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1. Introduction

In [DFo], Diederich and Fornæss constructed a smooth support function for con-
vex domains of finite type that satisfies the correct estimates to be used in the
construction of several integral kernels. (See e.g. [DFFo; DM1; DM2; F; H].)
In [DFFo] this support function was used to construct solution operators for the
Cauchy–Riemann equation that satisfy optimal (isotropic) Hölder estimates, as
follows.

Theorem 1.1 [DFFo]. Let D ⊂⊂ C
n be a linearly convex domain with C∞-

smooth boundary of finite type m. We denote by C 0
(0,q)(D̄) the Banach space

of (0, q)-forms with continuous coefficients on D̄ and by 
1/m
(0,q)

(D) the Banach
space of (0, q)-forms whose coefficients are uniformly Hölder continuous of order
1/m on D. Then there are bounded linear operators

Tq : C 0
(0,q+1)(D̄) → 
1/m

(0,q)
(D)

such that ∂̄Tqf = f for all f ∈C 0
(0,q+1)(D̄) with ∂̄f = 0.

In fact, a simple modification of the standard example shows that in general the
solution of a Cauchy–Riemann equation with bounded left-hand side cannot be
better than (1/m)-Hölder continuous. However, a closer look at the example shows
that it is in the normal direction that the Hölder exponent cannot be better than
1/m. On the other hand, Krantz [K] has shown that (1/2)-Hölder continuous so-
lutions of the Cauchy–Riemann equation in strongly pseudoconvex domains are
almost 1-Hölder continuous in the complex tangent directions, and a similar result
is known for finite-type domains in C

2 (see [ChK]). In our case the situation is
even more difficult because we have several complex tangential directions and, in
contrast to the strongly pseudoconvex case, these directions cannot be handled in
an isotropic way. We expect nevertheless to derive a solution that is (1/m)-Hölder
continuous in the normal direction and satisfies better estimates in the complex
tangential directions.

It turns out that such estimates are best expressed in terms of a certain pseudo-
metric that is associated to the given domain D. So let D = {ρ < 0} ⊂ C

n be a
bounded convex domain with C∞-boundary of finite type m. We further assume
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that ρ is given in such a way that the domainsDζ := {z : ρ(z) < ρ(ζ)} are convex
and of finite type m for all ζ in a certain neighborhood U of ∂D. Such a function
could be given by ρ(z) := inf{t > 0 : p + (z − p)/t ∈ D} − 1 for any p ∈D.

For ζ ∈ U, an arbitrary direction vector v, and ε < ε0, we define the complex
directional level distances by

τ(ζ, v,ε) := max{c : |ρ(ζ + λv) − ρ(ζ)| < ε for all λ∈ C, |λ| < c}.
For a fixed point ζ and a fixed radius ε,we define the ε-extremal basis (v1, . . . , vn)

centered at ζ as in [Mc] or [H]. If it is important to mention the dependence
on ζ and ε of the coordinates with respect to this basis, we denote their compo-
nents by zk,ζ,ε. Let vk be a unit vector in the zk,ζ,ε-direction and write τk(ζ,ε) :=
τ(ζ, vk,ε). We can now define the polydiscs

APε(ζ) := {z∈ C
n : |zk,ζ,ε| ≤ Aτk(ζ,ε) for k = 1, . . . , n}.

(Note that the factor A in front means blowing up the polydisc around its center
and not just multiplying each point by A.)

Using these polydiscs, we define the pseudodistance

d(ζ, z) := inf{ε : z∈Pε(ζ)}.
Now we can state the main result of this paper.

Theorem 1.2. Let D, Tq, and f be as in Theorem 1.1. Then, for every ε > 0,
there exists a constant C such that the solution u := Tqf of the Cauchy–Riemann
equation ∂̄u = f satisfies the following nonisotropic Hölder estimate:

|Tqf(z0) − Tqf(z1)| ≤ C‖f ‖∞ max{d(z0, z1)
1/m, |z0 − z1|1−ε}.

If we choose 0 < ε < 1/m and use the fact that |z0 − z1|m � d(z0, z1) � |z0 − z1|
then we see that, for small values of |z0 − z1|, the term d(z0, z1)

1/m will be larger
than |z0 − z1|1−ε except when d(z0, z1) ≈ |z0 − z1|m. But this can happen only
if z0 is of type m and if the direction to z1 is a direction where the order of contact
with the tangent space is also maximal. In all other cases we obtain the estimate
by d(z0, z1)

1/m.

In fact, it might be possible to avoid the term |z0 − z1|1−ε altogether. That
could be done by constructing a special nonisotropic Hölder space out of one-
dimensional Hölder spaces of different order, where the Hölder space of order 1
receives some special treatment. But this construction would be quite difficult
(owing to the complexity of the geometry of convex domains of finite type), so we
decided to avoid it and state the result as shown here.

Finally, we observe that d(z0, z1) � |z0 −z1| implies that the maximum in The-
orem 1.2 can be estimated by C ′|z0 − z1|1/m. Hence Theorem 1.2 also implies
Theorem 1.1.

This paper is organized as follows. In Section 2 we recall the definition of the
solution operator from [DFFo]; we split it into several parts, which will be esti-
mated differently. We also state the results of these estimates as Lemma 2.1 and
use them to prove Theorem 1.2. Section 3 contains the proof of Lemma 2.1, which
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is done in a series of smaller statements. In Section 4 we finally give an exam-
ple to further clarify the result and to show that (in a certain sense) it is the best
possible.

Acknowledgment. Part of this result was obtained while the author was visit-
ing the University of Michigan at Ann Arbor on occasion of the year of complex
analysis. I wish to express my gratitude to the whole math department for the sup-
port and hospitality given to me. In particular I wish to thank Berit Stensones and
John Eric Fornæss.

2. Solution Operator

In this paper we use exactly the same integral operator as in [DFFo]. For the con-
venience of the reader we recall some details of its definition.

We write lζ(z) = "(ζ)(z − ζ), where "(ζ) is a unitary matrix depending
smoothly on ζ ∈ ∂D such that the unit outer normal vector to ∂D will be turned
into (1, 0, . . . , 0). The following definitions are as in [DFo]:

rζ(w) := ρ(l−1
ζ (w)), aα(ζ) := 1

α!

∂ |α|rζ
∂wα

(0);

Sζ(w) := 3w1 + Kw2
1 − c

m∑
j=2

M 2jσj
∑
|α|=j
α1=0

aα(ζ)w
α (1)

for K and M suitably large, c suitably small, and σj = Re ij. Now put

S(z, ζ) := Sζ(lζ(z)).

Next we want to define a decomposition of S(z, ζ) such that

S(z, ζ) = 〈Q(z, ζ), z − ζ〉 =
n∑

j=1

Qj(z, ζ)(zj − ζj ).

For this we simply define
Q1

ζ(w) := 3 + Kw1 (2)

and (for k > 1)

Qk
ζ (w) := −c

m∑
j=2

M 2jσj
∑
|α|=j

α1=0,αk>0

αk

j
aα(ζ)

wα

wk

(3)

and then set
Q(z, ζ) := "T(ζ)Qζ(lζ(z)).

Now we define Cauchy–Fantappiè integral operatorsRq based on the support func-
tion S and its Hefer decompositionQ(z, ζ). We define the Cauchy–Fantappiè form

W(z, ζ) :=
∑
i

Qi(z, ζ)

S(z, ζ)
dζi .
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Let

B = b

|ζ − z|2 =
∑
i

ζ̄i − z̄i

|ζ − z|2 dζi

be the usual Martinelli–Bochner form and let Kq be the well-known Martinelli–
Bochner operator. Further define

Rqf :=
n−q−2∑
k=0

c
q

k

∫
ζ∈∂D

f ∧W ∧ B ∧ (∂̄ζW )k ∧ (∂̄ζB)
n−q−k−2 ∧ (∂̄zB)

q

=
n−q−2∑
k=0

c
q

k

∫
ζ∈∂D

f ∧ Q ∧ b ∧ (∂̄ζQ)k ∧ (∂̄ζ b)
n−q−k−2 ∧ (∂̄zb)

q

S k+1|ζ − z|2(n−k−1)
. (4)

In the last line we used the convention of denoting the (1, 0)-form
∑

i Qi(z, ζ)dζi
again by Q. Because S is a support function and hence S(ζ, z) �= 0 on ∂D × D,

the standard arguments (see e.g. [DFoW; LMi; R]) show that the operators Tq =
Rq + Kq are solution operators, which means that ∂̄Tqf = f for all ∂̄-closed
(0, q + 1)-forms on D.

The Martinelli–Bochner operator is known to satisfy isotropic α-Hölder esti-
mates for all α < 1. In particular this implies our nonisotropic estimates, so it
only remains to estimate Rqf. In order to do so we consider z-derivatives of this
form. Let δγ be the z-derivative in the γ -direction. It is easy to see that δγ ∂̄ζ b =
δγ ∂̄zb = 0. Thus δγRqf can be written as a sum of integrals of the form

∫
∂D

f ∧ δγQ ∧ b ∧ (∂̄ζQ)k ∧ (∂̄ζ b)
n−q−k−2 ∧ (∂̄zb)

q

S k+1|ζ − z|2(n−k−1)
,

∫
∂D

f ∧ Q ∧ δγ b ∧ (∂̄ζQ)k ∧ (∂̄ζ b)
n−q−k−2 ∧ (∂̄zb)

q

S k+1|ζ − z|2(n−k−1)
,

∫
∂D

f ∧ Q ∧ b ∧ δγ(∂̄ζQ) ∧ (∂̄ζQ)k−1 ∧ (∂̄ζ b)
n−q−k−2 ∧ (∂̄zb)

q

S k+1|ζ − z|2(n−k−1)
,

∫
∂D

f ∧ Q ∧ b ∧ (∂̄ζQ)k ∧ (∂̄ζ b)
n−q−k−2 ∧ (∂̄zb)

q

S k+2|ζ − z|2(n−k−1)
δγ S,

∫
∂D

f ∧ Q ∧ b ∧ (∂̄ζQ)k ∧ (∂̄ζ b)
n−q−k−2 ∧ (∂̄zb)

q

S k+1|ζ − z|2(n−k−1)+1
δγ |ζ − z|,

where the third integral appears only for k > 0.
Now we want to estimate these integrals. First we observe that f is bounded and

thus |f | can be estimated by ‖f ‖∞. Next we observe that δγ b � 1and δγ |ζ−z| � 1.
Hence the second and the fifth integral can both be estimated by ‖f ‖∞Ia with

Ia :=
∫
∂D

|(Q ∧ (∂̄ζQ)k ∧ β)t |
|S|k+1|ζ − z|2(n−k−1)

dσ2n−1.
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Here β is a differential form that contains all the remaining dζj and dζ̄j such that
Q∧ (∂̄ζQ)k ∧ β is of bidegree (n, n−1) in ζ, and (ω)t denotes the tangential part
of the form ω, which is the only part of the form that contributes to the integral
over ∂D.

For the other three integrals, we need to consider

Ib :=
∫
∂D

|(δγQ ∧ (∂̄ζQ)k ∧ β)t |
|S|k+1|ζ − z|2(n−k−1)−1

dσ2n−1,

Ic :=
∫
∂D

|(Q ∧ δγ(∂̄ζQ) ∧ (∂̄ζQ)k−1 ∧ β)t |
|S|k+1|ζ − z|2(n−k−1)−1

dσ2n−1,

Id :=
∫
∂D

|(Q ∧ (∂̄ζQ)k ∧ β)t ||δγS|
|S|k+2|ζ − z|2(n−k−1)−1

dσ2n−1.

We can now formulate the integral estimates that are essential for the proof of our
main theorem.

Lemma 2.1. If ρ = |ρ(z)| and 0 < σ ≤ 1, then

|Ia| � ρσ(1/m−1).

The remaining integrals satisfy the estimate

|Ib|, |Ic|, |Id | �
ρ1/m

τ(z, γ, ρ)
+ |log ρ|.

Note that, since ρ � τ(z, γ, ρ) � ρ1/m, the lemma also implies

|Ia|, |Ib|, |Ic|, |Id | �
ρ1/m

τ(z, γ, ρ)

except if τ(z, γ, ρ) ≈ ρ1/m, in which case

|Ia|, |Ib|, |Ic|, |Id | �
ρ(1−ε)/m

τ(z, γ, ρ)

for ε = σ(m − 1) > 0.
The proof of this lemma will be given in Section 3. Now we come to the proof

of our main theorem.

Proof of Theorem 1.2. For simplicity we write u(z) = Rqf(z). LetA = d(z0, z1),

let γ = (z1 − z0)/|z1 − z0|, and let ν be the inward normal direction at ζ0 =
π(z0). Consider the additional points z̃0 = z0 + Aν and z̃1 = z1 + Aν. Now we
can estimate

|u(z0) − u(z1)| ≤ |u(z0) − u(z̃0)| + |u(z̃0) − u(z̃1)| + |u(z̃1) − u(z1)|

≤
∫ z̃0

z0

|δνu(t)| dt +
∫ z̃1

z̃0

|δγu(t)| dt +
∫ z̃1

z1

|δνu(t)| dt.
In the first and the third integral we have the (worst) case that ν is approximately
the normal direction and thus τ(t, ν, |ρ(t)|) ≈ |ρ(t)|. Nevertheless, we get the
estimate
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∫ z̃0

z0

|δνu(t)| dt ≤
∫ A

0
|δνu(z0 + sν)| ds �

∫ A

0
s1/m−1 ds � A1/m,

and the same is true for the third integral.
To estimate the second integral, first observe that d(z̃0, z̃1) � d(z̃0, z0) +

d(z0, z1) + d(z1, z̃1) � A. Hence z̃1 and the whole line from z̃0 to z̃1 belong
to some PCA(z̃0) and so τ(ζ, γ,A) ≈ τ(z̃0, γ, A) for all those ζ. On the other
hand, |ρ(z̃0)| � A and therefore |δγu(ζ)| � A1/m/τ(z̃0, γ, A) for all ζ on the line
to z̃1. Therefore,∫ z̃1

z̃0

|δγu(t)| dt �
∫ τ(z̃0,γ,A)

0
|δγu(z̃0 + sγ )| ds

�
∫ τ(z̃0,γ,A)

0

A1/m

τ(z̃0, γ, A)
ds � A1/m.

The same argument applies in the exceptional case, but we first replace A1/m by
A(1−ε)/m and finally get

A(1−ε)/m = d(z0, z1)
(1−ε)/m ≈ (|z0 − z1|m)(1−ε)/m ≈ |z0 − z1|1−ε.

3. Estimates

In this section we prove Lemma 2.1, which means that we must estimate the inte-
grals Ia, . . . , Id . We will proceed in several steps. In Section 3.1 we estimate Q,

∂̄Q, and their derivatives. In Section 3.2 we put these estimates together to ob-
tain estimates for |(Q∧ (∂̄ζQ)k ∧ β)t | and similar terms; we also give an estimate
for |δγS|. Finally, Section 3.3 contains the estimates of the integrals, which are
derived from the estimates of Section 3.2.

In obtaining our estimates, we will frequently use the following setup. Fix a
point ζ0 ∈ ∂D and some ε > 0. Denote the ε-extremal coordinates at ζ0 by w∗
and let "∗ be the unitary transformation such that w∗ = "∗(z − ζ0). Also define
η∗ := "∗(ζ − ζ0). We say that z and ζ (or w∗ and η∗, respectively) satisfy condi-
tion (∗) if we have |η∗

j | ≤ C∗τ(ζ0,ε) for all j, |w∗
1 | ≤ C∗, and |w∗

j | ≤ C∗τj(ζ0,ε)

for all j ≥ 2. Note that the condition is satisfied if ζ0 = π(z) and ζ ∈Pε(ζ0).

3.1. Q-Estimates

Using the setup just described, we can write Q with respect to the ε-extremal co-
ordinates at ζ0 as

Q∗(w∗,η∗) := "̄∗Q(ζ0 + ("̄∗)Tw∗, ζ0 + ("̄∗)Tη∗).

The components of this vector will be denoted by Q∗
j (w

∗,η∗) for j = 1, . . . , n.
Here is the main result of this section.

Lemma 3.1. For all w∗ and η∗ satisfying condition (∗),
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|Q∗
k(w

∗,η∗)| �
ε

τk(ζ0,ε)
, (5)

∣∣∣∣ ∂

∂w∗
i

Q∗
k(w

∗,η∗)
∣∣∣∣ �

ε

τk(ζ0,ε)τi(ζ0,ε)
, (6)

∣∣∣∣ ∂

∂η∗
j

Q∗
k(w

∗,η∗)
∣∣∣∣ �

ε

τk(ζ0,ε)τj(ζ0,ε)
, (7)

∣∣∣∣ ∂ 2

∂w∗
i ∂η

∗
j

Q∗
k(w

∗,η∗)
∣∣∣∣ �

ε

τk(ζ0,ε)τi(ζ0,ε)τj(ζ0,ε)
. (8)

Before we start estimating Q and its derivatives, recall that the definition of Q is
independent of the special choice of lζ because an additional rotation in the com-
plex tangent space does not change it (see [DFFo, Lemma 2.1]). We want to make
use of this fact by providing locally a special version of lζ that can then be used
in the estimates. This is done just as in [DFFo], so we give only a short summary
here.

For all η∗ satisfying condition (∗), there exists a matrix ;(η∗), depending
smoothly on η∗, such that "(ζ) := ;("∗(ζ − ζ0))"

∗ has the desired properties
and the following proposition holds.

Proposition 3.2. For all η∗ satisfying condition (∗),

c ≤ |ψkk(η
∗)| ≤ 1 and |ψνk(η

∗)| �
ε2

τν(ζ0,ε)τk(ζ0,ε)
for ν �= k

and ∣∣∣∣ ∂

∂η̄∗
j

ψkk(η
∗)

∣∣∣∣ �
ε

τj(ζ0,ε)τk(ζ0,ε)
,

∣∣∣∣ ∂

∂η̄∗
j

ψνk(η
∗)

∣∣∣∣ �
ε2

τj(ζ0,ε)τν(ζ0,ε)τk(ζ0,ε)
for ν �= k.

See [DFFo, Lemma 5.2] for a proof of this statement and also observe that we
have "(ζ0 + ("̄∗)Tη∗) = ;(η∗)"∗. We will also need the following result.

Proposition 3.3. For all ζ in Pε(ζ0) and vj(ζ) := "̄T(ζ)ej we have

τ(ζ, vj(ζ),ε) ≈ τj(ζ0,ε)

with constants independent of ζ, ζ0, and ε.

This proposition has been proved as Lemma 5.3 in [DFFo]. Another basic ingre-
dient in our estimates will be as follows.

Proposition 3.4. Let w be any orthonormal coordinate system centered at z,
and let vj be the unit vector in the wj -direction. Then we have
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∣∣∣∣∂
|α+β|ρ(z)
∂wα∂w̄β

∣∣∣∣ �
ε∏

j τ (z, vj,ε)
αj+βj

for all multi-indices α and β with |α + β| ≥ 1.

This proposition can be found for instance in [BCDu] or [DFFo].
Now we want to use the definition of Q∗, the definition of Q itself, and our

special choice of "(ζ). Using the abbreviations ζ := ζ0 + ("̄∗)Tη∗ and w :=
;(η∗)(w∗ − η∗) yields

Q∗
k(w

∗,η∗) =
n∑

µ=1

ψµk(η
∗)Qµ

ζ (w),

∂

∂w∗
i

Q∗
k(w

∗,η∗) =
n∑

µ=1

ψµk(η
∗)
∂Q

µ
ζ (w)

∂w

∂w

∂w∗
i

,

∂

∂η∗
j

Q∗
k(w

∗,η∗) =
n∑

µ=1

∂ψµk(η
∗)

∂η∗
j

Q
µ
ζ (w) + ψµk(η

∗)
∂Q

µ
ζ (w)

∂ζ

∂ζ

∂η∗
j

+ ψµk(η
∗)
∂Q

µ
ζ (w)

∂w

∂w

∂η∗
j

,

∂ 2

∂w∗
i ∂η

∗
j

Q∗
k(w

∗,η∗) =
n∑

µ=1

∂ψµk(η
∗)

∂η∗
j

∂Q
µ
ζ (w)

∂w

∂w

∂w∗
i

+ ψµk(η
∗)
∂ 2Q

µ
ζ (w)

∂w∂ζ

∂ζ

∂η∗
j

∂w

∂w∗
i

+ ψµk(η
∗)
∂ 2Q

µ
ζ (w)

∂w2

∂w

∂η∗
j

∂w

∂w∗
i

+ ψµk(η
∗)
∂Q

µ
ζ (w)

∂w

∂ 2w

∂w∗
i ∂η

∗
j

.

Moreover, we have

∂ζi

∂η∗
j

= φ̄∗
ji,

∂wi

∂w∗
j

= ψij(η
∗),

∂ 2wi

∂w∗
j ∂η

∗
k

= ∂ψij(η
∗)

∂η∗
k

,

and
∂wi

∂η∗
j

=
n∑

λ=1

∂ψiλ

∂η∗
j

(η∗)(w∗
λ − η∗

λ ) − ψij(η
∗).

Furthermore, if µ = 1 then

Q1
ζ(w) = 3 + Kw1,

∂

∂w1
Q1

ζ(w) = K, and
∂

∂wν

Q1
ζ(w) = 0 (ν > 1) (9)

and of course it follows that
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∂

∂ζ
Q1

ζ(w) = ∂ 2

∂w∂ζ
Q1

ζ(w) = ∂ 2

∂w2
Q1

ζ(w) = 0. (10)

For µ > 1 we have

Q
µ
ζ (w) :=

m∑
ν=2

∑
|α|=ν
α1=0

cµaα(ζ)
wα

wµ

,

∂

∂wi

Q
µ
ζ (w) =

m∑
ν=2

∑
|α|=ν
α1=0

cµiaα(ζ)
wα

wiwµ

,

∂ 2

∂wi∂wj

Q
µ
ζ (w) =

m∑
ν=2

∑
|α|=ν
α1=0

cµij aα(ζ)
wα

wiwjwµ

,

∂

∂ζj
Q

µ
ζ (w) =

m∑
ν=2

∑
|α|=ν
α1=0

cµ
∂aα(ζ)

∂ζj

wα

wµ

,

∂ 2

∂wi∂ζj
Q

µ
ζ (w) =

m∑
ν=2

∑
|α|=ν
α1=0

cµi
∂aα(ζ)

∂ζj

wα

wiwµ

,

where the c∗ are certain constants that depend on ν, α, and the given indices but
are not essential in our estimates. We see that it is important to obtain estimates
for |aα(ζ)| and |∂aα(ζ)/∂ζj |.
Lemma 3.5. For all ζ ∈Pε(ζ0) we have the estimate

|aα(ζ)| �
ε

τ α(ζ0,ε)
,

where τ α(ζ0,ε) is shorthand for
∏n

i=1 τi(ζ0,ε)
αi.

Proof. As in Proposition 3.3, we set vj := "̄T(ζ)ej . Then Proposition 3.4 together
with Proposition 3.3 gives

|aα(ζ)| =
∣∣∣∣ 1

α!

∂ |α|

∂wα
ρ(ζ + "̄T(ζ)w)

∣∣
w=0

∣∣∣∣ �
ε∏n

i=1 τ(ζ, vi,ε)
αi

≈ ε

τ α(ζ0,ε)
.

Estimating the derivative of aα(ζ) is much more difficult. We get the following
result.

Lemma 3.6. For all ζ ∈Pε(ζ0) we have the estimate∣∣∣∣
n∑

λ=1

φ̄∗
jλ

∂aα(ζ)

∂ζλ

∣∣∣∣ �
ε

τ α(ζ0,ε)τj(ζ0,ε)
,

where again τ α(ζ0,ε) is shorthand for
∏n

i=1 τi(ζ0,ε)
αi.
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Proof. Here again we want to make use of Proposition 3.4. In order to do so we
first observe that the ζ derivative of ρ can be written in terms of w-derivatives. To
be precise, we have

∂aα(ζ)

∂ζj
= 1

α!

∂ |α|

∂wα

∂

∂ζj
ρ(ζ + "̄T(ζ)w)

∣∣
w=0

=
n∑

τ=1

1

α!
φτj(ζ)

∂ |α|+1

∂wα+(τ )
ρ(ζ + "̄T(ζ)w)

∣∣
w=0

+
n∑

τ=1

n∑
i=1
αi>0

αi

α!

( n∑
λ=1

φτλ(ζ)
∂φ̄iλ(ζ)

∂ζj

)
∂ |α|

∂wα−(i)+(τ )
ρ(ζ + "̄T(ζ)w)

∣∣
w=0,

where α− (i)+ (τ ) should be the multi-index that is derived from α by decreasing
αi by 1 and increasing ατ by 1.

Next we remember our special choice of " and see that

n∑
λ=1

φ̄∗
jλ

∂aα(ζ)

∂ζλ

=
n∑

τ=1

ψτj(η
∗)

1

α!

∂ |α|+1

∂wα+(τ )
ρ(ζ + "̄T(ζ)w)

∣∣
w=0

+
n∑

τ,µ=1

n∑
i=1
αi>0

ψτµ(η
∗)
∂ψ̄iµ(η

∗)
∂η∗

j

αi

α!

∂ |α|

∂wα−(i)+(τ )
ρ(ζ + "̄T(ζ)w)

∣∣
w=0.

Finally, the result follows from Proposition 3.4, Proposition 3.3, and Proposi-
tion 3.2.

Now we can start to put together some of the estimates.

Lemma 3.7. For all w∗ and η∗ satisfying condition (∗),
|Qµ

ζ (w)| �
ε

τµ(ζ0,ε)
,

∣∣∣∣∂Q
µ
ζ (w)

∂w

∂w

∂w∗
i

∣∣∣∣ �
ε

τµ(ζ0,ε)τi(ζ0,ε)
,

∣∣∣∣∂Q
µ
ζ (w)

∂ζ

∂ζ

∂η∗
j

∣∣∣∣ �
ε

τµ(ζ0,ε)τj(ζ0,ε)
,

∣∣∣∣∂Q
µ
ζ (w)

∂w

∂w

∂η∗
j

∣∣∣∣ �
ε

τµ(ζ0,ε)τj(ζ0,ε)
,

∣∣∣∣∂
2Q

µ
ζ (w)

∂w∂ζ

∂ζ

∂η∗
j

∂w

∂w∗
i

∣∣∣∣ �
ε

τµ(ζ0,ε)τi(ζ0,ε)τj(ζ0,ε)
,
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∣∣∣∣∂
2Q

µ
ζ (w)

∂w2

∂w

∂η∗
j

∂w

∂w∗
i

∣∣∣∣ �
ε

τµ(ζ0,ε)τi(ζ0,ε)τj(ζ0,ε)
,

∣∣∣∣∂Q
µ
ζ (w)

∂w

∂ 2w

∂w∗
i ∂η

∗
j

∣∣∣∣ �
ε

τµ(ζ0,ε)τi(ζ0,ε)τj(ζ0,ε)
.

Proof. First we want to establish an estimate for ∂wi/∂η
∗
j . Condition (∗) implies

that (w∗
τ − η∗

τ ) is bounded. From Proposition 3.2 and the fact that ε/ττ(ζ0,ε) � 1
it follows that ∣∣∣∣∂wλ

∂η∗
j

∣∣∣∣ �
∣∣∣∣

n∑
τ=1

∂ψλτ

∂η∗
j

(η∗)(w∗
τ − η∗

τ ) − ψλj(η
∗)

∣∣∣∣
�

(
δλj + ε

τλ(ζ0,ε)τj(ζ0,ε)

)
. (11)

In all estimates the case µ = 1 must be treated separately. But using (9) and
(10) we see that some of the terms vanish, and for the remaining terms we can
use the fact that τ1(ζ0,ε) ≈ ε and thus every bounded term can be estimated by
ε/τ1(ζ0,ε). Together with (11) and Proposition 3.2, this gives the desired result
for µ = 1.

In the other cases we have

|Qµ
ζ (w)| �

m∑
ν=2

∑
|α|=ν
α1=0

|aα(ζ)|
∣∣∣∣w

α

wµ

∣∣∣∣,
∣∣∣∣∂Q

µ
ζ (w)

∂w

∂w

∂w∗
i

∣∣∣∣ �
n∑

λ=2

m∑
ν=2

∑
|α|=ν
α1=0

|aα(ζ)|
∣∣∣∣ wα

wλwµ

∣∣∣∣|ψλi(η
∗)|,

∣∣∣∣∂Q
µ
ζ (w)

∂ζ

∂ζ

∂η∗
j

∣∣∣∣ �
m∑
ν=2

∑
|α|=ν
α1=0

∣∣∣∣
n∑

λ=1

φ̄∗
jλ

∂aα(ζ)

∂ζλ

∣∣∣∣
∣∣∣∣w

α

wµ

∣∣∣∣,
∣∣∣∣∂Q

µ
ζ (w)

∂w

∂w

∂η∗
j

∣∣∣∣ �
n∑

λ=2

m∑
ν=2

∑
|α|=ν
α1=0

|aα(ζ)|
∣∣∣∣ wα

wλwµ

∣∣∣∣
∣∣∣∣∂wλ

∂η∗
j

∣∣∣∣,
∣∣∣∣∂

2Q
µ
ζ (w)

∂w∂ζ

∂ζ

∂η∗
j

∂w

∂w∗
i

∣∣∣∣ �
n∑

τ=2

m∑
ν=2

∑
|α|=ν
α1=0

∣∣∣∣
n∑

λ=1

φ̄∗
jλ

∂aα(ζ)

∂ζλ

∣∣∣∣
∣∣∣∣ wα

wτwµ

∣∣∣∣|ψτi(η
∗)|,

∣∣∣∣∂
2Q

µ
ζ (w)

∂w2

∂w

∂η∗
j

∂w

∂w∗
i

∣∣∣∣ �
n∑

λ=2

n∑
τ=2

m∑
ν=2

∑
|α|=ν
α1=0

|aα(ζ)|
∣∣∣∣ wα

wλwτwµ

∣∣∣∣
∣∣∣∣∂wλ

∂η∗
j

∣∣∣∣|ψτi(η
∗)|,

∣∣∣∣∂Q
µ
ζ (w)

∂w

∂ 2w

∂w∗
i ∂η

∗
j

∣∣∣∣ �
n∑

λ=2

m∑
ν=2

∑
|α|=ν
α1=0

|aα(ζ)|
∣∣∣∣ wα

wλwµ

∣∣∣∣
∣∣∣∣∂ψλi(η

∗)
∂η∗

j

∣∣∣∣.
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It is easy to see that condition (∗) also implies |wj | � τj(ζ0,ε) for j > 1. Since
α1 = 0 a term of the form wα/wk can thus be estimated by τ α−(k)(ζ0,ε) and this
cancels nicely with part of the estimate for aα. Together with (11), Proposition 3.2,
and the estimate ε/ττ(ζ0,ε) � 1, this yields the desired results—except that, in
the forth and sixth estimates, we must also use the fact that λ > 1 and hence
ε/τλ(ζ0,ε)

2 � 1.

Proof of Lemma 3.1. The result now follows in a straightforward way from Lem-
ma 3.7 and Proposition 3.2.

3.2. More Estimates

Now we want to put together the estimates of Section 3.1 and so obtain some esti-
mate of part of the kernel. We point out that now it is important to remember thatQ
was in fact the (1, 0)-form

∑n
j=1Qj(z, ζ)dζj . As in the introduction, β should be a

form of norm 1 that contains all remaining components such that Q ∧ (∂̄ζQ)k ∧ β

is always of bidegree (n, n − 1) in ζ. Again we denote the tangential component
of a differential form α by (α)t .

Lemma 3.8. For all z and ζ satisfying condition (∗), the term

|(Q ∧ (∂̄ζQ)k ∧ β)t |
can be estimated by a sum of terms of the form

Ek
µν = εk∏k

i=1 τµi
(ζ0,ε)τνi(ζ0,ε)

,

where all µi and νi are greater than 1 and each index appears at most once.
Moreover, if δγ is the z-derivative in the γ -direction, then the terms

|(δγQ ∧ (∂̄ζQ)k ∧ β)t | and |(Q ∧ (δγ ∂̄ζQ) ∧ (∂̄ζQ)k−1 ∧ β)t |
can be estimated by a sum of terms of the form Ek

µν/τ(ζ0, γ,ε), where the µi and
νi are as above.

Before we start the proof, we must mention the following fact.

Proposition 3.9. Let γ = (γ1, . . . , γn) be a unit vector written with respect to
the ε-extremal coordinates at ζ0. Then

1

τ(ζ0, γ,ε)
≈

n∑
j=1

|γj |
τj(ζ0,ε)

.

The proof of this proposition can be found, for instance, in [Mc].

Proof of Lemma 3.8. We can write the term Q ∧ (∂̄ζQ)k with respect to the ε-
extremal coordinates at ζ0 and get

Q ∧ (∂̄ζQ)k =
n∑

ν0=1

Q∗
ν0
(w∗,η∗)dη∗

ν0
∧

k∧
l=1

n∑
νl,µl=1

∂Q∗
νl
(w∗,η∗)
∂η̄∗

µl

dη̄∗
µl

∧ dη∗
νl
,
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which shows immediately that the ν0, . . . , νk are pairwise distinct and that the
µ1, . . . , µk are pairwise distinct. Using estimates (5) and (7) from Lemma 3.1
yields the estimate

|(Q ∧ (∂̄ζQ)k ∧ β)t | �
ε

τν0(ζ0,ε)

k∏
l=1

ε

τµl
(ζ0,ε)τνl(ζ0,ε)

.

If one of the ν0, . . . , νl is equal to 1 then we simply estimate ε/τ1(ζ0,ε) � 1.
If, however, one of the µ1, . . . , µk is equal to 1 then the estimate becomes a lit-

tle more difficult. In this case the kernel contains the term dη̄∗
1, but at ζ0 this form

has no tangential component and for ζ ∈ Pε(ζ0) the tangential component of this
term remains small. More precisely, we can write

dη̄∗
1 =

(
∂̄ρ −

n∑
j=2

∂ρ

∂η̄∗
j

dη̄∗
j

)(
∂ρ

∂η̄∗
1

)−1

.

The last term is bounded by our assumption on ε (see the definition of ;), and the
term ∂̄ρ does not contribute to the tangential component. Assuming without loss
of generality that µ1 = 1, we have∣∣∣∣∂Q

∗
ν1
(w∗,η∗)
∂η̄∗

1

dη̄∗
1

∣∣∣∣ �
∣∣∣∣∂Q

∗
ν1
(w∗,η∗)
∂η̄∗

1

∑
j /∈{µ2,...,µk}

∂ρ

∂η̄∗
j

dη̄∗
j

∣∣∣∣
�

ε

τ1(ζ0,ε)τν1(ζ0,ε)

∑
j /∈{µ2,...,µk}

ε

τj(ζ0,ε)

�
∑

j /∈{µ2,...,µk}

ε

τν1(ζ0,ε)τj(ζ0,ε)
,

and this saves our estimate also in the case where one of the µl is equal to 1.
In order to estimate the remaining two terms, we first consider the case where γ

is one of the ε-extremal directions at ζ0. In this case we can use the same arguments
as before, only replacing (5) and (7) from Lemma 3.1 by (6) and (8), respectively.
We find that |(δjQ ∧ (∂̄ζQ)k ∧ β)t | and |(Q ∧ (δj ∂̄ζQ) ∧ (∂̄ζQ)k−1 ∧ β)t | can be
estimated by a sum of terms of the form Ek

µν/τj(ζ0,ε), where µ and ν are as be-
fore. Finally, we need only observe that, if γ = (γ1, . . . , γj ) with respect to the
ε-extremal coordinates at ζ0, then δγ = ∑

γj δj and by Proposition 3.9 we also
have

1

τ(ζ0, γ,ε)
=

n∑
j=1

|γj |
τj(ζ0,ε)

,

which completes the proof.

At this point we also want to give an estimate for δγS that will be needed later.
For this we first write S with respect to the ε-extremal coordinates at ζ0 as

S ∗(w∗,η∗) = Sζ0+("̄∗ )Tη∗(;(η∗)(w∗ − η∗)).

Lemma 3.10. Let δγ be the z-derivative in the γ -direction. Then, for all w∗ and
η∗ satisfying condition (∗), we have
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|δγS ∗(w∗,η∗)| �
ε

τ(ζ0, γ,ε)
.

Proof. First we consider the case where γ is one of the ε-extremal directions at
ζ0. Using the abbreviations ζ = ζ0 + ("̄∗)Tη∗ and w = ;(η∗)(w∗ − η∗), we
have

∂

∂w∗
j

S ∗(w∗,η∗) =
n∑

λ=1

∂Sζ(w)

∂wλ

∂wλ

∂w∗
j

with

∂Sζ(w)

∂w1
= 3 + 2Kw1 and

∂Sζ(w)

∂wλ

=
m∑
ν=2

∑
|α|=ν
α1=0

c̃λaα(ζ)
wα

wλ

.

Using the same arguments as in the proof of Lemma 3.7 now yields∣∣∣∣∂S
∗(w∗,η∗)
∂w∗

j

∣∣∣∣ �
ε

τj(ζ0,ε)
.

To obtain the result of the lemma we need only observe that, if γ = (γ1, . . . , γj )

with respect to the ε-extremal coordinates at ζ0, then δγ = ∑
γj δj ; this, together

with Proposition 3.9, completes the proof.

3.3. Integral Estimates

Finally we come to the estimates of the integrals Ia, . . . , Id . Because the only
singularity in these integrals occurs for ζ = z, it is clear that the integrals are uni-
formly bounded if dist(z, ∂D) > c or if the integration is only over the boundary
outside some small neighborhood of π(z). Thus it remains to estimate the inte-
grals over some small neighborhood of ζ0 = π(z). This neighborhood should be
chosen small enough that we can use all the results obtained earlier. For simplicity
let us assume that P1(ζ0) is such a neighborhood.

As in [DFFo], we will divide the neighborhood P1(ζ0) into smaller pieces by
using certain polyannuli. These are defined by

P i
ε (ζ) := C1P2−iε(ζ) \ 1

2P2−iε(ζ).

The constant C1 was necessary to make it a covering. In fact, we have

∞⋃
i=0

P i
ε (ζ) ⊃ Pε(ζ) \ {ζ} and

i0(ε)⋃
i=0

P i
1(ζ) ⊃ P1(ζ) \ Pε(ζ), (12)

where i0(ε) is a finite number depending only on ε and satisfying i0(ε) <−log2(cε)

for a certain small constant c.
The following proposition has been proved in [DFFo].

Proposition 3.11. Let z ∈D be close enough to the boundary and assume that
ε is small enough. Then we have

|S(z, ζ)| �
{
ε for all ζ ∈ ∂D ∩ P 0

ε (π(z)),

|ρ(z)| for all ζ ∈ ∂D ∩ P|ρ(z)|(π(z)).
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We must also mention the following proposition, which is implicit in [Mc] and
more explicitly stated in [dBF].

Proposition 3.12. Let γ be an arbitrary direction and write

r(z + ζγ ) − r(z) =
m∑

µ+ν=1

aγµν(z)ζ
µζ̄ν + O(|z|m+1).

Now define Aγ

k(z) := max{|aγµν(z)| : µ + ν = k} and

sγ(z,ε) := min
1≤k≤m

{(
ε

A
γ

k(z)

)1/k}
.

Then
τ(z, γ,ε) ≈ sγ(z,ε).

As a consequence of this proposition we have our next lemma.

Lemma 3.13. For every direction γ, every point z, and all values 0 < ε < ρ,

ε

ρ
�

τ(z, γ,ε)

τ (z, γ, ρ)
.

Proof. This result follows immediately from the fact that sγ(z, t)/t is a continu-
ous decreasing function in t.

Lemma 3.14. For every σ with 0 < σ ≤ 1 we have the estimate
∫
∂D∩Pε(ζ0 )

|(Q ∧ (∂̄ζQ)k ∧ β)t |
|ζ − z|2n−2k−3+(1−σ)

dσ2n−1 � εσ/m+k+1.

Moreover, ∫
∂D∩Pε(ζ0 )

|(δγQ ∧ (∂̄ζQ)k ∧ β)t |
|ζ − z|2n−2k−3

dσ2n−1 �
ε1/m+k+1

τ(ζ0, γ,ε)
,

∫
∂D∩Pε(ζ0 )

|(Q ∧ δγ(∂̄ζQ) ∧ (∂̄ζQ)k−1 ∧ β)t |
|ζ − z|2n−2k−3

dσ2n−1 �
ε1/m+k+1

τ(ζ0, γ,ε)
.

Proof. We can write the first integral with respect to the ε-extremal coordinates at
ζ0, which are called η∗

j = θ∗
j + iξ ∗

j . We then use the estimate |ζ − z| > |ζ − ζ0|
and Lemma 3.8 to obtain∫

|ξ∗
1 |<τ1(ζ0,ε)

∫
|η∗

2|<τ2(ζ0,ε)

· · ·
∫

|η∗
n|<τn(ζ0,ε)

εk dξ ∗
1 dθ

∗
2 dξ

∗
2 · · · dθ∗

n dξ
∗
n∏k

l=1 τµl
(ζ0,ε)τνl(ζ0,ε)

(∑n
j=1|η∗

j |)2n−2k−3+(1−σ)
,

where all µl and νl are greater than 1 and each index appears at most once.
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First we integrate with respect to ξ ∗
1 and get a constant factor τ1(ζ0,ε) � ε,which

together with the other ε already gives us εk+1. Now we still need to integrate over
n− 1 complex discs; there are exactly 2n− 2 factors of the form τj or |η∗

j | in the
denominator, and only the last factor is of the form |η∗

j |1−σ. Therefore, the follow-
ing integrals may occur:

Ja :=
∫

|η∗
l
|<τl(ζ0,ε)

dθ∗
l dξ

∗
l

τ l(ζ0,ε)2
� 1,

Jb :=
∫

|η∗
l
|<τl(ζ0,ε)

dθ∗
l dξ

∗
l

τ l(ζ0,ε)|η∗
l |

� 1,

Jc :=
∫

|η∗
l
|<τl(ζ0,ε)

dθ∗
l dξ

∗
l

τ l(ζ0,ε)|η∗
l |1−σ

� τl(ζ0,ε)
σ � εσ/m,

Jd :=
∫

|η∗
l1

|<τl1 (ζ0,ε)

· · ·
∫

|η∗
li
|<τli (ζ0,ε)

dθ∗
l1
dξ ∗

l1
. . . dθ∗

li
dξ ∗

li(∑|η∗
lj
|)2i−1+(1−σ)

�
∫ ε1/m

0

r 2i−1dr

r 2i−σ
� εσ/m.

However, Jc and Jd may occur at most once and only one of them will be present.
So finally we have our desired result.

To obtain the remaining two estimates, simply repeat the proof with σ = 1 and
then use the second statement from Lemma 3.8 instead of the first part.

Proof of Lemma 2.1. To achieve the result for |Ia|, it remains only to estimate the
integral over the set P1(π(z)) ∩ ∂D. With ρ = |ρ(z)| this set will be split into
Pρ(π(z)) ∩ ∂D and P1(π(z)) \ Pρ(π(z)) ∩ ∂D, and both subsets will be further
subdivided by the coverings given previously. In the first case, Lemma 3.11 gives
|S|k+1|ζ − z|σ � ρk+1εσ � ρσεk+1 for all ζ ∈ P 0

ε (ζ0) with ε < ρ. Together with
Lemma 3.14, this means that

∫
∂D∩Pρ(ζ0 )

|(Q ∧ (∂̄ζQ)k ∧ β)t |
|S|k+1|ζ − z|2n−2k−2

dσ2n−1

�
∞∑
j=0

∫
∂D∩P j

ρ (ζ0 )

|(Q ∧ (∂̄ζQ)k ∧ β)t |
|S|k+1|ζ − z|σ |ζ − z|2n−2k−2−σ

dσ2n−1

�
∞∑
j=0

1

ρσ(2−jρ)k+1
(2−jρ)σ/m+k+1

� ρσ(1/m−1)
∞∑
j=0

(2−j )σ/m � ρσ(1/m−1).

In the second case, for ε > ρ and ζ ∈ P 0
ε (ζ0) we have |S|k+1|ζ − z|σ � εk+1+σ.

Together with Lemma 3.14, this yields



Nonisotropic Hölder Estimates on Convex Domains of Finite Type 235

∫
∂D∩P1(ζ0 )\Pρ(ζ0 )

|(Q ∧ (∂̄ζQ)k ∧ β)t |
|S|k+1|ζ − z|2n−2k−2

dσ2n−1

�
i0(ρ)∑
j=0

∫
∂D∩P j

1 (ζ0 )

|(Q ∧ (∂̄ζQ)k ∧ β)t |
|S|k+1|ζ − z|σ |ζ − z|2n−2k−2−σ

dσ2n−1

�
i0(ρ)∑
j=0

1

(2−j )k+1+σ
(2−j )σ/m+k+1 �

i0(ρ)∑
j=0

(2−j )σ(1/m−1) � ρσ(1/m−1),

where in the last estimate we also used that i0(ρ) < −log2(cρ).

The integrals Ib and Ic differ only in the place where the δγ is applied, but
Lemma 3.14 gives the same estimates in both cases. Thus it is enough to consider
one of the integrals.

For ε < ρ and ζ ∈P 0
ε (ζ0) we have |S|k+1 � ρεk. Therefore,

∫
∂D∩Pρ(ζ0 )

|(δγQ ∧ (∂̄ζQ)k ∧ β)t |
|S|k+1|ζ − z|2n−2k−3

dσ2n−1

�
∞∑
j=0

1

ρ(2−jρ)k

(2−jρ)1/m+k+1

τ(ζ0, γ, (2−jρ))

�
∞∑
j=0

(2−jρ)

ρ

1

τ(ζ0, γ, (2−jρ))
(2−jρ)1/m

�
∞∑
j=0

ρ1/m

τ(ζ0, γ, ρ)
(2−j )1/m �

ρ1/m

τ(ζ0, γ, ρ)
,

where we have also made use of Lemma 3.13.
On the other hand, for ε > ρ and ζ ∈P 0

ε (ζ0) we have |S|k+1 � εk+1. Therefore,
with the help of Proposition 3.12 we obtain

∫
∂D∩P1(ζ0 )\Pρ(ζ0 )

|(δγQ ∧ (∂̄ζQ)k ∧ β)t |
|S|k+1|ζ − z|2n−2k−3

dσ2n−1

�
i0(ρ)∑
j=0

1

(2−j )k+1

(2−j )1/m+k+1

τ(ζ0, γ, 2−j )

�
i0(ρ)∑
j=0

(2−j )1/m

τ(ζ0, γ, 2−j )
�

i0 (ρ)∑
j=0

(2−j )1/m max
1≤k≤m

{(2−j )−1/kA
γ

k(ζ0)
1/k}

�
∑

1≤k≤m

A
γ

k(ζ0)
1/k

i0 (ρ)∑
j=0

(2−j )1/m−1/k � |log ρ| +
∑

1≤k≤m

A
γ

k(ζ0)
1/kρ1/m−1/k

� |log ρ| + ρ1/m max
1≤k≤m

{(Aγ

k(ζ0)/ρ)
1/k} �

ρ1/m

τ(ζ0, γ, ρ)
+ |log ρ|.

Finally, we need only observe that z∈Pρ(ζ0) and hence τ(z, γ, ρ) ≈ τ(ζ0, γ, ρ).
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To estimate Id, we want to use Lemma 3.14 for σ = 1. Using Lemma 3.10
and Proposition 3.11 yields |δγS| � ε/τ(ζ0, γ,ε) and |S|k+2 � ρεk+1 for all ζ ∈
P 0
ε (ζ0) with ε < ρ. Thus we get the same estimate as for Ib, namely,∫

∂D∩Pρ(ζ0 )

|(Q ∧ (∂̄ζQ)k ∧ β)t ||δγS|
|S|k+2|ζ − z|2n−2k−3

dσ2n−1

�
∞∑
j=0

(2−jρ)

τ (ζ0, γ, (2−jρ))

1

ρ(2−jρ)k+1
(2−jρ)1/m+k+1 �

ρ1/m

τ(ζ0, γ, ρ)
.

On the other hand, for ε > ρ and ζ ∈ P 0
ε (ζ0) we have |S|k+2 � εk+2, |δγS| �

ε/τ(ζ0, γ,ε), and τ(ζ0, γ,ε) ≥ τ(ζ0, γ, ρ). Therefore, we again get the same re-
sult as for Ib:∫

∂D∩P1(ζ0 )\Pρ(ζ0 )

|(Q ∧ (∂̄ζQ)k ∧ β)t ||δγS|
|S|k+2|ζ − z|2n−2k−3

dσ2n−1

�
i0(ρ)∑
j=0

(2−j )

τ (ζ0, γ, 2−j )

1

(2−j )k+2
(2−j )1/m+k+1 �

ρ1/m

τ(ζ0, γ, ρ)
+ |log ρ|.

Together with the fact that z ∈ Pρ(ζ0) and so τ(z, γ, ρ) ≈ τ(ζ0, γ, ρ), this com-
pletes the proof.

4. Examples

In this section we show that the result obtained in Theorem1.2 is essentially the best
one possible. We do this by providing an example of a domain D and a bounded
(0,1)-form f on D such that the Cauchy–Riemann equation ∂̄u = f cannot have
any solution that is better than expected. In fact, this example is a modification of
the well-known example of E. M. Stein.

We consider the domain D = {z∈ C
3 : |z1|2 +|z2|2 l+|z3|2m < 1} with m > l.

As a complex ellipsoid, this domain is convex and of finite type 2m. In particu-
lar we are interested in a neighborhood of the boundary point p = (1, 0, 0). This
point is of type 2m, and this order of contact is realized by the complex tangential
line {(1, 0, w) : w ∈ C}. All other complex tangential lines have order of contact
2 l. For every small ε, the ε-extremal directions at this point are e1, e2, and e3,

so we have τ1(p,ε) = √
1 + ε − 1 ≈ ε, τ2(p,ε) = ε1/2m, and τ3(p,ε) = ε1/2 l.

Thus d(p, (1+ε, 0, 0)) ≈ ε, d(p, (1,ε, 0)) = ε2 l, and d(p, (1, 0,ε)) = ε2m. That
means that if we are close to p and measure distances in the Euclidean metric,
then we can expect a Hölder exponent of 1/2m in the z1-direction, an exponent of
2 l/2m in the z2-direction, and any exponent smaller than 1 in the z3-direction.

It is well known that the Hölder exponent cannot be larger than 1, and with the
given methods it is not possible to show that it must be strictly smaller than 1.
Hence we will concentrate on the z1- and z2-directions. For this we consider the
function

v(z) := z̄3

log(z1 + z2 l
2/2 − 1)

.
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Note that the real part of z1 + z2 l
2/2 − 1 is negative for all z ∈ D and that log(w)

should be the branch of the logarithm with 0 < arg(w) < 2π. In fact, we have
the strict negativity of the real part of z1 + z2 l

2/2 −1 for all z∈ D̄ \ (1, 0, 0). Thus,
the closed (0,1)-form

f(z) =



dz̄3

log(z1 + z2 l
2/2 − 1)

for z∈ D̄ \ (1, 0, 0),

0 for z = (1, 0, 0)

is continuous on D̄ and thus also bounded.
Consider the circles

Cε := {z∈ C
3 : z1 = 1 − 2ε, z2 = 0, |z3| = ε1/2m},

Ĉε := {z∈ C
3 : z1 = 1 − ε, z2 = 0, |z3| = ε1/2m},

C̃ε := {z∈ C
3 : z1 = 1 − 2ε, z2 = ε1/2 l, |z3| = ε1/2m}.

It is easy to check that all three circles are contained in D.

For every solution u of the Cauchy–Riemann equation ∂̄u = f, the difference
u− v is a holomorphic function on D; we therefore have

∫
C
u dz3 = ∫

C
v dz3 for

all of these circles.
Let us first consider the z1-direction and assume that the Hölder exponent in this

direction is α. Then |(1− ε, 0, z3)− (1− 2ε, 0, z3)| = ε and so |u(1− ε, 0, z3)−
u(1 − 2ε, 0, z3)| ≤ Kεα. Thus∣∣∣∣

∫
|z3|=ε1/2m

u(1 − ε, 0, z3) − u(1 − 2ε, 0, z3) dz3

∣∣∣∣ ≤ Kεα
∫

|z3|=ε1/2m
1dz3

= Kεα2πε1/2m.

On the other hand,∫
|z3|=ε1/2m

v(1 − ε, 0, z3) − v(1 − 2ε, 0, z3) dz3

=
∫

|z3|=ε1/2m

z̄3

log(−ε)
− z̄3

log(−2ε)
dz3

= log(−2ε) − log(−ε)

log(−ε) log(−2ε)

∫
|z3|=ε1/2m

z̄3 dz3

= ln(2)

log(−ε) log(−2ε)
2πiε2/2m.

Hence we conclude that

ln(2)/K ≤ |log(−ε) log(−2ε)|εα−1/2m

for all ε > 0, which is impossible for α > 1/2m because ln(ε)εβ tends to zero
for ε → 0 and all positive β. Thus we have proved that, in the z1-direction, the
Hölder exponent α cannot be larger than 1/2m.
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Now consider the z2-direction and the circles Cε and C̃ε. Assuming that the
Hölder exponent is again α, we get |u(1 − 2ε, 0, z3) − u(1 − 2ε,ε1/2 l, z3)| ≤
K(ε1/2 l)α and so∣∣∣∣

∫
|z3|=ε1/2m

u(1 − 2ε, 0, z3) − u(1 − 2ε,ε1/2 l, z3) dz3

∣∣∣∣ ≤ Kεα/2 l2πε1/2m.

On the other hand,∫
|z3|=ε1/2m

v(1 − 2ε, 0, z3) − v(1 − 2ε,ε1/2 l, z3) dz3

=
∫

|z3|=ε1/2m

z̄3

log(−2ε)
− z̄3

log(−2ε + ε/2)
dz3

= log(−3ε/2) − log(−2ε)

log(−2ε) log(−3ε/2)

∫
|z3|=ε1/2m

z̄3 dz3

= −ln(4/3)

log(−2ε) log(−3ε/2)
2πiε2/2m.

We then conclude that

ln(4/3)/K ≤ |log(−2ε) log(−3ε/2)|εα/2 l−1/2m

for all ε > 0, which is impossible for α > 2 l/2m. Thus we have proved that,
in the z2-direction, the Hölder exponent α cannot be larger than 2 l/2m, which is
exactly what we wanted.
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