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Rectification of Circles and Quaternions

V. TIMORIN

Introduction

Throughout this paper, the word “circle” means a circle or a straight line. We are
always assuming that the spa&is equipped with a fixed “standard” Euclidean
inner product.

A collection of curves inR” passing through 0 is said to besample bundle
of curvesif no two of them are tangent at 0. A simple bundle of curves is called
rectifiableif there exists a germ of diffeomorphism in a neighborhood of the ori-
gin that sends all curves from this bundle to straight lines. Rectifiable bundles of
curves appear, for example, in Riemannian geometry—the set of geodesics pass-
ing through a given point is rectifiable.

A. G. Khovanskii proved in [2] that a rectifiable simple bundle of more than six
circles on plane necessarily passes through some point different from the origin.
F. A. Izadi [1] generalized Khovanskii’'s arguments to dimension 3. A rectifiable
simple bundle of circles ifR® containing sufficiently many circles in general po-
sition must pass through some other common point.

In dimension 4, this is not true. The simplest counterexample is a family of
circles that are obtained from straight lines by some complex projective transfor-
mation (with respect to some identificati® = C? such that the multiplication
by i is an orthogonal operator).

It turns out that, in dimension 4, there is a large family of transformations that
round lines (i.e., take them to circles). To construct such a family, fix a quater-
nionic structure orR* compatible with the Euclidean structure. Afand B are
some affine maps, then the map— A(x)'B(x) rounds lines (the multiplica-
tion and the inverse are in the sense of quaternions). Such transformations will
be called (leftyquaternionic fractional transformationsright quaternionic frac-
tional transformationgt B~ also round lines. Any real projective, complex pro-
jective, or quaternionic projective transformation is quaternionic fractional.

In this paper, we will prove that a rectifiable simple bundle of circles containing
sufficiently many circles in general position is the image of a bundle of straight
lines under some left or right quaternionic fractional transformation.
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In arbitrary dimension, we have a purely algebraic description of rectifiable sim-
ple bundles of circles. So the analytic problem of classification of such bundles is
reduced to an algebraic problem.

The paper is organized as follows. In Section 1, for a simple rectifiable bundle
of circles we establish an algebraic condition on the second derivative of a recti-
fying map. This condition is formulated on the asymptotic cfnex) = 0} <
C2, where(-, -) is the complexification of the usual inner product. This provides
a simple proof of Izadi’'s theorem [1]. In Section 2, we show that this algebraic
condition is not only necessary but also sufficient in a sense. Thus we obtain an
algebraic description of rectifiable simple bundles of circles. In Section 3, we re-
view some important properties of complex and quaternionic structures and relate
them to the geometry of the asymptotic cone. In Section 4, we define quaternionic
fractional transformations and list some of their properties. Section 5 contains the
main rectification result and some of its geometrical consequences.

I am grateful to A. G. Khovanskii for useful discussions.

1. Rectifiable Collections of Circles
The following result is true in dimensions 2 [2] and 3 [1].

Tueorem 1.1. Consider a simple bundle of circles BR? or R® containing suf-
ficiently many circles in general position. If this bundle is rectifiable, then all its
circles pass through a common point different from the origin.

On a plane, it is enough to take seven circles. Theorem 1.1 means, in particular,
that if a generic family of circles can be rectified at all, then it can be rectified by
means of some inversion. However, as we will see, this does not hold in dimen-
sion 4.

We need the following very simple lemma.

LemMma 1.2. Consider a polynomial map': R” — R” such thatF(x) is every-
where proportional tox. Then F(x) = G(x)x for some polynomial function
G:R" — R. If F is homogeneous, then soGs

Proof. Introduce a coordinate systefno, ..., x,_1). Denote byF; theith com-
ponent of F. Then the proportionality condition reads gy — xoF; = 0. In
particular, Fy is divisible byxo. Denote the quotient bgg. Then from our equa-
tion we see thaF; = Gx;. The last statement of the lemma is obvious. O

Extend the standard inner prodyct-) fromR” to C" by complex bilinearity. The
locus(x, x) = Ois called theasymptotic coneDenote this cone bg. The asymp-
totic cone describes the behavior of circles at infinity. Namely, any nondegenerate
circle (not a line) is asymptotic t6.

Letd: (R", 0) — (R”", 0) be the germ of a diffeomorphism at 0 that sends sev-
eral lines passing through the origin to circles. Suppose that the number of lines is
big enough and that they are in general position; denote this set of linés\vg
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can assume without loss of generality thg® = id. To arrange this, it is enough
to composed with some linear transformation (namely, the inverséb) that
certainly takes lines to lines. Ldt = x + ®,(x) + - - - near 0, whereb, denotes
the second-order terms.

ProrosiTiON 1.3. The quadratic magb, satisfies the following relations on the
asymptotic cone

(P2(x), D2(x)) =0, (®a(x),x) =0.

This proposition means thdt, preserves the asymptotic cone and takes each vec-
tor x € C to a vectory € C such thatc andy span a subspace lying entirelyéh
For an informal explanation of this result, let us assume the following.

(1) The diffeomorphismb takes germs déll lines passing through 0 to germs of
circles.

(2) Our diffeomorphism can be extended to a neighborhood of the origif as
a local holomorphic map.

Then @ takes germs of complex lines to germs of some planar second-degree
curves that approach the asymptotic cone at infinity.

Take a complex lind. from C. We know that® (L) is tangent tal. at 0 and
asymptotic toC at infinity. Denote byM the plane wher@ (L) lies. Then either
M is contained irC or M N C is a pair of intersecting lines i (that may be co-
incident). In the latter cas® (L) must coincide with one of these lines. Indeed,
@ (L) intersects both lines at the origin and is asymptotic to one of them. But a
plane curve of degree 2 cannot intersect its own asymptotic line. Notd tisat
clearlyinM N C, sod(L) = L.

In any caseL and®(L) span a vector subspace lying entirelydn Hence
®,(L) lies in this subspace. From this the proposition follows.

The preceding argument can be extended to a rigorous proof but, in order to
give a shorter proof, we will use another idea.

Proof of Proposition 1.3Make the inversiord with respect to the origin and con-

sider the compositioho ®. The diffeomorphisn® takes a line front to a tangent

circle (owing to the conditiod® = id), and/ sends circles or lines tangent at 0

to parallel lines. Thereford, o ® maps each line fronf to a parallel line.
Consider the Taylor series fdr at the origin,

P(x) =x+ Po(x) + Pa(x) +---,

where®, (x) denotes the ordet-terms. Fix some nonzero vectorthat spans a
line from £. This line can be parameterized{as} wherer is a parameter. Hence
I o ®(x1) runs over some line parallel foast runs over real numbers. This means
that, in the expansion df o ®(xt), all terms with nonzero powers ofare pro-
portional (parallel) tor. We will write down some initial terms of this expansion,
dropping the terms with zero power oand those obviously parallel ta
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[o®(xr) = ( Ps__ 2(¢2’x)¢2)
(x,x) (x,x)2
+< Py 2P, x)P3
(x,x) (x, x)?
(@2, P2) P2+ 2(P3, X) P2 APa(x, <I>2)2>t2 .
(x, x)? (x,x)3 .

The terms withr and#? must be proportional te. The proportionality condi-
tions are polynomial relations in If they hold for sufficiently many in general
position, then they hold everywhere.

The coefficient wittr is equal to

@3 2(®2, x) P2
(x, x) (x, x)2
Therefore, the ma@s(x, x) — 2(P,, x) P, is everywhere proportional te. In
particular, the inner product of this map withis identically zero on the asymp-
totic cone{(x, x) = 0}. This implies that(®,, x) = 0 onC. Hence(®,, x) is
divisible by (x, x), and so the map
2(P2, x) D2
(x, x)
is a polynomial proportional te. By Lemma 1.2 this polynomial is divisible by
x in the class of polynomials. Thereforg; is a linear combination with polyno-
mial coefficients ofb, andx. Thus it always lies in the linear span ®f, andx.
In particular,(®3, x) = 0onC.
The term withr? is
Py 2AP2, x)P3 (P2, P2) P2+ 2(P3, X) P2 4Pa(x, d,)?
(x,x) (x, x)? (x,x)2 (x,x)%
Multiply this expression byx, x)? and restrict it to the asymptotic cone. We ob-
tain that®,(®,, ®») is parallel tox on C (note that all other terms are zero on

the asymptotic cone). This means that eitfderis parallel tox on C or the coef-
ficient is zero. In both cases we haue,, ®,) = 0onC. O

D3

ExaMPLE. Let us construct an example of transformation that takes all lines to
circles and has the identical differential at 0. Pick up a peiafR” and compose

the mirror reflection
(a,x)a

(a,a)
with respect to the orthogonal complementtwith the inversion
(a,a)(x —a)
(x—a,x —a)
with centera and radiuga| (so that 0 is fixed). Denote the resulting local diffeo-
morphism byT “. We have

X x—2

Xt a+
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(a,a)x + (x,x)a (x,x)a — 2(a, x)x
=X
(a,a)+ 2(a, x) + (x, x) (a,a)
In particular, the quadratic term @ has the form

T%x) =

(x,x)a — 2(a, x)x
(a,a)
which is obviously parallel ta on the asymptotic cone.

Tza(x) =

3

Now let us return to the general situation: we have a local diffeomorpkiism
that rounds a sufficiently big and sufficiently general collectioof lines passing
through 0. Denote by the corresponding set of circles.

ProrosITION 1.4. Suppose tha®, is parallel tox on the asymptotic cone. Then
all the circles fromS pass through another common point different from the origin.

In order to prove this, we need two very simple algebraic lemmas.

LemMa 1.5. Assume that a linear map: R* — A?R” satisfies the condition
A(x) A x = 0everywhere. Then there is a vectos R”" such thatA(x) = b A x.

Proof. Introduce a coordinate systefy, ..., x,—1) in R". Let A;;(x) be the co-
ordinates ofA(x) in the standard basis ?RR”. These are linear functions in
The conditionA A x = 0 can be written in coordinates as follows:

A,'jxk + Ajkx,‘ + Ak,‘xj‘ =0. (%)
Formula(x) implies thatA;; vanishes on the subspage= x; = 0. HenceA;; =
bijx; — cijx;, whereb;; andc;; are some numbers. Substituting this equality into
(%) yields

(bijxj — cijxi)xk + (bjxr — cjxx;)x; + (brixi — crixp)x; = 0.
Equating the coefficient with; x; to zero, we obtaib; = cj.. This implies that:
(i) the coefficienth,; is independent of (denote it byb,);

(ii) the coefficientc, is independent of (denote it byc,); and
(III) bk = Ckg.
Now we haveA;; = b;x; — b;x;. This means thai(x) = b A x, whereb is the
vector with coordinategbo, ..., b,_1). O

Recall thata map : C* — C” is defined over reald it takesR" c C" to R".

LemMma 1.6. LetI': C" — C" be a vector-valued quadratic for(ne., a homo-
geneous polynomial map of second deyckdined over reals and such thagx)
is everywhere parallel ta on C. ThenI" has the form"(x) = b(x, x) + A(x)x,
whereb € R" and A is a linear functional.

Proof. Sincerl is everywhere parallel to on the coneC, we havel'(x) A x =0
there. Consequently, A x is divisible by(x, x). Denote the quotient by; itis a
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linear map fronR” to A>R”. Moreover, we haveé\ A x = 0 becausel Ax)Ax =
0. By Lemma 1.5 it follows that\ = b A x and henc&l” — b(x, x)) A x vanishes
everywhere. This means that the polynomial mapb(x, x) is proportional tor.
By Lemmal.2 we havE —b(x, x) = A(x)x, where is some linear function. [

Proof of Proposition 1.4By Lemma 1.6 we know that the second-order gt
of a rectifying diffeomorphismd has the formd,(x) = b(x, x) + A(x)x, where
b is some vector froniR” andx is a linear functional.

Consider a circle frond with the tangent vector at 0. The acceleration with
respect to the natural parameter is

[OP¥
®2— P 0, a()x — (b, x)x

—2 :2(b—(b’x)x>,
(x, x) (x,x) (x, x)

which is the same as for the circle passing throadth, »). But the circle is de-
termined by its velocityc/| x| and acceleration (both with respect to the natural
parameter). It follows that all the circles frafhpass througlh/(b, b). O

Now we can give a simple proof of Theordmi.

Proof of Theoreni.1. In dimensions 2 and 3, the asymptotic cone does not con-
tain any plane. Therefor&, must be parallel ta everywhere on the cone. Now
Proposition 1.4 is applicable. O

ExampLE. In dimension 4, the statement of Theorem 1.1 does not hold. To con-
struct a counterexample, introduce a complex structui®‘aand identifyR* with
C? by means of this complex structure. Consider any complex projective trans-
formation® preserving the origin: it takes complex lines to complex lines, and on
each line itinduces a projective transformation. On the other hand, a complex pro-
jective transformation of a complex line takes real lines to circles. Héntakes
real lines to circles (note that each real line belongs to exactly one complex line).
Thus we get a rectifiable family of circles (through 0). But these circles do not
pass through a common point different from the origin, because different complex
lines meet only at the origin.

Theorem 1.1 fails in dimension 4 for the following simple reason. The asymp-
totic cone now contains many planes, so there is no longer any reas®n oy
to be everywhere parallel toon C.

2. Algebraic Criteria for Rectification

We shall now prove that the conditions @3 stated in Proposition 1.3 are not only
necessary but also sufficient in a sense.

ProrosiTioN 2.1. If a vector-valued quadratic forrr: C" — C” defined over
reals satisfies the conditions, I'(x)) = (I'(x), ['(x)) = 0 on the asymptotic
cone, then there exists a germ of diffeomorphism(R”,0) — (R”, 0) that
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rounds lines passing through the origin and such #hg@b = id and ®, = I'; that
is, ® = x + I" up to third-order terms.

Proof. Let us introduce the following notation:
(T, x) (I, )
A= —7, n= .
(x,x) (x,x)
We know thath and . are polynomials inc (A is a linear functional ang. is a
guadratic form).

First assume that = 0 (i.e., (I, x) = 0 everywhere). Let us look for a dif-
feomorphism® of the form®(x) = x + ['(x) f(x), where f is some smooth
function that is equal to 1 at 0. We wadtto take all lines (passing through 0) to
circles. Denote by the inversion with center at 0 and radius 1. Then the germ of
diffeomorphism

B x+Tf 1 x+Tf
A Tfx 4T (xnx) 1+ pf?
sends a neighborhood of 0 to a neighborhoodwénd is supposed to take each

line (passing through 0) to a parallel line. For that it suffices to require that
f/A+ uf? =1 Indeed, under the latter requirement we have

X n r
(0, )@+ pf(x0)?) - (x,x)]
and the right-hand side has the form “something parallelgtus a term indepen-

dent ofz”, which means that o ® (xt) runs over a line parallel to ast runs over
reals. Solving the corresponding quadratic equatiorf,ome obtain

1-/1-4u
21 ’

I o

[o®(xt) =11

f:

We see thayf is a smooth analytic function near 0 such tliéd) = 1, as desired.
Now suppose that # 0. Let us look for a diffeomorphisnd of the form® =
T o W, whereWw is some other local diffeomorphism at 0. ¥f takes all lines
passing through O to circles, then the same is truedfoiVe will try to kill
by choosing an appropriate centerFor the second-order terms we habe =
W, + T4 It therefore suffices to take such thati(x) = —(a, x)/(a, a). Now
(W2, x) = 0 everywhere, so our problem is reduced to the previous@ase0),
which we have already shown. O

Consider a simple bundi& of circles passing through 0 such that in each direction
there emanates a unique circle frémSuch a bundle is callecbmplete Now we

can give a description of complete rectifiable bundles of circles in pure algebraic
terms.

THEOREM 2.2. Complete rectifiable bundles of circlesRf are in one-to-one
correspondence with quadratic homogeneous mMap&”" — C" defined over
reals and satisfying the conditioris, I'(x)) = (I'(x), I'(x)) = 0 on the asymp-
totic cone, modulo maps of the fonm— A(x)x (wherea are linear functionaly
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Proof. To each complete rectifiable bundfeof circles assign the quadratic part
@, of any rectifying diffeomorphismb. We know that any quadratic homoge-
neous mapb, defined over reals and satisfying Proposition 1.3 can be obtained in
this way. Let us see to what extent the quadratic mbaps unique. We saw al-
ready that, for each circle froi, it is enough to know the acceleration at 0 with
respect to the natural parameter. The acceleration of the circle with the tangent
vectorx is equal to
(P2,x)x
w(dy) = zﬂ.
(x, x)
However, this expression does not determinge It is easy to see that, ib, and
7/, differ by A(x)x (wherex is a linear functional), thew(®;) = w(®5) and
so the corresponding families are the same. Indeed, this follows from the obser-
vation that®, — (®,, x)x/(x, x) is just the projection ofb, to the orthogonal
complement ofc. Conversely, ifw(®2) = w(d,) then®, — @, is everywhere
parallel tox (since the projections to the orthogonal complement coincide). Hence
d, — @), = A(x)x, wherex is a linear functional. O

ExaMPLE. In dimension 4, the conditiotk, I'(x)) = (I'(x), I'(x)) = 0 onC
can be interpreted in terms of algebraic geometry as follows. Denote the
projectivization of the asymptotic cone. This is a nondegenerate quadratic surface
in CP3. Each point ofQ belongs to two straight lines lying entirely @.

To describe all lines irQ, it is convenient to identifyQ with the image of the
Segre embedding

CP! x CP* - CP3,
([uo : ual, [vo : vi]) — [uovo : uovy : vouy : ugv1]

(recall that any nondegenerate quadratic surfacéRd can be mapped to any
other by a complex projective transformation). Under this embedding, all hori-
zontal linesCP* x {p} and all vertical lineg p} x CP* are mapped to straight
lines. Hence we have two families of linesghsuch that every point ad belongs

to a unique line from each family. These families of lines are cajleerating
families of linesFor each generating family of lines i there is the correspond-
ing generating family of plands C. So the coné& is covered by two generating
families of planes, and every line i@ belongs to exactly one plane from each
generating family.

The conditions(x, I'(x)) = (I'(x), ['(x)) = 0 on the asymptotic cone are
equivalent to the following statement: The subspace spannedagI"(x) lies
entirely in C. This means thal’ takesx to another point of some line or plane
containingry and lying entirely inC. The mapl™ is homogeneous, and thus it gives
rise to a rational mag : CP® — CP? preserving the projectivizatio@ of the
asymptotic con€. We know that for each point e Q thereis aline lying entirely
in Q and containing bothy and its image/ (¢). We will deduce from this thall
preserves at least one of the generating families of ling® {perhaps both)—in
other words, tharl® takes each line from some generating family to itself. Indeed,
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being a rational map; cannot “switch” from one generating family to the other.
We now provide a formal proof of this statement.

LEMMA 2.3. The mapy preserves at least one generating family of linegin

Proof. The surfaceQ is isomorphic taCP! x CP! via the Segre map. Henge
can be given by the two rational maps

X: (x,y)eCP'x CP'+— X(x,y)eCP,
Y: (x,y) €CP' x CP'— Y(x,y)eCP.

We know that, for each pointx, y) € CP' x CP% we haveX(x,y) = x or
Y(x, y) = y. Therefore,Q is the union of two algebraic subsets defined by the
equationsX(x, y) = x andY(x, y) = y. SinceQ is irreducible, at least one of
our equations is satisfied identically, which means thpteserves at least one of
the generating families of lines i@. O

Now we can deduce the following.

ProposITION 2.4. Polynomial homogeneous maps C* — C* satisfying the
conditions(x, I'(x)) = (I'(x), I'(x)) = 0 on the asymptotic cone preserve some
generating family of planes i@.

3. Complex and Quaternionic Structures

From now on we will work in 4-dimensional spaB¢. This section reviews not
only well-known classical facts about complex and quaternionic structures but also
their relation to the geometry of the asymptotic ca@he

Recall that acomplex structurén R* is a linear operatof : R* — R* such
that72 = —1. We will always assume that the complex structiiie compatible
with the Euclidean structure (i.e., thapreserves the inner product). A complex
structure clearly defines an action®bnR* via linear conformal maps. From the
definition it follows immediately thak must be skew-symmetric, that is;, Iy) =
—(Ix, y) for all x, y e R%. In particular,(Ix, x) = 0. Since the operataf is de-
fined over reals and sindé = —1, it follows that! should have eigenvaluésind
—i, both with multiplicity 2.

Note that, as an orthogonal operatbpreserves the asymptotic cofieln par-
ticular, all eigenvectors of belong toC. We know that(/x, x) = 0 everywhere
and in particular orC. From the conditiongx, x) = (Ix, Ix) = (Ix,x) = 0 on
C it follows that the subspace spanned.xbwnd Ix lies entirely inC. Hencel
preserves one of the generating families of planes.in

On the other hand, the complex structdrdefines a canonical orientation on
R*. Let us recall the definition. Take two vectorsy € R* in general position.
By definition, the canonical orientation is the orientation of the hasjs /x, Iy.
This orientation is well-defined (i.e., independent of the choiaeasfdy) because
the set of degenerate paits, y) (such thatx, y, Ix, Iy are linearly dependent)
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has real codimension 2 in the spa2of all pairs. Hence we can always avoid
this set when going from any nondegenerate pair to any other. In fact, the degen-
eracy locus consists of all paixs y that are linearly dependent ov€r so it is a
complex hypersurface.

ProposiTION 3.1.  The space of all complex structures Bf has two connected
components. Complex structures from the same component preserve the same gen-
erating family of planes it and provide the same canonical orientation.

A connected component to which a complex structligelongs will be called
theorientationof 1. Note that the orientation af has nothing to do with def),
which is always equal to 1—any complex structure preserves orientation of the
ambient space.

Now let us pass to quaternionic structuresquaternionic structur@nR* is a
choice of three linear operatofsJ, K : R* — R* such that

I’=J?=K?=-1,
IJ=-JI=K, JK=—-KJ=1, KI=—-IK=1J.

In particular, the operators, J, K are complex structures. We will assume that
they are compatible with the inner product. A quaternionic structure gives rise
to an action of the skew-fiell of quaternions ofR* via linear conformal maps.
This action is called thquaternionic multiplication.

Lemma 3.2. Let (I, J, K) be any quaternionic structure di*. Then all three
complex structureg, J, K have the same orientation. Therefore, quaternionic
multiplication preserves one of the generating families of planes in the asymptotic
cone.

Proof. Let us prove, for example, th@tandJ provide the same canonical orien-
tation. Take any vectare R*. Itis enough to show that the basesKe, Ie, IKe)
and(e, Ke, Je, JKe) have the same orientation. BikKe = —Je andJKe = Ie,
so the statement becomes obvious. O

Leta € H be a quaternion. It gives rise to the operator of multiplicatanx +—
ax. If a = aog + ayi + a2j + ask, then the corresponding operator As =
ag + a1l + a»J + azK. We know that the operatod satisfies the conditions
(x, Ax) = (Ax, Ax) onC. In particular, both formgAx, Ax) and(Ax, x) are
divisible by (x, x). We can write down the quotients explicitly.

LemMma 3.3. If A is the operator of multiplication by a quaterniene H (with
respect to some quaternionic structure®fy, then

(Ax, Ax) = (a,a)(x, x), (Ax, x) = Re(a)(x, x).

In particular, these forms are independent of the choice of quaternionic structure.
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Proof. This is a very simple computation that is based on the fact(thatx) =
(x, Jx) = (x, Kx) = 0 for all x e R*. O

Let us summarize some properties of quaternionic structures that are of particu-
lar importance for us. These properties follow directly from what we have already
seen.

ProposITION 3.4. The set of all quaternionic structuresiRf has two connected
components. Each component corresponds to a certain orientation of three com-
plex structuresinvolved. Quaternionic multiplications with respectto quaternionic
structures from the same component preserve the same generating family of planes
in C. Different components correspond to different families of generating planes.

We will say that quaternionic structures from the same connected component have
the sameorientation. Note that the orientation of a quaternionic structure has
nothing to do with determinants of quaternionic multiplications. Quaternionic
multiplications (with respect to any quaternionic structure) always preserve the
orientation of the ambient space.

ExampLE. ldentify R* with H. Denote byl, J, K the operators of left multipli-
cation byi, j, k respectively. The structuxd, J, K) is called thdeft quaternionic
structureon H. Taking right multiplication instead of left multiplication yields
theright quaternionic structureLeft and right quaternionic structures @ihhave
different orientations.

Let us introduce some notions. We say that a linear operatdmisst orthogo-
nal if it has the form const A, whereA is an orthogonal operator. Analogously,
an operator ilmost skew-symmetri€it has the form cons# A, whereA is
skew-symmetric.

ProposiTION 3.5. A linear operatorA: R* — R* is the multiplication by a
quaternion(with respect to some quaternionic structure®f if and only if it is
almost orthogonal and almost skew-symmetric. The property of being a quater-
nionic multiplication depends only on the orientation of a quaternionic structure,
not on the structure itself.

Proof. A quaternionic multiplicationis clearly almost orthogonal and almost skew-
symmetric; this follows from Lemma 3.3. Now consider an almost orthogonal and
almost skew-symmetric operatdrand present it by a matrix in some orthonor-
mal basis. Denote hyy, a1, a, az the entries of the first column of. SinceA is
almost skew-symmetric, it has the form

ap —ay; —dz —dads
ai dap o B
ap —u ao Y
a3 —p —y ao
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The columns must be orthogonal and have the same length. From the correspond-
ing equations we obtain either that= a3, 8 = —a, andy = a; or thata =

—as, B = ap, andy = —a;. The first case corresponds to the left multiplication

by a = aqg + a1i + a2 j + ask with respect to the standard quaternionic structure
(assigned to the given basis). The second case corresponds to the right multiplica-
tion bya. The equalities hold no matter what orthonormal basis we choose. Thus
the second statement follows. O

4. Quaternionic Fractional Transformations

Let us identifyR* with the skew-fieldd of quaternions. Consider two affine maps
A, B: R* — R* The mapB~'4 (the multiplication and the inverse are in the
sense of quaternions) is called a (ldfgctional quaternionic transformatiopro-
vided that it is defined and one-to-one in some open subdt.ok right quater-
nionic fractional transformatioiis a local transformation of the forsB 2, where

A andB are some affine maps.

ExampLE 1. Any real projective transformation is quaternionic fractional. This
corresponds to the case whBrtakes real values only.

ExampPLE 2. Any complex projective transformation is quaternionic fractional.
This happens iB takes complex values only and bottand B are complex linear
(i.e., commute with the multiplication by.

ExaMpLE 3. Consider a map of the form — (xa + b)Y(xc + d), where

a, b, ¢, d are quaternions. We are assuming that the denominator is not propor-
tional to the numerator (in particular, the denominator is not identically zero).
This map is called a (leftyjuaternionic projective transformationAny quater-
nionic projective transformation is clearly quaternionic fractional. Note that each
guaternionic projective transformation takes all lines to circles. Indeed, we have

(xa 4+ b) Xxc+d) = (xa+b) H(xa+b)a+ B) = a + (xa+ b) 1B,

wherea = a~*c andp = d — ba. Hence a quaternionic projective transforma-
tion is a composition of a dilatation, reflected inversion, and a translation. This
composition obviously rounds lines.

ProrosiTioN 4.1.  Any quaternionic fractional transformation rounds lings be
more preciseit takes germs of lines to germs of cirges

Proof. Consider alind. in R4, and let: be a linear parameter dn If A andB are
some affine maps then their restrictiond.tarear +5b andct +d, respectively. On
the lineL the transformatiom —'B therefore coincides with the quaternionic pro-
jective transformation — (ax + b) (cx + d). But the latter rounds lines. O

ReEMARK. Note that a fractional quaternionic transformation can be described
geometrically as follows. Consider an arbitrary embedding ‘o H? = R8 as a
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real affine subspace. A fractional quaternionic transformation is the composition
of this embedding and a projection to some quaternionic line (from the origin).
There are two types of projections, left and right. The left projection of a point
p € H? to a left quaternionic ling. is the intersection of. with the left quater-
nionic line passing through 0 and(if L is parallel to this line, then the projection

of p is not defined). Similarly, we can define the right projection to a right quater-
nionic line.

5. Rectification at a Point
In this section, we will prove the following theorem.

THEOREM 5.1. Consider a simple bundle of circles Rf containing sufficiently
many circles in general position. If this bundle is rectifiable, then there exists a left
or right quaternionic fractional transformatiof such that7 —* sends all these
circles to straight lines.

Denote the given set of circles I8 Let ® be a local diffeomorphism such that
do® = id and® ! rectifies all circles frons. Then, by Proposition 1.3, the qua-
dratic term®, satisfies the relation@b,, x) = (®,, ®,) = 0 on the asymptotic
cone. This means th&t, preserves one of the generating families of plan&s.in

LemMa 5.2. There exists a linear operatot: R* — R* such that®,(x) =
A(x)x or ®,(x) = xA(x), where the product is in the sense of quaternions.

Proof. Fix an identificatiorR* = H. Extend the operators J, K of left multipli-
cation byi, j, k (respectively) taC* by complex linearity. Note that the operator
is quite different from the multiplication by/—1 in C*. By Proposition 3.4, the
left quaternionic multiplication preserves one of the generating families of planes
in C. Assume thatb, preserves the same family. Otherwise we should consider
the right multiplication instead of the left multiplication.

Recall that theyuaternionic conjugatioiis the map

X =x0+x1 +x2j +x3kt—> X =x0—x10 —x2j — x3k.

We can extend this map ©* by complex linearity. Note thatis now a vector
from R*, not a complex number. Let us multiptly, by X in the sense of quater-
nions. Note that

Dok = (P2, x) + (P2, Ix)i + (P2, Jx)j + (P2, Kx)k.

But this expression is zero on the cafiesince®,, x, Ix, Jx, andKx lie on the
same plane belonging . Therefore ®, x is divisible by(x, x). The quotient is
a linear mapA. Sincex/(x, x) = x "t we haved,x 1 = A(x), that is,®»(x) =
A(x)x. O

Now we can prove Theorem 5.1 and an even more precise statement as follows.

THeorREM 5.3. Under the assumptions of Theorem 5.1, the family of circles can
be obtained from the family of their tangent lines by one of the transformations
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x = (1— Ax)x or x — x(1— A(x))~% whereA is some linear operator.
This answer does not depend on the choice of a quaternionic structure.

Proof. Note that both transformations have the identical derivative at 0 and that
their second-order terms argx)x andxA(x), respectively. These transforma-
tions are quaternionic fractional and so they round lines. The corresponding fami-
lies of circles passing through 0 are determined by the second-order terms. But by
Lemma 5.2, the quadratic mapsx)x andxA(x) are the only possible second-
order terms of transformations that round lines. O

For a complete rectifiable bundfeof circles, there is a transformation of the form
x = (1—A(x)) 2 orx — x(1— A(x))‘that takes the family of all lines passing
through 0 taS. To fix the idea, assume that this is the left transforma®ornx —
(1— A(x)) .

ProrosiTiON 5.4. The center of the circle froi& with the tangent vector at 0is
—%(Im A(x))~%x. This point can be infinite, which means that the corresponding
circle is a straight line.

Proof. We know that the acceleration with respect to the natural parameter is

5 — (P2, x)x
w(x) =2— &0
(x, x)
Therefore, the center is located in the point
[oF) _ (P2, x)x
w _1— (x,x) (x.x)2
(w, w) 2 (@2.9) _ (92,02
(x,x)2 (x,x)3

By Lemma 3.3 we havéd,, ®,) = (A, A)(x, x) and(d,, x) = (ReA)(x, x).
Simplifying the expression just displayed yields the following formula for the
center:
1( A —ReA ) 1  Im(A)

X

_Lomay 1
2\ (A, A)— (Rea)2 )" = 2(mA,ima)” ~ 2(ImA) X U

Proposition 5.4 has the following geometric corollary.

CoroLLARY 5.5. The familyS contains at least one line. The union of all straight
lines fromS is a vector subspace @*.

ReEMARK. We see that the set of all complete rectifiable families of circles passing
through 0 is naturally identified with the union of two affine spaces of dimension
12 (= dimension of all possible IM(x)). The intersection of these components
has dimension 4 and consists of all families rectifiable by means of inversions (i.e.,
families whose circles meet at a point different frojn Dhe two components can

be distinguished by their “orientation”.



Rectification of Circles and Quaternions 167

We can describe an affine structure on each component in geometric terms.
Namely, take any two circle$; andS, tangent at 0. After an inversion, they be-
come parallel lines. For two parallel linés andL, we can take their barycentric
combination

L=Ma+A-MLo={Ax+A—-MNy|xeLi, yeLs}, AreR.
Make the inversion again. The liflegoes to a circles. Define
S=AS1+A-1)S>.

Now we can take barycentric combinations of complete bundles of circles.
Namely, let the circle of the new bundle passing through 0 in direatiba § =
AS1+ (1—1)S2, whereS; andS, are circles from the old bundles going from 0 in
directionx. It turns out that if two rectifiable bundles have the same “orientation”
then their barycentric combinations are also rectifiable.

ReEMaRK. We used Theorem 5.1to classify all Kéhler metrics in an open subset of
C?whose geodesics are circles. All such metrics are locally equivalent (by means
of a complex projective transformation and multiplication by a constant factor)
to Fubini metrics (i.e., to the Fubini-Study metric @ restricted to an affine
chart, to the complex hyperbolic metric in the unit ball model, or to the Euclidean
metric). A proof of this statement will appear in a separate paper.

OpPEN QUESTION. How many complete rectifiable simple bundles of circles are
there? We saw that iR” the space of all complete rectifiable bundles of circles
passing through 0 is finite-dimensional. What is its dimension (as a function of
n)? Is there an explicit geometric description of such bundles in dimensiota
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