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Rectification of Circles and Quaternions

V. Timorin

Introduction

Throughout this paper, the word “circle” means a circle or a straight line. We are
always assuming that the spaceRn is equipped with a fixed “standard” Euclidean
inner product.

A collection of curves inRn passing through 0 is said to be asimple bundle
of curvesif no two of them are tangent at 0. A simple bundle of curves is called
rectifiableif there exists a germ of diffeomorphism in a neighborhood of the ori-
gin that sends all curves from this bundle to straight lines. Rectifiable bundles of
curves appear, for example, in Riemannian geometry—the set of geodesics pass-
ing through a given point is rectifiable.

A. G. Khovanskii proved in [2] that a rectifiable simple bundle of more than six
circles on plane necessarily passes through some point different from the origin.
F. A. Izadi [1] generalized Khovanskii’s arguments to dimension 3. A rectifiable
simple bundle of circles inR3 containing sufficiently many circles in general po-
sition must pass through some other common point.

In dimension 4, this is not true. The simplest counterexample is a family of
circles that are obtained from straight lines by some complex projective transfor-
mation (with respect to some identificationR4 = C2 such that the multiplication
by i is an orthogonal operator).

It turns out that, in dimension 4, there is a large family of transformations that
round lines (i.e., take them to circles). To construct such a family, fix a quater-
nionic structure onR4 compatible with the Euclidean structure. IfA andB are
some affine maps, then the mapx 7→ A(x)−1B(x) rounds lines (the multiplica-
tion and the inverse are in the sense of quaternions). Such transformations will
be called (left)quaternionic fractional transformations.Right quaternionic frac-
tional transformationsAB−1 also round lines. Any real projective, complex pro-
jective, or quaternionic projective transformation is quaternionic fractional.

In this paper, we will prove that a rectifiable simple bundle of circles containing
sufficiently many circles in general position is the image of a bundle of straight
lines under some left or right quaternionic fractional transformation.
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In arbitrary dimension, we have a purely algebraic description of rectifiable sim-
ple bundles of circles. So the analytic problem of classification of such bundles is
reduced to an algebraic problem.

The paper is organized as follows. In Section 1, for a simple rectifiable bundle
of circles we establish an algebraic condition on the second derivative of a recti-
fying map. This condition is formulated on the asymptotic cone{(x, x) = 0} ⊆
C2, where(·, ·) is the complexification of the usual inner product. This provides
a simple proof of Izadi’s theorem [1]. In Section 2, we show that this algebraic
condition is not only necessary but also sufficient in a sense. Thus we obtain an
algebraic description of rectifiable simple bundles of circles. In Section 3, we re-
view some important properties of complex and quaternionic structures and relate
them to the geometry of the asymptotic cone. In Section 4, we define quaternionic
fractional transformations and list some of their properties. Section 5 contains the
main rectification result and some of its geometrical consequences.

I am grateful to A. G. Khovanskii for useful discussions.

1. Rectifiable Collections of Circles

The following result is true in dimensions 2 [2] and 3 [1].

Theorem 1.1. Consider a simple bundle of circles inR2 or R3 containing suf-
ficiently many circles in general position. If this bundle is rectifiable, then all its
circles pass through a common point different from the origin.

On a plane, it is enough to take seven circles. Theorem 1.1 means, in particular,
that if a generic family of circles can be rectified at all, then it can be rectified by
means of some inversion. However, as we will see, this does not hold in dimen-
sion 4.

We need the following very simple lemma.

Lemma 1.2. Consider a polynomial mapF : Rn → Rn such thatF(x) is every-
where proportional tox. ThenF(x) = G(x)x for some polynomial function
G : Rn→ R. If F is homogeneous, then so isG.

Proof. Introduce a coordinate system(x0, . . . , xn−1). Denote byFi the ith com-
ponent ofF. Then the proportionality condition reads asxiF0 − x0Fi = 0. In
particular,F0 is divisible byx0. Denote the quotient byG. Then from our equa-
tion we see thatFi = Gxi. The last statement of the lemma is obvious.

Extend the standard inner product(·, ·) fromRn toCn by complex bilinearity. The
locus(x, x) = 0 is called theasymptotic cone.Denote this cone byC. The asymp-
totic cone describes the behavior of circles at infinity. Namely, any nondegenerate
circle (not a line) is asymptotic toC.

Let8 : (Rn,0)→ (Rn,0) be the germ of a diffeomorphism at 0 that sends sev-
eral lines passing through the origin to circles. Suppose that the number of lines is
big enough and that they are in general position; denote this set of lines byL. We
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can assume without loss of generality thatd08 = id. To arrange this, it is enough
to compose8 with some linear transformation (namely, the inverse ofd08) that
certainly takes lines to lines. Let8 = x +82(x)+ · · · near 0, where82 denotes
the second-order terms.

Proposition 1.3. The quadratic map82 satisfies the following relations on the
asymptotic cone:

(82(x),82(x)) = 0, (82(x), x) = 0.

This proposition means that82 preserves the asymptotic cone and takes each vec-
tor x ∈C to a vectory ∈C such thatx andy span a subspace lying entirely inC.
For an informal explanation of this result, let us assume the following.

(1) The diffeomorphism8 takes germs ofall lines passing through 0 to germs of
circles.

(2) Our diffeomorphism can be extended to a neighborhood of the origin inCn as
a local holomorphic map.

Then8 takes germs of complex lines to germs of some planar second-degree
curves that approach the asymptotic cone at infinity.

Take a complex lineL from C. We know that8(L) is tangent toL at 0 and
asymptotic toC at infinity. Denote byM the plane where8(L) lies. Then either
M is contained inC orM ∩C is a pair of intersecting lines inM (that may be co-
incident). In the latter case8(L) must coincide with one of these lines. Indeed,
8(L) intersects both lines at the origin and is asymptotic to one of them. But a
plane curve of degree 2 cannot intersect its own asymptotic line. Note thatL is
clearly inM ∩ C, so8(L) = L.

In any case,L and8(L) span a vector subspace lying entirely inC. Hence
82(L) lies in this subspace. From this the proposition follows.

The preceding argument can be extended to a rigorous proof but, in order to
give a shorter proof, we will use another idea.

Proof of Proposition 1.3.Make the inversionI with respect to the origin and con-
sider the compositionI B8. The diffeomorphism8 takes a line fromL to a tangent
circle (owing to the conditiond08 = id), andI sends circles or lines tangent at 0
to parallel lines. Therefore,I B8 maps each line fromL to a parallel line.

Consider the Taylor series for8 at the origin,

8(x) = x +82(x)+83(x)+ · · ·,
where8k(x) denotes the order-k terms. Fix some nonzero vectorx that spans a
line fromL. This line can be parameterized as{xt}wheret is a parameter. Hence
I B8(xt) runs over some line parallel tox ast runs over real numbers. This means
that, in the expansion ofI B 8(xt), all terms with nonzero powers oft are pro-
portional (parallel) tox. We will write down some initial terms of this expansion,
dropping the terms with zero power oft and those obviously parallel tox:
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I B8(xt) =
(
83

(x, x)
− 2(82, x)82

(x, x)2

)
t

+
(
84

(x, x)
− 2(82, x)83

(x, x)2

− (82,82)82 + 2(83, x)82

(x, x)2
+ 482(x,82)

2

(x, x)3

)
t 2 + · · · .

The terms witht andt 2 must be proportional tox. The proportionality condi-
tions are polynomial relations inx. If they hold for sufficiently manyx in general
position, then they hold everywhere.

The coefficient witht is equal to

83

(x, x)
− 2(82, x)82

(x, x)2
.

Therefore, the map83(x, x) − 2(82, x)82 is everywhere proportional tox. In
particular, the inner product of this map withx is identically zero on the asymp-
totic cone{(x, x) = 0}. This implies that(82, x) = 0 onC. Hence(82, x) is
divisible by(x, x), and so the map

83− 2(82, x)82

(x, x)

is a polynomial proportional tox. By Lemma 1.2 this polynomial is divisible by
x in the class of polynomials. Therefore,83 is a linear combination with polyno-
mial coefficients of82 andx. Thus it always lies in the linear span of82 andx.
In particular,(83, x) = 0 onC.

The term witht 2 is

84

(x, x)
− 2(82, x)83

(x, x)2
− (82,82)82 + 2(83, x)82

(x, x)2
+ 482(x,82)

2

(x, x)3
.

Multiply this expression by(x, x)2 and restrict it to the asymptotic cone. We ob-
tain that82(82,82) is parallel tox onC (note that all other terms are zero on
the asymptotic cone). This means that either82 is parallel tox onC or the coef-
ficient is zero. In both cases we have(82,82) = 0 onC.

Example. Let us construct an example of transformation that takes all lines to
circles and has the identical differential at 0. Pick up a pointa ∈Rn and compose
the mirror reflection

x 7→ x − 2
(a, x)a

(a, a)

with respect to the orthogonal complement toa with the inversion

x 7→ a + (a, a)(x − a)
(x − a, x − a)

with centera and radius|a| (so that 0 is fixed). Denote the resulting local diffeo-
morphism byT a. We have
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T a(x) = (a, a)x + (x, x)a
(a, a)+ 2(a, x)+ (x, x) = x +

(x, x)a − 2(a, x)x

(a, a)
+ · · · .

In particular, the quadratic term ofT a has the form

T a
2 (x) =

(x, x)a − 2(a, x)x

(a, a)
,

which is obviously parallel tox on the asymptotic cone.

Now let us return to the general situation: we have a local diffeomorphism8

that rounds a sufficiently big and sufficiently general collectionL of lines passing
through 0. Denote byS the corresponding set of circles.

Proposition 1.4. Suppose that82 is parallel tox on the asymptotic cone. Then
all the circles fromS pass through another common point different from the origin.

In order to prove this, we need two very simple algebraic lemmas.

Lemma 1.5. Assume that a linear map3 : Rn → 32Rn satisfies the condition
3(x)∧ x = 0 everywhere. Then there is a vectorb ∈Rn such that3(x) = b∧ x.
Proof. Introduce a coordinate system(x0, . . . , xn−1) in Rn. Let3ij(x) be the co-
ordinates of3(x) in the standard basis of32Rn. These are linear functions inx.
The condition3 ∧ x = 0 can be written in coordinates as follows:

3ij xk +3jkxi +3ki xj = 0. (∗)
Formula(∗) implies that3ij vanishes on the subspacexi = xj = 0. Hence3ij =
bij xj − cij xi, wherebij andcij are some numbers. Substituting this equality into
(∗) yields

(bij xj − cij xi)xk + (bjk xk − cjk xj )xi + (bki xi − cki xk)xj = 0.

Equating the coefficient withxi xj to zero, we obtainbki = cjk. This implies that:

(i) the coefficientbki is independent ofi (denote it bybk);
(ii) the coefficientcjk is independent ofj (denote it byck); and

(iii) bk = ck.
Now we have3ij = bi xj − bj xi . This means that3(x) = b∧ x, whereb is the
vector with coordinates(b0, . . . , bn−1).

Recall that a map0 : Cn→ Cn is defined over realsif it takesRn ⊂ Cn toRn.

Lemma 1.6. Let0 : Cn → Cn be a vector-valued quadratic form(i.e., a homo-
geneous polynomial map of second degree) defined over reals and such that0(x)
is everywhere parallel tox onC. Then0 has the form0(x) = b(x, x)+ λ(x)x,
whereb ∈Rn andλ is a linear functional.

Proof. Since0 is everywhere parallel tox on the coneC, we have0(x)∧ x = 0
there. Consequently,0∧ x is divisible by(x, x). Denote the quotient by3; it is a
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linear map fromRn to32Rn. Moreover, we have3∧x = 0 because(0∧x)∧x =
0. By Lemma 1.5 it follows that3 = b∧ x and hence(0− b(x, x))∧ x vanishes
everywhere. This means that the polynomial map0−b(x, x) is proportional tox.
By Lemma1.2 we have0−b(x, x) = λ(x)x,whereλ is some linear function.

Proof of Proposition 1.4.By Lemma 1.6 we know that the second-order part82

of a rectifying diffeomorphism8 has the form82(x) = b(x, x)+ λ(x)x, where
b is some vector fromRn andλ is a linear functional.

Consider a circle fromS with the tangent vectorx at 0. The acceleration with
respect to the natural parameter is

2
82 − (82,x)x

(x,x)

(x, x)
= 2

82 − λ(x)x − (b, x)x
(x, x)

= 2

(
b − (b, x)x

(x, x)

)
,

which is the same as for the circle passing throughb/(b, b). But the circle is de-
termined by its velocityx/|x| and acceleration (both with respect to the natural
parameter). It follows that all the circles fromS pass throughb/(b, b).

Now we can give a simple proof of Theorem1.1.

Proof of Theorem1.1. In dimensions 2 and 3, the asymptotic cone does not con-
tain any plane. Therefore,82 must be parallel tox everywhere on the cone. Now
Proposition 1.4 is applicable.

Example. In dimension 4, the statement of Theorem 1.1 does not hold. To con-
struct a counterexample, introduce a complex structure onR4 and identifyR4 with
C2 by means of this complex structure. Consider any complex projective trans-
formation8 preserving the origin: it takes complex lines to complex lines, and on
each line it induces a projective transformation. On the other hand, a complex pro-
jective transformation of a complex line takes real lines to circles. Hence8 takes
real lines to circles (note that each real line belongs to exactly one complex line).
Thus we get a rectifiable family of circles (through 0). But these circles do not
pass through a common point different from the origin, because different complex
lines meet only at the origin.

Theorem 1.1 fails in dimension 4 for the following simple reason. The asymp-
totic cone now contains many planes, so there is no longer any reason for82(x)

to be everywhere parallel tox onC.

2. Algebraic Criteria for Rectification

We shall now prove that the conditions on82 stated in Proposition 1.3 are not only
necessary but also sufficient in a sense.

Proposition 2.1. If a vector-valued quadratic form0 : Cn → Cn defined over
reals satisfies the conditions(x, 0(x)) = (0(x), 0(x)) = 0 on the asymptotic
cone, then there exists a germ of diffeomorphism8 : (Rn,0) → (Rn,0) that
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rounds lines passing through the origin and such thatd08 = id and82 = 0; that
is,8 = x + 0 up to third-order terms.

Proof. Let us introduce the following notation:

λ = (0, x)

(x, x)
, µ = (0, 0)

(x, x)
.

We know thatλ andµ are polynomials inx (λ is a linear functional andµ is a
quadratic form).

First assume thatλ = 0 (i.e., (0, x) = 0 everywhere). Let us look for a dif-
feomorphism8 of the form8(x) = x + 0(x)f(x), wheref is some smooth
function that is equal to 1 at 0. We want8 to take all lines (passing through 0) to
circles. Denote byI the inversion with center at 0 and radius 1. Then the germ of
diffeomorphism

I B8 = x + 0f
(x + 0f, x + 0f ) =

1

(x, x)

x + 0f
1+ µf 2

sends a neighborhood of 0 to a neighborhood of∞ and is supposed to take each
line (passing through 0) to a parallel line. For that it suffices to require that
f/(1+ µf 2) = 1. Indeed, under the latter requirement we have

I B8(xt) = t−1 x

(x, x)(1+ µf(xt)2) +
0

(x, x)
,

and the right-hand side has the form “something parallel tox plus a term indepen-
dent oft ”, which means thatI B8(xt) runs over a line parallel tox ast runs over
reals. Solving the corresponding quadratic equation onf, we obtain

f = 1−√1− 4µ

2µ
.

We see thatf is a smooth analytic function near 0 such thatf(0) = 1, as desired.
Now suppose thatλ 6= 0. Let us look for a diffeomorphism8 of the form8 =

T a B 9, where9 is some other local diffeomorphism at 0. If9 takes all lines
passing through 0 to circles, then the same is true for8. We will try to kill λ
by choosing an appropriate centera. For the second-order terms we have82 =
92 + T a

2 . It therefore suffices to takea such thatλ(x) = −(a, x)/(a, a). Now
(92, x) = 0 everywhere, so our problem is reduced to the previous case(λ = 0),
which we have already shown.

Consider a simple bundleS of circles passing through 0 such that in each direction
there emanates a unique circle fromS. Such a bundle is calledcomplete.Now we
can give a description of complete rectifiable bundles of circles in pure algebraic
terms.

Theorem 2.2. Complete rectifiable bundles of circles inRn are in one-to-one
correspondence with quadratic homogeneous maps0 : Cn → Cn defined over
reals and satisfying the conditions(x, 0(x)) = (0(x), 0(x)) = 0 on the asymp-
totic cone, modulo maps of the formx 7→ λ(x)x (whereλ are linear functionals).
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Proof. To each complete rectifiable bundleS of circles assign the quadratic part
82 of any rectifying diffeomorphism8. We know that any quadratic homoge-
neous map82 defined over reals and satisfying Proposition 1.3 can be obtained in
this way. Let us see to what extent the quadratic map82 is unique. We saw al-
ready that, for each circle fromS, it is enough to know the acceleration at 0 with
respect to the natural parameter. The acceleration of the circle with the tangent
vectorx is equal to

w(82) = 2
82 − (82,x)x

(x,x)

(x, x)
.

However, this expression does not determine82. It is easy to see that, if82 and
8′2 differ by λ(x)x (whereλ is a linear functional), thenw(82) = w(8′2) and
so the corresponding families are the same. Indeed, this follows from the obser-
vation that82 − (82, x)x/(x, x) is just the projection of82 to the orthogonal
complement ofx. Conversely, ifw(82) = w(8′2) then82 − 8′2 is everywhere
parallel tox (since the projections to the orthogonal complement coincide). Hence
82 −8′2 = λ(x)x, whereλ is a linear functional.

Example. In dimension 4, the condition(x, 0(x)) = (0(x), 0(x)) = 0 onC
can be interpreted in terms of algebraic geometry as follows. Denote byQ the
projectivization of the asymptotic cone. This is a nondegenerate quadratic surface
in CP3. Each point ofQ belongs to two straight lines lying entirely inQ.

To describe all lines inQ, it is convenient to identifyQ with the image of the
Segre embedding

CP1× CP1→ CP3,

([u0 : u1], [v0 : v1]) 7→ [u0v0 : u0v1 : v0u1 : u1v1]

(recall that any nondegenerate quadratic surface inCP3 can be mapped to any
other by a complex projective transformation). Under this embedding, all hori-
zontal linesCP1× {p} and all vertical lines{p} × CP1 are mapped to straight
lines. Hence we have two families of lines inQ such that every point ofQ belongs
to a unique line from each family. These families of lines are calledgenerating
families of lines.For each generating family of lines inQ there is the correspond-
ing generating family of planesin C. So the coneC is covered by two generating
families of planes, and every line inC belongs to exactly one plane from each
generating family.

The conditions(x, 0(x)) = (0(x), 0(x)) = 0 on the asymptotic cone are
equivalent to the following statement: The subspace spanned byx and0(x) lies
entirely inC. This means that0 takesx to another point of some line or plane
containingx and lying entirely inC. The map0 is homogeneous, and thus it gives
rise to a rational mapγ : CP3 → CP3 preserving the projectivizationQ of the
asymptotic coneC. We know that for each pointq ∈Q there is a line lying entirely
in Q and containing bothq and its imageγ (q). We will deduce from this that0
preserves at least one of the generating families of lines inQ (perhaps both)—in
other words, that0 takes each line from some generating family to itself. Indeed,
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being a rational map,γ cannot “switch” from one generating family to the other.
We now provide a formal proof of this statement.

Lemma 2.3. The mapγ preserves at least one generating family of lines inQ.

Proof. The surfaceQ is isomorphic toCP1× CP1 via the Segre map. Henceγ
can be given by the two rational maps

X : (x, y)∈CP1× CP1 7→ X(x, y)∈CP1,

Y : (x, y)∈CP1× CP1 7→ Y(x, y)∈CP1.

We know that, for each point(x, y) ∈ CP1 × CP1, we haveX(x, y) = x or
Y(x, y) = y. Therefore,Q is the union of two algebraic subsets defined by the
equationsX(x, y) = x andY(x, y) = y. SinceQ is irreducible, at least one of
our equations is satisfied identically, which means thatγ preserves at least one of
the generating families of lines inQ.

Now we can deduce the following.

Proposition 2.4. Polynomial homogeneous maps0 : C4 → C4 satisfying the
conditions(x, 0(x)) = (0(x), 0(x)) = 0 on the asymptotic cone preserve some
generating family of planes inC.

3. Complex and Quaternionic Structures

From now on we will work in 4-dimensional spaceR4. This section reviews not
only well-known classical facts about complex and quaternionic structures but also
their relation to the geometry of the asymptotic coneC.

Recall that acomplex structurein R4 is a linear operatorI : R4 → R4 such
thatI 2 = −1. We will always assume that the complex structureI is compatible
with the Euclidean structure (i.e., thatI preserves the inner product). A complex
structure clearly defines an action ofC onR4 via linear conformal maps. From the
definition it follows immediately thatI must be skew-symmetric, that is,(x, Iy) =
−(Ix, y) for all x, y ∈R4. In particular,(Ix, x) = 0. Since the operatorI is de-
fined over reals and sinceI 2 = −1, it follows thatI should have eigenvaluesi and
−i, both with multiplicity 2.

Note that, as an orthogonal operator,I preserves the asymptotic coneC. In par-
ticular, all eigenvectors ofI belong toC. We know that(Ix, x) = 0 everywhere
and in particular onC. From the conditions(x, x) = (Ix, Ix) = (Ix, x) = 0 on
C it follows that the subspace spanned byx andIx lies entirely inC. HenceI
preserves one of the generating families of planes inC.

On the other hand, the complex structureI defines a canonical orientation on
R4. Let us recall the definition. Take two vectorsx, y ∈ R4 in general position.
By definition, the canonical orientation is the orientation of the basisx, y, Ix, Iy.

This orientation is well-defined (i.e., independent of the choice ofx andy) because
the set of degenerate pairs(x, y) (such thatx, y, Ix, Iy are linearly dependent)
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has real codimension 2 in the spaceR8 of all pairs. Hence we can always avoid
this set when going from any nondegenerate pair to any other. In fact, the degen-
eracy locus consists of all pairsx, y that are linearly dependent overC, so it is a
complex hypersurface.

Proposition 3.1. The space of all complex structures onR4 has two connected
components. Complex structures from the same component preserve the same gen-
erating family of planes inC and provide the same canonical orientation.

A connected component to which a complex structureI belongs will be called
theorientationof I. Note that the orientation ofI has nothing to do with det(I ),
which is always equal to 1—any complex structure preserves orientation of the
ambient space.

Now let us pass to quaternionic structures. Aquaternionic structureonR4 is a
choice of three linear operatorsI, J,K : R4→ R4 such that

I 2 = J 2 = K2 = −1,

IJ = −JI = K, JK = −KJ = I, KI = −IK = J.
In particular, the operatorsI, J,K are complex structures. We will assume that
they are compatible with the inner product. A quaternionic structure gives rise
to an action of the skew-fieldH of quaternions onR4 via linear conformal maps.
This action is called thequaternionic multiplication.

Lemma 3.2. Let (I, J,K) be any quaternionic structure onR4. Then all three
complex structuresI, J,K have the same orientation. Therefore, quaternionic
multiplication preserves one of the generating families of planes in the asymptotic
cone.

Proof. Let us prove, for example, thatI andJ provide the same canonical orien-
tation. Take any vectore ∈R4. It is enough to show that the bases(e,Ke, Ie, IKe)
and(e,Ke, Je, JKe) have the same orientation. ButIKe = −Je andJKe = Ie,
so the statement becomes obvious.

Let a ∈H be a quaternion. It gives rise to the operator of multiplicationA : x 7→
ax. If a = a0 + a1i + a2j + a3k, then the corresponding operator isA =
a0 + a1I + a2J + a3K. We know that the operatorA satisfies the conditions
(x,Ax) = (Ax,Ax) onC. In particular, both forms(Ax,Ax) and(Ax, x) are
divisible by(x, x). We can write down the quotients explicitly.

Lemma 3.3. If A is the operator of multiplication by a quaterniona ∈ H (with
respect to some quaternionic structure onR4), then

(Ax,Ax) = (a, a)(x, x), (Ax, x) = Re(a)(x, x).

In particular, these forms are independent of the choice of quaternionic structure.
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Proof. This is a very simple computation that is based on the fact that(x, Ix) =
(x, Jx) = (x,Kx) = 0 for all x ∈R4.

Let us summarize some properties of quaternionic structures that are of particu-
lar importance for us. These properties follow directly from what we have already
seen.

Proposition 3.4. The set of all quaternionic structures inR4 has two connected
components. Each component corresponds to a certain orientation of three com-
plex structures involved. Quaternionic multiplications with respect to quaternionic
structures from the same component preserve the same generating family of planes
in C. Different components correspond to different families of generating planes.

We will say that quaternionic structures from the same connected component have
the sameorientation. Note that the orientation of a quaternionic structure has
nothing to do with determinants of quaternionic multiplications. Quaternionic
multiplications (with respect to any quaternionic structure) always preserve the
orientation of the ambient space.

Example. IdentifyR4 with H. Denote byI, J,K the operators of left multipli-
cation byi, j, k respectively. The structure(I, J,K) is called theleft quaternionic
structureonH. Taking right multiplication instead of left multiplication yields
theright quaternionic structure.Left and right quaternionic structures onH have
different orientations.

Let us introduce some notions. We say that a linear operator isalmost orthogo-
nal if it has the form const· A, whereA is an orthogonal operator. Analogously,
an operator isalmost skew-symmetricif it has the form const+ A, whereA is
skew-symmetric.

Proposition 3.5. A linear operatorA : R4 → R4 is the multiplication by a
quaternion(with respect to some quaternionic structure onR4) if and only if it is
almost orthogonal and almost skew-symmetric. The property of being a quater-
nionic multiplication depends only on the orientation of a quaternionic structure,
not on the structure itself.

Proof. A quaternionic multiplication is clearly almost orthogonal and almost skew-
symmetric; this follows from Lemma 3.3. Now consider an almost orthogonal and
almost skew-symmetric operatorA and present it by a matrix in some orthonor-
mal basis. Denote bya0, a1, a2, a3 the entries of the first column ofA. SinceA is
almost skew-symmetric, it has the form

a0 −a1 −a2 −a3

a1 a0 α β

a2 −α a0 γ

a3 −β −γ a0

 .
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The columns must be orthogonal and have the same length. From the correspond-
ing equations we obtain either thatα = a3, β = −a2, andγ = a1 or thatα =
−a3, β = a2, andγ = −a1. The first case corresponds to the left multiplication
by a = a0 + a1i + a2j + a3k with respect to the standard quaternionic structure
(assigned to the given basis). The second case corresponds to the right multiplica-
tion bya. The equalities hold no matter what orthonormal basis we choose. Thus
the second statement follows.

4. Quaternionic Fractional Transformations

Let us identifyR4 with the skew-fieldH of quaternions. Consider two affine maps
A,B : R4 → R4. The mapB−1A (the multiplication and the inverse are in the
sense of quaternions) is called a (left)fractional quaternionic transformationpro-
vided that it is defined and one-to-one in some open subset ofR4. A right quater-
nionic fractional transformationis a local transformation of the formAB−1,where
A andB are some affine maps.

Example 1. Any real projective transformation is quaternionic fractional. This
corresponds to the case whenB takes real values only.

Example 2. Any complex projective transformation is quaternionic fractional.
This happens ifB takes complex values only and bothA andB are complex linear
(i.e., commute with the multiplication byi).

Example 3. Consider a map of the formx 7→ (xa + b)−1(xc + d ), where
a, b, c, d are quaternions. We are assuming that the denominator is not propor-
tional to the numerator (in particular, the denominator is not identically zero).
This map is called a (left)quaternionic projective transformation.Any quater-
nionic projective transformation is clearly quaternionic fractional. Note that each
quaternionic projective transformation takes all lines to circles. Indeed, we have

(xa + b)−1(xc + d ) = (xa + b)−1((xa + b)α + β) = α + (xa + b)−1β,

whereα = a−1c andβ = d − bα. Hence a quaternionic projective transforma-
tion is a composition of a dilatation, reflected inversion, and a translation. This
composition obviously rounds lines.

Proposition 4.1. Any quaternionic fractional transformation rounds lines(to be
more precise: it takes germs of lines to germs of circles).

Proof. Consider a lineL inR4, and lett be a linear parameter onL. If A andB are
some affine maps then their restrictions toL areat+b andct+d, respectively. On
the lineL the transformationA−1B therefore coincides with the quaternionic pro-
jective transformationx 7→ (ax + b)−1(cx + d ). But the latter rounds lines.

Remark. Note that a fractional quaternionic transformation can be described
geometrically as follows. Consider an arbitrary embedding ofR4 toH2 = R8 as a
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real affine subspace. A fractional quaternionic transformation is the composition
of this embedding and a projection to some quaternionic line (from the origin).
There are two types of projections, left and right. The left projection of a point
p ∈ H2 to a left quaternionic lineL is the intersection ofL with the left quater-
nionic line passing through 0 andp (if L is parallel to this line, then the projection
of p is not defined). Similarly, we can define the right projection to a right quater-
nionic line.

5. Rectification at a Point

In this section, we will prove the following theorem.

Theorem 5.1. Consider a simple bundle of circles inR4 containing sufficiently
many circles in general position. If this bundle is rectifiable, then there exists a left
or right quaternionic fractional transformationT such thatT −1 sends all these
circles to straight lines.

Denote the given set of circles byS. Let8 be a local diffeomorphism such that
d08 = id and8−1 rectifies all circles fromS. Then, by Proposition 1.3, the qua-
dratic term82 satisfies the relations(82, x) = (82,82) = 0 on the asymptotic
cone. This means that82 preserves one of the generating families of planes inC.

Lemma 5.2. There exists a linear operatorA : R4 → R4 such that82(x) =
A(x)x or 82(x) = xA(x), where the product is in the sense of quaternions.

Proof. Fix an identificationR4 = H. Extend the operatorsI, J,K of left multipli-
cation byi, j, k (respectively) toC4 by complex linearity. Note that the operatorI
is quite different from the multiplication by

√−1 in C4. By Proposition 3.4, the
left quaternionic multiplication preserves one of the generating families of planes
in C. Assume that82 preserves the same family. Otherwise we should consider
the right multiplication instead of the left multiplication.

Recall that thequaternionic conjugationis the map

x = x0 + x1i + x2j + x3k 7→ x̄ = x0 − x1i − x2j − x3k.

We can extend this map toC4 by complex linearity. Note thati is now a vector
fromR4, not a complex number. Let us multiply82 by x̄ in the sense of quater-
nions. Note that

82 x̄ = (82, x)+ (82, Ix)i + (82, Jx)j + (82,Kx)k.

But this expression is zero on the coneC since82, x, Ix, Jx, andKx lie on the
same plane belonging toC. Therefore,82 x̄ is divisible by(x, x). The quotient is
a linear mapA. Sincex̄/(x, x) = x−1 we have82x

−1 = A(x), that is,82(x) =
A(x)x.

Now we can prove Theorem 5.1 and an even more precise statement as follows.

Theorem 5.3. Under the assumptions of Theorem 5.1, the family of circles can
be obtained from the family of their tangent lines by one of the transformations
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x 7→ (1− A(x))−1x or x 7→ x(1− A(x))−1, whereA is some linear operator.
This answer does not depend on the choice of a quaternionic structure.

Proof. Note that both transformations have the identical derivative at 0 and that
their second-order terms areA(x)x andxA(x), respectively. These transforma-
tions are quaternionic fractional and so they round lines. The corresponding fami-
lies of circles passing through 0 are determined by the second-order terms. But by
Lemma 5.2, the quadratic mapsA(x)x andxA(x) are the only possible second-
order terms of transformations that round lines.

For a complete rectifiable bundleS of circles, there is a transformation of the form
x 7→ (1−A(x))−1x orx 7→ x(1−A(x))−1 that takes the family of all lines passing
through 0 toS. To fix the idea, assume that this is the left transformation8 : x 7→
(1− A(x))−1x.

Proposition 5.4. The center of the circle fromS with the tangent vectorx at 0 is
− 1

2( ImA(x))−1x. This point can be infinite, which means that the corresponding
circle is a straight line.

Proof. We know that the acceleration with respect to the natural parameter is

w(x) = 2
82 − (82,x)x

(x,x)

(x, x)
.

Therefore, the center is located in the point

w

(w,w)
= 1

2

82

(x,x)
− (82,x)x

(x,x)2

(82,82)

(x,x)2
− (82,x)

2

(x,x)3

.

By Lemma 3.3 we have(82,82) = (A,A)(x, x) and(82, x) = (ReA)(x, x).
Simplifying the expression just displayed yields the following formula for the
center:

1

2

(
A− ReA

(A,A)− (ReA)2

)
x = 1

2

Im(A)

( ImA, ImA)
x = −1

2
( ImA)−1x.

Proposition 5.4 has the following geometric corollary.

Corollary 5.5. The familyS contains at least one line. The union of all straight
lines fromS is a vector subspace ofR4.

Remark. We see that the set of all complete rectifiable families of circles passing
through 0 is naturally identified with the union of two affine spaces of dimension
12 (= dimension of all possible ImA(x)). The intersection of these components
has dimension 4 and consists of all families rectifiable by means of inversions (i.e.,
families whose circles meet at a point different from 0). The two components can
be distinguished by their “orientation”.
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We can describe an affine structure on each component in geometric terms.
Namely, take any two circlesS1 andS2 tangent at 0. After an inversion, they be-
come parallel lines. For two parallel linesL1 andL2 we can take their barycentric
combination

L = λL1+ (1− λ)L2 = {λx + (1− λ)y | x ∈L1, y ∈L2}, λ∈R.
Make the inversion again. The lineL goes to a circleS. Define

S = λS1+ (1− λ)S2.

Now we can take barycentric combinations of complete bundles of circles.
Namely, let the circle of the new bundle passing through 0 in directionx beS =
λS1+ (1−λ)S2, whereS1 andS2 are circles from the old bundles going from 0 in
directionx. It turns out that if two rectifiable bundles have the same “orientation”
then their barycentric combinations are also rectifiable.

Remark. We used Theorem 5.1 to classify all Kähler metrics in an open subset of
C2 whose geodesics are circles. All such metrics are locally equivalent (by means
of a complex projective transformation and multiplication by a constant factor)
to Fubini metrics (i.e., to the Fubini–Study metric onCP2 restricted to an affine
chart, to the complex hyperbolic metric in the unit ball model, or to the Euclidean
metric). A proof of this statement will appear in a separate paper.

Open Question. How many complete rectifiable simple bundles of circles are
there? We saw that inRn the space of all complete rectifiable bundles of circles
passing through 0 is finite-dimensional. What is its dimension (as a function of
n)? Is there an explicit geometric description of such bundles in dimensions> 4?
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