊕
n≥m0+t0

c[pm0 ]xn
)

is an R[x, f ]-submodule of H that contains
�x(H ); furthermore,(

annH

(⊕
n≥m0+t0

c[pm0 ]xn
))/

�x(H ) = annH/�x(H )

(⊕
n≥t0

cxn
)

= annH/�x(H )

(⊕
n≥0(

√
c)xn

)
= (

annH

(⊕
n≥m0

(
√

c)[pm0 ]xn
))/

�x(H ).
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Proof. Since
⊕

n≥m0+t0
c[pm0 ]xn ⊆ ⊕

n≥m0
Rxn, it is immediate that

�x(H ) = annH

(⊕
n≥m0

Rxn
) ⊆ annH

(⊕
n≥m0+t0

c[pm0 ]xn
)
.

Now let h ∈H, n ∈ N0, and c ∈ c. Then cxn(h + �x(H )) = 0 in H/�x(H ) if and
only if cxnh ∈ �x(H ); by definition of the HSL-number of H, this is the case if
and only if xm0cxnh = 0 in H, that is, if and only if cp

m0
xm0+nh = 0. It is now

easy to prove all the claims by means of this observation and Lemma 1.6.

The next theorem is the key result of this paper.

1.11. Theorem. Let G be an x-torsion-free left R[x, f ]-module that is Artinian
as an R-module, and let c be an ideal of R. Let N be the R-submodule (0 :G c) of
G; for each i ∈ N0, set

Ni := {g ∈G : xig ∈N} = {g ∈G : cxig = 0 for all c ∈ c}
= {g ∈G : cxig = 0}.

Then the following statements hold:

(i) each Ni (i ∈ N0) is an R-submodule of G;
(ii) Ni ⊇ Ni+1 for all i ∈ N0;

(iii) if Ni = Ni+1 for some i ∈ N0, then Ni+1 = Ni+2.

Since G is Artinian as an R-module, it follows from (i), (ii), and (iii) that there
exists a (uniquely determined ) v0 ∈ N0 such that

N = N0 ⊃ N1 ⊃ · · · ⊃ Nv0 = Nv0+1 = · · · = Nv0+j = · · ·
(where ⊃ denotes strict containment). Then Nv0 is the largest R[x, f ]-submodule
of G that is contained in N.

Henceforth, we shall refer to the integer v0 as the c-stability index of G. Note
that it has the following property: for g ∈ G, if cxn1g = 0 for one single integer
n1 ≥ v0 then cxng = 0 for all n∈ N0.

Proof. (i) It is clear that Ni is an Abelian subgroup of G. Let g ∈ Ni and let r ∈
R. Thus cxig = 0 for all c ∈ c. Hence cxi(rg) = crp

i

x ig = rp
i

cx ig = 0 for all
c ∈ c, so that rg ∈Ni.

(ii) Let g ∈Ni+1 and let c ∈ c; hence cxi+1g = 0. Therefore xcxig = cpxi+1g =
0, and since G is x-torsion-free it follows that cxig = 0. As a result, g ∈Ni.

(iii) Assume that Ni = Ni+1. By part (ii) we have Ni+1 ⊇ Ni+2. Let g ∈ Ni+1

and let c ∈ c; hence cxi+1g = 0. Therefore cxi(xg) = 0, so that (as this is true for
all c ∈ c) we must have xg ∈ Ni = Ni+1. Thus cxi+1(xg) = 0; that is, cxi+2g =
0 for all c ∈ c. Hence g ∈Ni+2.

The only remaining claim that still requires proof is the one that Nv0 is the
largest R[x, f ]-submodule of G that is contained in N. To see this, first note that
if g ∈Nv0 then g ∈Nv0+1, so that cxv0(xg) = cxv0+1g = 0 for all c ∈ c and xg ∈
Nv0 . This shows that Nv0 is an R[x, f ]-submodule of G; it is contained in N =
N0 by part (ii). On the other hand, if L is any R[x, f ]-submodule of G that is
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contained in N and if g ∈ L, then we must have xv0g ∈ L ⊆ N and so g ∈ Nv0;
hence L ⊆ Nv0 .

Next, we use Corollary 1.8 to produce a consequence of Theorem 1.11 that applies
to a left R[x, f ]-module that is Artinian as an R-module but that is not necessarily
x-torsion-free.

1.12. Corollary. Let H be a left R[x, f ]-module that is Artinian as an R-
module, and let m0 be its HSL-number. Let c be an ideal of R, and let v0 be the
c-stability index of the x-torsion-free left R[x, f ]-module G := H/�x(H ). Let
h∈H. Then the following statements are equivalent:

(i) there exists one single integer n1 ≥ m0 + v0 such that c[pm0 ]xn1h = 0;
(ii) c[pm0 ]xnh = 0 for all n ≥ m0.

Proof. Suppose that n1 ∈ N0 is such that n1 ≥ m0 + v0 and c[pm0 ]xn1h = 0. Then
xm0cxn1−m0h = 0, so cxn1−m0h ⊆ �x(H ) and cxn1−m0(h + �x(H )) = 0 in G.

Since n1 − m0 ≥ v0, the c-stability index of G, it follows from Theorem 1.11 that
cxn(h + �x(H )) = 0 for all n∈ N0. Therefore, by Lemma 1.10,

h + �x(H )∈ annH/�x(H )

(⊕
n≥0 cxn

) = (
annH

(⊕
n≥m0

(
√

c)[pm0 ]xn
))/

�x(H ).

Hence h is annihilated by
⊕

n≥m0
c[pm0 ]xn.

2. Applications to Test Exponents for Tight Closure

The main strategy employed in this paper involves application of the key result,
and its corollary, of Section 1 to the top local cohomology module of (R, m) in
the case where the latter is an equidimensional excellent local ring (of character-
istic p). We therefore review the R[x, f ]-module structure carried by this local
cohomology module.

2.1. Reminder. Suppose that (R, m) is a local ring of dimension d > 0. In this
reminder, we shall sometimes use R ′ to denote R regarded as an R-module by
means of f.

(i) With this notation, f : R → R ′ becomes a homomorphism of R-modules
and so induces an R-homomorphism H d

m(f ) : H d
m(R) → H d

m(R
′). The indepen-

dence theorem for local cohomology (see [2, 4.2.1]) applied to the ring homomor-
phism f : R → R yields an R-isomorphism νd

R : H d
m(R

′) ∼=−→H d
m[p](R), where

H d
m[p](R) is regarded as an R-module via f. Since m and m[p] have the same rad-

ical, H d
m and H d

m[p] are the same functor. Composition yields a Z-endomorphism
ξ := νd

R � H d
m(f ) : H d

m(R) → H d
m(R) which is such that ξ(rγ ) = rpξ(γ ) for all

γ ∈H d
m(R) and r ∈R. Hence it follows from Lemma 1.2 that H d

m(R) has a natural
structure as a left R[x, f ]-module in which xγ = ξ(γ ) for all γ ∈H d

m(R).

(ii) It is important to note that this R[x, f ]-module structure on H d
m(R) does

not depend on any choice of system of parameters for R. The reader might like to
consult [8, 2.1] for amplification of this point.
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(iii) Let a1, . . . , ad be a system of parameters for R, and represent H d
m(R) as the

dth cohomology module of the C̆ech complex of R with respect to a1, . . . , ad , that
is, as the residue class module of Ra1 . . . ad modulo the image, under the C̆ech com-
plex “differentiation” map, of

⊕d
i=1Ra1 . . . ai−1ai+1 . . . ad ; see [2, Sec. 5.1]. We use

[·] to denote natural images of elements of Ra1 . . . ad in this residue class module.
It is worth remarking that, for r ∈R and n∈ N0,[

r

(a1 . . . ad)n

]
= 0 in H d

m(R)

if and only if there exists a k ∈ N0 such that (a1 . . . ad)
kr ∈ (an+k

1 , . . . , an+k
d )R.

(iv) The left R[x, f ]-module structure on H d
m(R) is such that

x

[
r

(a1 . . . ad)n

]
=

[
rp

(a1 . . . ad)np

]
for all r ∈R and n∈ N0.

The reader may wish to consult [8, 2.3] for more details.
In [6, Def. 2.2], Hochster and Huneke defined the concept of test exponent in a

reduced commutative Noetherian ringR of prime characteristic. They also defined
the concept for c,N,M, where (c is a test element for R and) N is a submodule
of the finitely generated R-module M. However, the definition for modules is not
pursued in this paper; we are concerned with test exponents for c, a, where a is an
ideal of R (and where R is understood to be the ambient module for a). On the
other hand, there are advantages to extending the concept to weak test elements in
nonreduced rings.

2.2. Definition. Let c be a pw0 -weak test element, where w0 ∈ N0, for the (not
necessarily reduced) ring R, and let a be an ideal of R. We say that pe0, where
e0 ∈ N0, is a test exponent for c, a if, whenever r ∈R is such that crp

e ∈ a[pe] for
one single e ≥ e0, then r ∈ a∗ (so that crp

n ∈ a[pn] for all n ≥ w0).

Recall that a parameter ideal in a commutative Noetherian ring is a proper ideal
of height h that can be generated by h elements for some h ∈ N0. In an equi-
dimensional catenary local ring, an ideal is a parameter ideal if and only if it can
be generated by a subset of a system of parameters.

2.3. Theorem. Let (R, m) as in Notation 1.1 be an equidimensional excellent
local ring of dimension d > 0.

By Reminder 2.1, the Artinian R-module H := H d
m(R) has a natural structure

as a left R[x, f ]-module; let m0 be its HSL-number. Let c ∈R◦ and let v0 be the
Rc-stability index of the x-torsion-free left R[x, f ]-module G := H/�x(H ).

Then, for each parameter ideal a of R, the following statement is true: if r ∈R

is such that crp
n1 ∈ a[pn1 ] for one single n1 ≥ m0 + v0, then r ∈ a∗.

Proof. We shall first prove the claim when a is an ideal q of R generated by a full
system of parameters a1, . . . , ad for R. Use the representation of H as the dth co-
homology module of the C̆ech complex of R with respect to a1, . . . , ad recalled in
2.1(iii), and write a for the product a1 . . . ad .
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Set ζ := [r/a] ∈ H. The assumption that crp
n1 ∈ q[pn1 ] for an r ∈ R and an

n1 ≥ m0 + v0 implies (by 2.1(iv)) that cxn1ζ = [crp
n1
/ap

n1 ] = 0. Therefore,
Rcp

m0
xn1ζ = 0 and so it follows from Corollary 1.12 that Rcp

m0
xnζ = 0 for all

n ≥ m0. Hence [
cp

m0
rp

n

ap
n

]
= cp

m0
xnζ = 0 for all n ≥ m0.

It now follows from 2.1(iii) that, for all n ≥ m0, there exists a k(n)∈ N0 such that

cp
m0
rp

n

(a1 . . . ad)
k(n) ∈ (a

pn+k(n)

1 , . . . , ap
n+k(n)

d )R.

The next part of the argument is due to K. E. Smith; see the proof of [12, Prop.
3.3(i)]. By repeated use of the colon-capturing properties of tight closure de-
scribed in [12, Thm. 2.9], it follows that

cp
m0
rp

n ∈ (q[pn])∗ for all n ≥ m0.

Since R is an excellent local ring, it has a pw0 -weak test element c ′ for some w0 ∈
N0 (by [5, Thm. 6.1(b)]). Consequently,

c ′(cp
m0
rp

n

)p
w0 ∈ (q[pn])[pw0 ] for all n ≥ m0;

that is, c ′cpm0+w0
rp

n+w0 ∈ q[pn+w0 ] for all n ≥ m0. Since c ′cpm0+w0 ∈ R◦, we see
that r ∈ q∗.

It remains to extend the result to an arbitrary parameter ideal a of R. Since R is
equidimensional and excellent, there exist a full system of parameters u1, . . . , ud

for R and i ∈ {0,1, . . . , d} such that a = (u1, . . . , ui)R. Suppose that r ∈R is such
that crp

n1 ∈ a[pn1 ] for an n1 ≥ m0 + v0. Then, for all t ∈ N, we have crp
n1 ∈

(u1, . . . , ui, ut
i+1, . . . , u

t
d)

[pn1 ]; hence r ∈ (u1, . . . , ui, ut
i+1, . . . , u

t
d)

∗ by the first part
of this proof. We can now use the pw0 -weak test element c ′ to deduce that

c ′rp
n ∈ (u

pn

1 , . . . , upn

i , upnt

i+1, . . . , upnt

d )R for all n ≥ w0 and t ∈ N.

Therefore, by Krull’s intersection theorem,

c ′rp
n ∈ (u

pn

1 , . . . , upn

i )R for all n ≥ w0,
so that r ∈ a∗.

If, in Theorem 2.3, we take the element c to be a weak test element for R, then we
can immediately deduce the existence of a test exponent for c, a for each parame-
ter ideal of R; it should be noted that this test exponent is “partially uniform” in
the sense that the one test exponent for c works for every parameter ideal of R.

These results are recorded in part (i) of Corollary 2.4. I am very grateful to the
referee for suggesting part (ii) of the corollary, which shows (loosely speaking)
that a slightly higher power of p is not only a test exponent for c, a for all parame-
ter ideals a of R simultaneously but also that, for this test exponent, one need only
check that the “ideal membership test” is satisfied “up to tight closure”.

2.4. Corollary. Let (R, m) as in Notation 1.1 be an equidimensional excellent
local ring of dimension d > 0. Let c be a pw0 -weak test element (where w0 ∈ N0)

for R.
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As in Theorem 2.3, let m0 be the HSL-number of H := H d
m(R), and let v0 be

the Rc-stability index of G := H/�x(H ).

(i) Then pm0+v0 is a test exponent for c, a for all parameter ideals a of R simul-
taneously.

(ii) The power pm0+v0+1 has the following property: for each parameter ideal a
of R, we have r ∈ a∗ whenever r ∈ R is such that crp

n1 ∈ (a[pn1 ])∗ for one
single n1 ≥ m0 + v0 + 1.

Proof. Part (i) is immediate from Theorem 2.3, and so we prove (ii).
We first show that the Rcp

w0 +1-stability index v1 of G satisfies v1 ≤ v0 +w0 +1.
By Theorem1.11, to prove this inequality it suffices to show that cp

w0 +1xv0+w0+1g =
0 (for g ∈G) implies that cp

w0 +1xng = 0 for all n ∈ N0. But cp
w0 +1xv0+w0+1g =

0 implies that cp
w0+1

xv0+w0+1g = 0, so

xw0+1cxv0g = cp
w0+1

xv0+w0+1g = 0;
therefore cxv0g = 0 because G is x-torsion-free. Since v0 is the Rc-stability in-
dex of G, this implies that cxng = 0 for all n ∈ N0, so cp

w0 +1xng = 0 for all n ∈
N0. Therefore v1 ≤ v0 + w0 + 1.

Now suppose a is a parameter ideal of R and r ∈R is such that crp
n1 ∈ (a[pn1 ])∗

for one single n1 ≥ m0 + v0 + 1. Since c is a pw0 -weak test element for R, we
have c(crp

n1
)p

w0 ∈ (a[pn1 ])[pw0 ]; that is, cp
w0 +1rp

n1+w0 ∈ a[pn1+w0 ]. Now n1 +w0 ≥
m0 + v0 + w0 + 1 ≥ m0 + v1, so it follows from Theorem 2.3 that r ∈ a∗.

In the final theorem of this paper we deduce a nonlocal result from Corollary 2.4.
I am again very grateful to the referee for suggestions that have led to improve-
ments in Theorem 2.5. Note that R is said to be locally equidimensional precisely
when the localization Rp is equidimensional for every prime ideal p of R. The
reader is referred to [1, p. 87] for an explanation of what it means to say that R is
“of acceptable type”.

2.5. Theorem. Let R as in Notation 1.1 be a locally equidimensional ring of ac-
ceptable type. Suppose that there exists a completely stable pw0 -weak test element
c for R, where w0 ∈ N0. (By [1, Prop. (5.4)] and [5, Thm. (6.1)(b)], these condi-
tions would all be satisfied if R were an integral domain and an algebra of finite
type over an excellent local ring of characteristic p.)

Let a be a parameter ideal of R of positive height. Let P := {p1, . . . , pt} be a
finite set of prime ideals of R of positive height such that

⋃
p∈ass a∗

p ⊆
t⋃

i=1

pi;

for example, P could be ass a∗.
For each i = 1, . . . , t, let mi denote the HSL-number of the top local coho-

mology module Hi := H
ht pi

piRpi
(Rpi

) of the local ring Rpi
, and let vi denote the

Rpi
(c/1)-stability index of Hi/�x(Hi). Then
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u0 := max{m1 + v1, . . . ,mt + vt }
has the following property: if r ∈ R is such that crp

n1 ∈ (a[pn1 ])∗ for one single
n1 ≥ u0 + 1, then r ∈ a∗.

Consequently, pu0+1 is a test exponent for c, a.

Proof. Temporarily, let A be a local commutative Noetherian ring of characteris-
tic p and positive dimension d, and suppose that H is a left A[x, f ]-module that
is Artinian as an A-module. Then H has a natural structure as a module over the
completion Â ofA (see [2, 8.2.4]), and it is easy to use Lemma 1.2 to show that this
Â-module structure on H can be extended to a structure as a left Â[x, f ]-module
that is compatible with its structure as a left A[x, f ]-module. Thus �x(H ) is the
same whether calculated over A or Â, and a similar comment applies to the HSL-
number of H. Note also that, for c ′ ∈ A, the Ac ′-stability index of H/�x(H ) as
left A[x, f ]-module is the same as its Âc ′-stability index as left Â[x, f ]-module.

Again by [2, 8.2.4], there is an isomorphism of Â-modules H ∼= H ⊗A Â. It
follows from 2.1(iv) and our comments in the preceding paragraph that, for each
i ∈ {1, . . . , t}, the HSL-number of the top local cohomology module Hi of Rpi

is
equal to the corresponding number for R̂pi

and that the Rpi
(c/1)-stability index

for Hi/�x(Hi) is equal to the corresponding index (for R̂pi
(c/1)).

Since R is of acceptable type, it and all its localizations are universally catenary;
therefore, by Ratliff ’s theorem (see [10, Thm. 31.7]), all the Rpi

(i = 1, . . . , t) are
formally catenary (see [10, p. 252]). Since R is locally equidimensional, it fol-
lows that all the R̂pi

(i = 1, . . . , t) are equidimensional; they are also excellent,
because every complete Noetherian local ring is excellent. Thus Corollary 2.4(ii)
can be applied over each R̂pi

, i = 1, . . . , t.
For each i = 1, . . . , t, let the indices ei and ci stand for extension and contrac-

tion with respect to the natural ring homomorphism R → Rpi
. Let r ∈R be such

that crp
n1 ∈ (a[pn1 ])∗ for one single n1 ≥ u0 + 1. Choose i ∈ {1, . . . , t}. Then, in

the local ring Rpi
and its completion, we have

c

1

(
r

1

)pn1

= crp
n1

1
∈ ((a[pn1 ])∗)ei ⊆ ((a[pn1 ])ei )∗

= ((aei )[pn1 ])∗ ⊆ ((aeiR̂pi
)[pn1 ])∗.

Now aeiR̂pi
, if proper, is a parameter ideal of R̂pi

. Since n1 ≥ mi + vi +1, it thus
follows from Corollary 2.4(ii) that r/1∈ (aeiR̂pi

)∗.
Since c is a completely stable pw0 -weak test element for R, it follows that

c

1

(
r

1

)pn

∈ ((aei )[pn]R̂pi
) ∩ Rpi

= (aei )[pn] for all n ≥ w0.

Therefore, r/1∈ (aei )∗. Since R is locally equidimensional and of acceptable type,
we can use [1, Thm. (8.3)(a)] to see that localization commutes with tight clo-
sure for the pair a ⊆ R; hence r/1 ∈ (a∗)ei and r ∈ (a∗)eici. This is true for all
i = 1, . . . , t.
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However, it follows from elementary facts about primary decomposition that
the hypotheses about p1, . . . , pt ensure that a∗ = ⋂t

i=1(a
∗)eici , so it follows that

r ∈ a∗ as required. It is then immediate that pu0+1 is a test exponent for c, a.
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