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The Action of Geometric Automorphisms
of Asymptotic Teichmüller Spaces
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1. Introduction

The Teichmüller space T(R) of a Riemann surfaceR is a deformation space of the
complex structure of R, and the quasiconformal mapping class group MCG(R)
of R is the set of all homotopy classes of quasiconformal automorphisms of R.
The quasiconformal mapping class group MCG(R) acts on the Teichmüller space
T(R) isometrically with respect to the Teichmüller distance, which induces the
Teichmüller modular group Mod(R). If R is of analytically infinite type, then
T(R) is infinite dimensional and the action of MCG(R) on T(R) is, in general,
not discontinuous. This is equivalent to the orbit of some point in T(R) under
the action of MCG(R) not being discrete. This phenomenon appears only when
Teichmüller spaces are infinite dimensional; that is, it does not occur for Riemann
surfaces of analytically finite type. On the basis of this fact, in [8] and [9] we intro-
duced the notion of limit sets and regions of discontinuity of Teichmüller modular
groups (analogous to the theory of Kleinian groups) and studied the dynamics of
Teichmüller modular groups. This paper applies the theory of dynamics to isomet-
ric automorphisms on a certain quotient space of T(R) that we call the asymptotic
Teichmüller space.

The asymptotic Teichmüller spaceAT(R) ofR was introduced in [14] for R the
upper half-plane and in [4] and [13] forR an arbitrary hyperbolic Riemann surface.
The asymptotic Teichmüller space AT(R) is of interest only when R is of analyt-
ically infinite type; otherwise, AT(R) consists of just one point. Similarly to the
action of MCG(R) on T(R), every element of MCG(R) induces an isometric auto-
morphism of AT(R). In particular, we have a homomorphism ιAT : MCG(R) →
Isom(AT(R)). We define the geometric automorphism group G(R) as the image
ιAT (MCG(R)).

We investigate the dynamical behavior of G(R) on AT(R). However, it is dif-
ferent from the action of MCG(R) on T(R) that the homomorphism ιAT is not
injective. Furthermore, the action of MCG(R) on AT(R) can be trivial. In fact,
there exists an example where the action of MCG(R) is trivial even thoughAT(R)
is nontrivial. It is therefore necessary to know when the action of MCG(R) on
AT(R) is nontrivial. We prove that if a Riemann surface R is of topologically in-
finite type and satisfies the upper bound condition, then the action of MCG(R) on
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AT(R) is nontrivial. Furthermore, for a Riemann surface R that does not neces-
sarily satisfy the upper bound condition, we give a condition for a quasiconformal
automorphism of R to induce a nontrivial action on AT(R).

In Section 4, we define the limit set and the region of discontinuity of G(R)
and observe a relationship between the limit set of Mod(R) on T(R) and that of
G(R) on AT(R). We prove that if a Riemann surface R does not satisfy the lower
bound condition, then both the limit set of Mod(R) on T(R) and that of G(R) on
AT(R) coincide with the respective whole spaces. On the other hand, we have an
example of a Riemann surface R satisfying the lower and upper bound conditions
for which the limit set of Mod(R) on T(R) is empty but the limit set of G(R) on
AT(R) is not empty.

2. Preliminaries

2.1. Teichmüller Spaces and Teichmüller Modular Groups

Throughout this paper we assume that a Riemann surfaceR is hyperbolic. Namely,
it is represented by a quotient space H/	 of the upper half-plane H by a torsion-free
Fuchsian group 	.We say thatR is of analytically finite type if it is a compact sur-
face with at most finitely many points removed and thatR is of topologically finite
type if it is a compact surface with at most finitely many points and disks removed.
Furthermore, we say that R satisfies the lower bound condition if the injectivity
radius at any point of R except cusp neighborhoods is uniformly bounded away
from zero; R satisfies the upper bound condition if there exists a subdomain R∗
of R such that the injectivity radius at any point of R∗ is uniformly bounded from
above and such that the simple closed curves in R∗ carry the fundamental group
of R. The lower and upper bound conditions are quasiconformally invariant.

We say that two quasiconformal homeomorphisms f1 and f2 on R are equiv-
alent if there exists a conformal homeomorphism h : f1(R) → f2(R) such that
f −1

2 � h � f1 : R → R is homotopic to the identity. Here the homotopy is consid-
ered to be relative to the ideal boundary at infinity. The Teichmüller space T(R)
of a Riemann surface R is the set of all equivalence classes [f ] of quasiconformal
homeomorphisms f on R. A distance between two points [f1] and [f2 ] in T(R)
is defined by dT ([f1], [f2 ]) = logK(f ), where f is an extremal quasiconformal
homeomorphism in the sense that its maximal dilatation K(f ) is minimal in the
homotopy class of f2 � f −1

1 . Then dT is a complete distance on T(R) and is called
the Teichmüller distance. For fundamental facts on Teichmüller spaces, see [12]
and [19].

The quasiconformal mapping class is the homotopy equivalence class [g] of
quasiconformal automorphisms g of a Riemann surface, and the quasiconformal
mapping class group MCG(R)ofR is the set of all quasiconformal mapping classes
on R. Here the homotopy is considered to be relative to the ideal boundary at in-
finity. Every element [g] ∈ MCG(R) induces an automorphism [g]∗ of T(R) by
[f ] �→ [f � g−1], which is an isometry with respect to dT . Let Isom(T (R)) be the
group of all isometric automorphisms of T(R). Then we have a homomorphism
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ιT : MCG(R)→ Isom(T (R))

given by [g] �→ [g]∗, and we define the Teichmüller modular group by

Mod(R) = ιT (MCG(R)).

It was proved in [3] and [7] that ιT is injective (faithful) if R is of nonexceptional
type. Here we say that a Riemann surface R is of exceptional type if R is of ana-
lytically finite type and satisfies 2g + n ≤ 4, where g is the genus of R and n is
the number of punctures of R.

2.2. Asymptotic Teichmüller Spaces

We say that a quasiconformal homeomorphism f on R is asymptotically con-
formal if, for every ε > 0, there exists a compact subset E of R such that the
maximal dilatation f is less than 1 + ε on R − E. We say that two quasicon-
formal homeomorphisms f1 and f2 on R are asymptotically equivalent if there
exists an asymptotically conformal homeomorphism h : f1(R)→ f2(R) such that
f −1

2 � h � f1 : R → R is homotopic to the identity relative to the ideal boundary
at infinity of R. The asymptotic Teichmüller space AT(R) with the base Riemann
surface R is the set of all asymptotic equivalence classes [[f ]] of quasiconformal
homeomorphisms f on R; see [4] and [13] for details. Since a conformal homeo-
morphism is asymptotically conformal, there is a natural projection π : T(R) →
AT(R) that maps each Teichmüller equivalence class [f ] ∈ T(R) to the asymp-
totic Teichmüller equivalence class [[f ]] ∈ AT(R). The asymptotic Teichmüller
space AT(R) has a complex manifold structure such that π is holomorphic (see
also [5] and [6]).

For a quasiconformal homeomorphism f of R, the boundary dilatation of f is
defined by H ∗(f ) = infK(f |R−E), where the infimum is taken over all compact
subsets E of R. Furthermore, for a Teichmüller equivalence class [f ] ∈ T(R),
the boundary dilatation of [f ] is defined by H([f ]) = infH ∗(g), where the infi-
mum is taken over all elements g ∈ [f ]. A distance between two points [[f1]] and
[[f2 ]] in AT(R) is defined by dAT ([[f1]], [[f2 ]]) = logH([f2 � f −1

1 ]), where
[f2 �f −1

1 ] is a Teichmüller equivalence class of f2 �f −1
1 in T(f1(R)). Then dAT is

a complete distance on AT(R) and is called the asymptotic Teichmüller distance.
For every point [[f ]] ∈ AT(R), there exists an asymptotically extremal element
f0 ∈ [[f ]] in the sense that H([f ]) = H ∗(f0).

3. Nontrivial Actions of Quasiconformal
Mapping Classes on AT(R)

It is similar to the case of Teichmüller spaces that every element [g] ∈ MCG(R)
induces an automorphism [g]∗ of AT(R) by [[f ]] �→ [[f � g−1]], which is an
isometry with respect to dAT . Let Isom(AT(R)) be the group of all isometric auto-
morphisms of AT(R). Then we have a homomorphism

ιAT : MCG(R)→ Isom(AT(R))
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given by [g] �→ [g]∗. We define the geometric automorphism group by

G(R) = ιAT (MCG(R))

and call an element of G(R) a geometric automorphism.
Unlike the case of ιT : MCG(R) → Isom(T (R)), the homomorphism ιAT is

not injective: namely, Ker ιAT �= {[id]} unless R is either the unit disc or a once-
punctured disc. Furthermore, it is not always true that MCG(R) acts on AT(R)
nontrivially. Actually, if AT(R) is trivial then the action of MCG(R) is trivial.
Even for AT(R) nontrivial we have the following example.

Example 3.1. In [17], a Riemann surface R of analytically infinite type is con-
structed so that Ker ιAT = MCG(R); that is, the action of MCG(R) on AT(R) is
trivial. Note that R does not satisfy the upper bound condition.

In this section we give a sufficient condition on a Riemann surface for the quasi-
conformal mapping class group to act on the asymptotic Teichmüller space non-
trivially. By definition, the action of MCG(R) on AT(R) is nontrivial if and only
if there exist an element [g] ∈ MCG(R) and a point τ̂ = [[f ]] ∈AT(R) such that
[g]∗(τ̂ ) �= τ̂ ; that is, iff the homotopy equivalence class of f � g−1 � f −1 contains
no asymptotically conformal automorphisms of f(R).

For a nontrivial simple closed curve c on R, let �(c) be the geodesic length for
the free homotopy class of c and let d be the hyperbolic distance on R.

Theorem 3.2. Let R = H/	 be a Riemann surface on which there exists a
sequence {cn}∞n=1 of infinitely many simple closed geodesics such that the hyper-
bolic lengths �n := �(cn) are uniformly bounded from above. Then the action of
MCG(R) on AT(R) is nontrivial.

For a proof of Theorem 3.2, the following lemma on extremal length is crucial.
Let F = {β} be a set of rectifiable curves β on a domain D in C. Then the ex-
tremal length of the curve family F is defined by

λ(F ) = sup
ρ

{
infβ∈F

∫
β
ρ(z)|dz|}2

∫∫
D
ρ(z)2 dx dy

,

where the supremum is taken over all Borel measurable nonnegative functions
ρ(z) on D. If the supremum is attained by ρ0(z) then we call ρ0(z)|dz| the ex-
tremal metric for the curve family F ; for details, see [1] and [20].

Lemma 3.3. LetQ be a quadrilateral in C and letQ0 be a subdomain ofQ. Let
F be a family of all curves on Q connecting a pair of the opposite sides of the
boundary ofQ. Let g be aK-quasiconformal homeomorphism onQ such that the
restriction of g toQ0 is (1+ε)-quasiconformal for some ε > 0. Then the extremal
length λ(g(F )) of the curve family g(F ) on g(Q) satisfies

(1/C) · λ(F ) ≤ λ(g(F )) ≤ C · λ(F ),
where C = C(K, ε, r) = K + (1 + ε −K)r and r < 1 is the ratio of the area of
Q0 toQ with respect to the extremal metric for the curve family F.
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Proof. Let F ′ be a family of all curves onQ connecting another pair of the oppo-
site sides of the boundary ofQ. Then λ(F )λ(F ′) = 1 and λ(g(F ))λ(g(F ′)) = 1.
We will obtain a lower bound of λ(F ′). Let λ0(z)|dz| be the extremal metric for
the curve family F ′ that is the same as that for the curve family F up to a constant,
and define a metric ρ(ζ)|dζ| on g(Q) by

ρ(ζ) := λ0(g
−1(ζ))

|gz(g−1(ζ))| − |gz̄(g−1(ζ))| .
Since |dζ| ≥ (|gz(z)| − |gz̄(z)|)|dz|, it follows that∫

g(β)

ρ(ζ)|dζ| ≥
∫
β

λ0(z)|dz|

for an arbitrary curve β ∈F ′. Furthermore,∫∫
g(Q)

ρ(ζ)2 dξ dη =
∫∫
Q

λ0(z)
2 |gz| + |gz̄|
|gz| − |gz̄| dx dy

≤ K
∫∫
Q−Q0

λ0(z)
2 dx dy + (1 + ε)

∫∫
Q0

λ0(z)
2 dx dy

= (1 − r)K
∫∫
Q

λ0(z)
2 dx dy + r(1 + ε)

∫∫
Q

λ0(z)
2 dx dy

= {K + (1 + ε −K)r}
∫∫
Q

λ0(z)
2 dx dy.

Thus we have

λ(g(F ′)) ≥ 1

K + (1 + ε −K)r λ(F
′), (1)

which implies that λ(g(F )) ≤ C · λ(F ). Since the inequality (1) holds also for
the curve family F, the lemma’s first inequality follows.

Lemma 3.3 holds also for annuli as follows, a result originally proved in [18].

Lemma 3.4. Let A be an annulus and let A0 be a subdomain of A. Let F be a
family of all curves on A connecting distinct boundary components of A. If g is
a K-quasiconformal homeomorphism on A such that the restriction of g to A0 is
(1 + ε)-quasiconformal for some ε > 0, then the inequality

(1/C) · λ(F ) ≤ λ(g(F )) ≤ C · λ(F )
holds. The constant C is the same as in Lemma 3.3.

Proof. Let F ′ be a family of all curves on A separating the boundary compo-
nents of A. Then λ(F )λ(F ′) = 1 and λ(g(F ))λ(g(F ′)) = 1. Thus the proof of
Lemma 3.3 can be applied.

For arguments in this section, we recall some facts on the extremal length on an-
nuli. Let c be a simple closed geodesic on a Riemann surface R = H/	 with the
hyperbolic length � > 0, and let γ be a hyperbolic element of 	 corresponding to
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c. We may assume that γ (z) = e�z and consider A = H/〈γ〉, an annular cover
of R. Then A is conformally equivalent to {z ∈ C | 1 < |z| < s}, where log s =
2π2/�. Let F be a family of all curves on A connecting distinct boundary compo-
nents of A. Then the extremal metric for the curve family F is given by

ρs(z)|dz| := |dz|
|z| log s

,

and λ(F ) = log s/(2π). By this metric, the length of any radial segment is 1, the
length of any concentric circle is 2π/log s, and the area of A is 2π/log s.

Set

Ã(θ) =
{
z∈ H

∣∣ π
2

− θ
2
< arg z <

π

2
+ θ

2

}

and set A(θ) = Ã(θ)/〈γ〉, which is a subdomain of A. Then, with respect to the
extremal metric ρs(z)|dz| on A, the length of any radial segment in A(θ) is θ/π.
Thus the ratio of the area of A(θ) to A is θ/π.

Proof of Theorem 3.2. By assumption, there exists a positive constantM such that
�n ≤ M for all n. Then the cn exit R: namely, d(p, cn) → ∞ (n → ∞) for any
point p ∈R. By taking a subsequence, we may assume that the cn are all disjoint.
See the proof of [16, Prop. 1].

For each n, we take an integer kn such that 3M ≤ kn�n ≤ 4M and consider
a mapping class caused by infinitely many Dehn twists with respect to each cn
wrapped kn times. Then there exists a quasiconformal automorphism g0 in this
mapping class such that the maximal dilatation K(g0) satisfies

K(g0) ≤ sup
n

({(
kn�n

2θn

)2

+ 1

}1/2

+ kn�n
2θn

)2

≤
((

4M 2

θ 2
+ 1

)1/2

+ 2M

θ

)2

,

where θn = 2 arctan{(sinh(�n/2))−1} and θ = 2 arctan{(sinh(M/2))−1} (see [15]).
Namely, [g0 ] is a quasiconformal mapping class. We will prove that [g0 ] con-
tains no asymptotically conformal automorphisms ofR. Then the element [g0 ]∗ ∈
G(R) does not fix the base point [[id]] of AT(R), yielding the assertion.

For each n, let γn be a hyperbolic element of 	 corresponding to cn. We take
an annular cover An = H/〈γn〉 = {z ∈ C | 1 < |z| < sn} of R, where log sn =
2π2/�n. Let Qn = {re iθ ∈An | 0 < θ < 2π}, which is a quadrilateral obtained
by removing a geodesic from An with respect to the extremal metric ρsn(z)|dz|,
and let Fn be a family of all curves on Qn connecting the distinct boundary com-
ponents of An. For any element g ∈ [g0 ], let g̃n be a lift of g to An. Then g̃n fixes
some boundary points a1 and a2 that belong to different components and, for a
curve α connecting a1 and a2 , the image g̃n(α) wraps kn times around An. In this
circumstance, the extremal length λ(g̃n(Fn)) of the curve family g̃n(Fn) on g̃n(Qn)
satisfies

λ(g̃n(Fn))

λ(Fn)
≥

(
(kn − 1)

�n

π

)2

+ 1 ≥ 4M 2

π2
+ 1 =: M0

for all n. See the proof of [15, Thm. 1].
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We take a positive constant ε0 such that 1 + ε0 < M0. Suppose to the contrary
that [g0 ] contains an asymptotically conformal automorphism h with the maxi-
mal dilatation K0 > 1. Then there exists a compact subset E of R such that the
restriction of h to R − E is (1 + ε0)-quasiconformal.

Since the cn exitR, we may assume that cn ⊂ R−E and set dn = d(E, cn). For
a fixed integer n, we may assume that γn(z) = e�nz; now consider Ã(θn) for θn =
2 arctan(sinh dn) andA(θn) = Ã(θn)/〈γn〉. Then there is no lift ofE inA(θn). The
ratio of the area of A(θn) to An with respect to the extremal metric ρsn(z)|dz| is
θn/π =: rn.

Let C = C(K, ε, r) be the constant obtained in Lemma 3.3, which tends to 1+ ε
as r → 1. We take an integer n0 such that rn0 satisfies C(K0, ε0, rn0) < M0. A
lift h̃n0 of h to An0 is K0-quasiconformal, and the restriction of h̃n0 to A(θn0) is
(1 + ε0)-quasiconformal. By Lemma 3.3, we have

λ(h̃n0(Fn0))

λ(Fn0)
≤ C(K0, ε0, r0) < M0.

This contradicts the foregoing argument. Hence we conclude that [g0 ] contains
no asymptotically conformal automorphisms of R.

As a corollary to Theorem 3.2, we have the following.

Corollary 3.5. LetR be a Riemann surface of topologically infinite type. Sup-
pose that R satisfies the upper bound condition. Then the action of MCG(R) on
AT(R) is nontrivial.

Proof. Since R satisfies the upper bound condition, there exists a subdomain R∗
of R such that the injectivity radius at any point of R∗ is uniformly bounded from
above and such that the simple closed curves in R∗ carry the fundamental group
of R. Since R is of topologically infinite type, the subdomain R∗ is of topologi-
cally infinite type. Hence we can take a sequence of infinitely many simple closed
geodesics inR∗ whose hyperbolic lengths are uniformly bounded from above. The
statement then follows from Theorem 3.2.

On the other hand, if R does not satisfy the upper bound condition then the action
of MCG(R) on AT(R) can be trivial, as in Example 3.1. For a Riemann surface
R that does not necessarily satisfy the upper bound condition, we next give a con-
dition for a quasiconformal automorphism of R to induce a nontrivial action on
AT(R).

Theorem 3.6. Let g be a quasiconformal automorphism of a Riemann surface
R. Suppose there exists a constant δ > 1 such that, for every compact subset E
of R, there is a simple closed geodesic c on R outside of E satisfying either

�(g(c))

�(c)
≤ 1

δ
or

�(g(c))

�(c)
≥ δ.

Then g is not homotopic to any asymptotically conformal automorphism of R. In
particular, the action of [g] ∈ MCG(R) on AT(R) is nontrivial.
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This theorem easily follows from [6, Lemma 13.1]. We shall give another elemen-
tary proof, but first we need the following lemma.

Lemma 3.7. LetR = H/	 be a Riemann surface and let c be a simple closed geo-
desic onR. LetE be a subset onR and let d = d(c,E) be the hyperbolic distance
between c and E. If g is a K-quasiconformal homeomorphism of R onto another
Riemann surface such that the restriction of g to R−E is (1+ ε)-quasiconformal
for some ε > 0, then the inequality

(1/α) · �(c) ≤ �(g(c)) ≤ α · �(c)
holds for a constant

α = α(K, ε, d) = K + (1 + ε −K)2 arctan(sinh d)

π
.

Remark. When E = R (and thus d = 0), this lemma is just the same as [21,
Lemma 3.1]. For ε = 0, the lemma is proved in [18].

Proof of Lemma 3.7. We take an annular cover A = A(c) = H/〈γ〉 of R with
respect to a hyperbolic element γ ∈ 	 corresponding to c. We may assume that
γ (z) = kz, where log k = �(c). Consider Ã(θ) for θ = 2 arctan(sinh d) and
A(θ) = Ã(θ)/〈γ〉. Then there is no lift of E in A(θ).

Let F be a family of all curves on A connecting the distinct boundary compo-
nents of A. Then the extremal length λ(F ) of F is π/�(c).

We take an annular cover A′ = A′(g(c)) = H/〈γ ′ 〉 of f(R) with respect to the
hyperbolic element γ ′ = g̃ � γ � g̃−1 corresponding to g(c). Here g̃ is a lift of g to
H. Then the projection ĝ : A → A′ of g̃ is a K-quasiconformal homeomorphism
and the restriction of ĝ toA(θ) is (1+ε)-quasiconformal. By Lemma 3.4, we have

1

K + (1 + ε −K)(θ/π) · π
�(c)

≤ λ(ĝ(F )) ≤ {K + (1 + ε −K)(θ/π)} · π
�(c)

.

Since λ(ĝ(F )) = π/�(g(c)), this inequality is equivalent to the assertion.

Proof of Theorem 3.6. We take a positive constant ε0 such that 1+ ε0 < δ. Sup-
pose to the contrary that g is homotopic to an asymptotically conformal automor-
phism h. Then there exists a compact subset E of R such that the restriction of h
to R−E is (1+ ε0)-quasiconformal. Let α = α(K, ε, d) be the constant obtained
in Lemma 3.7, which tends to 1 + ε as d → ∞, and take a positive constant d0

such that α0 = α(K(h), ε0, d0) < δ. By assumption, we can take a simple closed
geodesic c on R such that d(E, c) ≥ d0 and such that either �(h(c))/�(c) ≤ 1/δ
or �(h(c))/�(c) ≥ δ. On the other hand, by Lemma 3.7 we have (1/α0) · �(c) ≤
�(h(c)) ≤ α0 · �(c), yielding a contradiction.

4. Dynamics of Geometric Automorphisms of AT(R)

4.1. Limit Sets for Groups of Isometries

In general, let X be a complete metric space with distance d and let Isom(X) be
the group of all isometric automorphisms of X. For a subgroup G ⊂ Isom(X)



The Action of Geometric Automorphisms of Asymptotic Teichmüller Spaces 277

and a point x ∈X, it is said that y ∈X is a limit point of x for G if there exists a
sequence {gn}∞n=1 of distinct elements ofG such that d(gn(x), y)→ 0 (n→ ∞).
The set of all limit points of x forG is denoted by4(G, x), and the limit set forG
is defined by 4(G) = ⋃

x∈X 4(G, x). It is said that x ∈X is a recurrent point for
G if x ∈4(G, x); the set of all recurrent points forG is called the recurrent set for
G and is denoted by Rec(G). It is evident from the definition that Rec(G) ⊂ 4(G)
and that these sets areG-invariant. Moreover, it was proved in [10, Prop. 2.2] that
4(G) = Rec(G), which is a closed set.

The complement X − 4(G) of the limit set is denoted by 5(G), which is the
largest open subset inX whereG acts discontinuously. This means that, for every
point x ∈5(G), there exists a neighborhood U of x such that the number of ele-
ments g ∈G satisfying g(U)∩U �= ∅ is finite. Hence we call5(G) the region of
discontinuity for G.

4.2. Limit Sets for Geometric Automorphism Groups on AT(R)

We apply the aforementioned notation to the Teichmüller space T(R) with the
Teichmüller distance dT . Since the Teichmüller modular group Mod(R) is a sub-
group of Isom(T (R)), it follows that the limit set 4T (G) and the region of dis-
continuity 5T (G) on T(R) for a subgroupG of Mod(R) can be defined (see also
[8]). This notion is of interest only when R is of analytically infinite type and has
no ideal boundary at infinity. Indeed, we always have T(R) = 5T (Mod(R)) if R
is of analytically finite type and have T(R) = 4T (Mod(R)) if R has ideal bound-
ary at infinity. Hereafter, we assume that R is of analytically infinite type and has
no ideal boundary at infinity; thus, the Fuchsian model of R is infinitely generated
of the first kind.

Similarly, for the asymptotic Teichmüller space AT(R) with the asymptotic
Teichmüller distance dAT , we can consider the limit set 4AT (G) on AT(R) for a
subgroupG of the geometric automorphism group G(R). In [8, Thm. 2] we proved
that, if R does not satisfy the lower bound condition, then4T (Mod(R)) = T(R).
The same statement holds also for the limit set of G(R) on AT(R).

Theorem 4.1. Let R be a Riemann surface that does not satisfy the lower bound
condition. Then 4AT (G(R)) = AT(R).

Proof. First we will construct quasiconformal automorphisms hi (i = 1, 2, . . . )
of R that are not homotopic to any asymptotically conformal automorphisms of
R and such that H(hi) → 1 (i → ∞). Then the base point [[id]] of AT(R) be-
longs to the limit set 4AT (G(R)). By assumption, there exists a sequence {cn}∞n=1
of simple closed geodesics on R such that �n := �(cn) → 0 as n → ∞. We
may assume that the �n are strictly decreasing. For a given integer i ∈ N and
for all n ≥ i, take a positive integer k(n, i) satisfying 3�i ≤ k(n, i)�n ≤ 4�i,
and consider a mapping class caused by infinitely many Dehn twists with respect
to each cn (n ≥ i) wrapped k(n, i) times. Then there exists a quasiconformal
automorphism hi in this mapping class such that the maximal dilatation K(hi)
satisfies
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K(hi) ≤ sup
n≥i

({(
k(n, i)�n

2θn

)2

+ 1

}1/2

+ k(n, i)�n
2θn

)2

≤
((

4�2
i

θ 2
i

+ 1

)1/2

+ 2�i
θi

)2

,

where θn = 2 arctan{(sinh(�n/2))−1}. Namely, [hi] is a quasiconformal mapping
class and K(hi) → 1 (i → ∞). Hence H(hi) → 1. By repeating the same ar-
gument as in the proof of Theorem 3.2 for each hi, we see that [hi] contains no
asymptotically conformal automorphisms of R.

For an arbitrary point [[f ]] ∈AT(R), the Riemann surface f(R) does not sat-
isfy the lower bound condition. Then, by a consideration similar to that just stated,
there exist quasiconformal automorphisms of f(R) that are not homotopic to any
asymptotically conformal automorphisms of f(R) and such that their boundary
dilatations tend to 1. Hence [[f ]] ∈4AT (G(R)).
On the other hand, suppose that R satisfies the lower and upper bound conditions.
Then we proved in [8, Thm. 3] that5T (Mod(R)) �= ∅. Furthermore, ifR satisfies
an extra condition then 5T (Mod(R)) = T(R).
Theorem 4.2. There exists a Riemann surface R satisfying the lower and upper
bound conditions such that 4T (Mod(R)) = ∅ and 4AT (G(R)) �= ∅.
Proof. Let R0 be a normal cover of a compact Riemann surface of genus 2 whose
covering transformation group is a cyclic group 〈φ〉 generated by a conformal auto-
morphism φ of R0 of infinite order. Set R = R0 − {p} for a point p ∈R0. Then
R satisfies the lower and upper bound conditions and 4T (Mod(R)) = ∅ by [11,
Thm. 2] or [9, Cor. 4.12].

By Proposition 4.3 (which follows), 4AT (G(R0)) �= ∅. This is equivalent to
4AT (G(R)) �= ∅ by the following facts. The asymptotic Teichmüller spaces
AT(R0) andAT(R) are isometric. Indeed, for a quasiconformal homeomorphism
f on R0, consider the restriction f |R on R. Then the correspondence [[f ]] �→
[[f |R]] produces an isometry betweenAT(R0) andAT(R). Furthermore, the sub-
groups G(R0) of Isom(AT(R0)) and G(R) of Isom(AT(R)) can be identified. For
every element [g] ∈ MCG(R0), we first take a simply connected closed subset V
of R0 containing p and g(p) and next take a quasiconformal automorphism h of
R0 such that h(g(p)) = p and h is the identity outside of V. Then [h � g|R] ∈
MCG(R), and this mapping class depends on the choice of h. However, the cor-
respondence [g]∗ �→ [h � g|R]∗ gives an isomorphism between G(R0) and G(R).
Hence we may identify the action of G(R0) on AT(R0) with that of G(R) on
AT(R), and thus 4AT (G(R0)) �= ∅ if and only if 4AT (G(R)) �= ∅.
The following proposition completes a proof of Theorem 4.2.

Proposition 4.3. Let R0 be a normal cover of a compact Riemann surface of
genus 2 whose covering transformation group is a cyclic group 〈φ〉 generated by
a conformal automorphism φ of R0 of infinite order. Then 4AT (G(R0)) �= ∅.
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Proof. Using the method of dividing simple closed geodesics ai (i ∈ Z) on R0

whose hyperbolic lengths are all the same, we divideR0 into infinitely many toriAi
(i ∈ Z) having two boundary components ai,− and ai,+ such that φ(Ai) = Ai+1.

Furthermore, for each integer i, we divide Ai into two pairs of pants using two
nondividing simple closed geodesics bi and ci on R0 belonging to Ai. Then we
have pairs of pants Pi,− with boundary components ai,−, bi,−, ci,− and Pi,+ with
boundary components ai,+ , bi,+ , ci,+.

The symmetry axes of a pair of pants are the fixed point loci of the canonical
orientation-reversing isometric involution on it. Let αi,− be the symmetry axis
of Pi,− connecting bi,− and ci,−. Similarly, βi,− is the symmetry axis connecting
ci,− and ai,− while γi,− is the axis connecting ai,− and bi,−. We parameterize the
boundary components of Pi,− counterclockwise by a normalized arc length pa-
rameter θ (0 ≤ θ ≤ 1) with respect to the hyperbolic metric such that ai,−(0) =
ai,−(1) ∈ γi,−, bi,−(0) = bi,−(1) ∈ αi,−, and ci,−(0) = ci,−(1) ∈ βi,−. Similarly,
we parameterize the boundary components of Pi,+ counterclockwise by a normal-
ized arc length parameter θ.

Let L∞(Z) be the Banach space of all bounded bilateral infinite sequences of
real numbers. Let (ξi)i∈Z (0 < ξi ≤ 1) be a point of L∞(Z) defined in [10,
Def. 4.3] as follows: Set ξ0 = 1 and ξ1 = ξ−1 = 1

2ξ0 = 1
2 ; we proceed with ξi =

ξi−6 = 2
3ξi−3 for i = 2, 3, 4 and ξi = ξi−18 = 3

4ξi−9 for i = 5, . . . ,13. Inductively,
set

ξi = ξi−2·3k = k + 1

k + 2
· ξi−3k

for
∑k−1
j=0 3j + 1 ≤ i ≤ ∑k

j=0 3j stratified with the indices k ∈ N. This is equiv-
alent to the following direct definition by using 3-adic expansion. Every integer
i ∈ Z is uniquely written as i = ∑∞

j=0 εj(i) · 3j, where εj(i) is either −1, 0, or 1.
Then ξi is defined by ξi = ∏

εj (i) �=0(j + 1)/(j + 2), where the product is taken
over all j ∈ N satisfying εj(i) �= 0.

For each integer i, we consider a pair of pants P ′
i,− with geodesic boundary

components a ′
i,−, b ′

i,−, c ′
i,− such that �(a ′

i,−) = �(ai,−), �(b ′
i,−) = �(bi,−), and

�(c ′
i,−) = 1 + ξi . Just as we did for the boundary of Pi,−, we parameterize

each of boundary components of P ′
i,− by a normalized arc length parameter θ.

Similarly, we consider a pair of pants P ′
i,+ with parameterized boundary compo-

nents a ′
i,+ , b ′

i,+ , c ′
i,+ such that �(a ′

i,+) = �(ai,+), �(b ′
i,+) = �(bi,+), and �(c ′

i,+) =
1+ξi . Take a quasiconformal homeomorphism fi,− : Pi,− → P ′

i,− such that for all
θ we have fi,−(ai,−(θ)) = a ′

i,−(θ), fi,−(bi,−(θ)) = b ′
i,−(θ), and fi,−(ci,−(θ)) =

c ′
i,−(θ); take a quasiconformal homeomorphism fi,+ : Pi,+ → P ′

i,+ with proper-
ties similar to those of fi,−.

We glue P ′
i,− and P ′

i,+ by identifying b ′
i,−(θ) with b ′

i,+(1 − θ) and identifying
c ′
i,−(θ) with c ′

i,+(1 − θ) for all θ. Then we obtain a torus A′
i with two bound-

ary components a ′
i,− and a ′

i,+. Furthermore, we glue A′
i and A′

i+1 by identifying
a ′
i,+(θ) and a ′

i+1,−(1 − θ) for all θ. Then we obtain a Riemann surface R ′
0 of infi-

nite genus as well as a quasiconformal homeomorphism f : R0 → R ′
0 such that

the restriction of f to Pi,± is fi,±. The Riemann surface R ′
0 has simple closed

geodesics c ′
i(θ) (= c ′

i,−(θ) = c ′
i,+(1 − θ)) with hyperbolic length 1 + ξi .
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Lemma 4.4. For the point τ = [f ] ∈ T(R0) and for the element [φ]∗ ∈ Mod(R0),
we have dT ([φ3k ]∗(τ ), τ)→ 0 (k → ∞).
Proof. Set ψ = f � φ−1 � f −1. Then dT ([φn]∗(τ ), τ) = logK(ϕn), where ϕn is
an extremal quasiconformal automorphism of R ′

0 in the homotopy class of ψn.
The quasiconformal automorphism ψn of R ′

0 maps P ′
i,± to P ′

i−n,± for each i, and
ψn satisfies �(ψ n(a ′

i,±)) = �(a ′
i,±), �(ψ n(b

′
i,±)) = �(b ′

i,±), and �(ψ n(c ′
i,±)) =

1 + ξi−n. Applying [2, Thm. 1.1] to ψn|P ′
i,± , we see that there exists a quasi-

conformal automorphism ϕ̃n that is homotopic to ψn and satisfies K(ϕ̃n|A′
i
) ≤

1+Cεi,n on each A′
i . Here C > 0 is a constant independent of i and n, and εi,n =

log{(1+ ξi)/(1+ ξi−n)}. Since [10, Lemma 4.4] shows that ξi−3k → ξi as k → ∞
for all i, it follows that εi,3k → 0 as k → ∞. Thus we have K(ϕ̃3k ) → 1 and
hence dT ([φ3k ]∗(τ ), τ)→ 0 as k → ∞.
By Lemma 4.4 we have dAT ([φ3k ]∗(τ̂ ), τ̂ ) → 0 (k → ∞) for τ̂ = [[f ]] ∈
AT(R0), which is a projection of τ and for [φ3k ]∗ ∈ G(R0). The following lemma,
which is proved as an application of Theorem 3.6, concludes that τ̂ ∈4AT (G(R0))

and so completes the proof of Proposition 4.3.

Lemma 4.5. [φ3k ]∗ �= [φ3m ]∗ in G(R0) for every k �= m.
Proof. We will prove [φ3k ]∗(τ̂ ) �= [φ3m ]∗(τ̂ ) by showing that ψ 3m−3k is not ho-
motopic to any asymptotically conformal automorphism of R ′

0. We may assume
that m > k ≥ 0. For an arbitrary integer n > 0,

�(c ′
3m+n)

�(ψ 3m−3k (c ′
3m+n))

= 1 + ξ3m+n

1 + ξ3m+n−(3m−3k )
= 1 + ξ3m+n

1 + ξ3m+nξ3mξ3k

>
1 + ξ3m

1 + (ξ3m)2ξ3k
(> 1).

In the last inequality we have used that the function (1 + x)/(1 + ax) (a < 1) is
strictly increasing for x > 0 and that ξ3m+n > ξ3m. Because the last constant in the
displayed inequality is independent of n, applying Theorem 3.6 to the quasicon-
formal automorphismψ 3m−3k shows that it is not homotopic to any asymptotically
conformal automorphism of R ′

0.

The proof of Lemma 4.5 yields the following result.

Corollary 4.6. Given a Riemann surface R0 and a conformal automorphism
φ as in Proposition 4.3, the action of the element [φ] ∈ MCG(R0) on AT(R0) is
nontrivial.

Proof. Using the proof of Lemma 4.5 with k = 0 andm = 1, it follows that ψ 2 is
not homotopic to any asymptotically conformal automorphism ofR ′

0. Therefore,ψ
is not homotopic to any asymptotically conformal automorphism. Thus [φ]∗(τ̂ ) �=
τ̂ and so [φ] ∈ MCG(R0) acts on AT(R0) nontrivially.
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We now classify the limit points into two types. For a subgroup G of G(R), we
define (a) 4AT,0(G) as the set of points τ̂ ∈ 4AT (G) such that there exists a se-
quence {χn}∞n=1 of distinct elements of G satisfying both dAT ((χn)∗(τ̂ ), τ̂ ) → 0
(n → ∞) and (χn)∗(τ̂ ) �= τ̂ for all n and (b) 4AT,∞(G) as the set of points τ̂ ∈
4(G) such that StabG(τ̂ ) consists of infinitely many elements (cf. [8, Def. 2]).

Proposition 4.7. Let R0 be the Riemann surface of Proposition 4.3. Then we
have 4AT,0(G(R0)) �= ∅ and 4AT,∞(G(R0)) �= ∅.
Proof. By Lemma 4.4 and the proof of Lemma 4.5, τ̂ ∈4AT,0(G(R0)). The base
point [[id]] ∈AT(R0) is fixed by all elements [φn]∗ ∈ G(R0) (n∈ Z). By Lemma
4.5, we conclude that [[id]] ∈4AT,∞(G(R0)).
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