ON A CONJECTURE OF LUSIN

A. J. Lohwater and G. Piranian

1. INTRODUCTION

A point $e^{i\theta}$ will be called a Lusin point of the function f(z) provided f is holomorphic in |z| < 1 and maps every disc $|z - te^{i\theta}| < 1$ - t (0 < t < 1) upon a region (possibly many-sheeted) of infinite area. With this terminology, a conjecture of Lusin [2] may be stated as follows: There exists a bounded function for which every point of |z| = 1 is a Lusin point. Recently, Kufarev and Semukhina [1] have shown that the set of Lusin points of a bounded function can be everywhere dense on |z| = 1. In Section 2, we shall prove that there exists a function which is continuous in $|z| \le 1$ and for which every point $e^{i\theta}$ of |z| = 1 is a Lusin point. Our method consists in proving that the function

(1)
$$\sum a_k z^{n_k} \quad (a_k \neq 0; k = 1, 2, \cdots)$$

has every point $e^{i\theta}$ as a Lusin point, provided $n_k \to \infty$ rapidly enough; in this statement, the expression "rapidly enough" must of course be interpreted in terms of the sequence $\{a_k\}$. The result is somewhat related to theorems of Salem and Zygmund [3] and of Schaeffer [4], who showed that if the series $\Sigma |a_k|$ converges slowly enough and $n_k \to \infty$ rapidly enough, the function (1) maps the circle |z| = 1 into a Peano curve. Intuitively, this proposition is suggested by the fact that, for |a| < 1 and large n, the polynomial $z + a z^n$ maps the unit circle into a curve which consists of n - 1 nearly circular loops, of radius |a|, whose "moving center" lies on the unit circle.

In Section 3 we show that a function f, holomorphic in |z| < 1, continuous in $|z| \le 1$, and mapping the unit disc onto a region of infinite area, need not possess any Lusin points at all. Our proof is based on the construction of a function which maps the unit disc upon a roughly circular disc to which many small discs are attached. The function has the further property that it takes no value infinitely often, for $|z| \le 1$. (In a conversation, Professor K. Noshiro had raised the question whether there exists a function $\sum a_n z^n$, continuous in $|z| \le 1$, with $\sum n |a_n|^2 = \infty$, and taking no value infinitely often in $|z| \le 1$. The referee has pointed out a very simple alternate construction of such a function: let the Riemann surface R consist of a ribbon which covers

once the annulus
$$0 < |w| < 1/2$$
,
4 times the annulus $0 < |w - 1/2| < 1/4$,
16 times the annulus $0 < |w - 3/4| < 1/8$,

and so forth; and let f map the unit disc upon R.)

Received June 3, 1955.

G. Piranian's contribution to this paper was made under Office of Ordnance Research Contract DA 20-018-ORD-13585 with the Engineering Research Institute, University of Michigan.

2. LACUNARY TAYLOR SERIES

THEOREM 1. Let $\{a_k\}$ be a sequence of complex numbers different from then every point $e^{i\theta}$ is a Lusin point for the function $\sum a_k z^{n_k}$, provided n_l rapidly enough.

The theorem can be restated as follows: If $a_k \neq 0$ $(k = 1, 2, \dots)$, there set of functions

$$N_1 = N_1(a_1), N_2 = N_2(a_1, a_2; n_1), \dots, N_k = N_k(a_1, a_2, \dots, a_k; n_1, n_2, \dots, r_k)$$

such that every point $e^{i\theta}$ is a Lusin point of the function (1) provided $n_k > (k = 1, 2, \cdots)$. The sense of the expression "provided $n_k \to \infty$ rapidly enoug thus made precise; for the sake of brevity, we shall henceforth write: if n_1 (rap).

Suppose now that $\{a_k\}$ is a sequence of constants, all different from ze clear that the function (1) is holomorphic in |z| < 1 if $n_k \to \infty$ (rap), for example, $k + |a_k|$. To deal with the question of Lusin points we write, for $0 < \theta < 2\pi$,

$$f(z) = \sum_{i} b_{j}(te^{i\theta}) (z - te^{i\theta})^{j}$$
 (|z - te^{i\theta}| < 1 - t);

that is, we let $b_j(te^{i\theta})$ denote the jth coefficient in the Taylor expansion of point $te^{i\theta}$; and we make use of the fact that the area of the surface upon wh function $\sum c_j z^j$ maps the disc |z| < r is $\pi \sum j |c_j|^2 r^{2j}$.

With each exponent nk we associate the special radius

$$t_k = 1 - \frac{\log n_k}{n_k},$$

and we proceed to prove that for each θ the sequence of finite sums

$$\sum_{j=1+n_{k-1}}^{n_k} j |b_j(t_k e^{i\theta})|^2 (1 - t_k)^{2j}$$

is unbounded if $n_k \to \infty$ (rap). Since the discs $|z - t_k e^{i\theta}| < 1 - t_k$ (θ fixed, $k = 1, 2, \cdots$) form a nested sequence, it will then follow that $e^{i\theta}$ is a Lusin for each θ .

From the identity

$$z^{n} = \sum_{j=0}^{n} {n \choose j} (te^{i\theta})^{n-j} (z - te^{i\theta})^{j}$$

it follows that, for $n_{k-1} < j \le n_k$,

$$b_{\mathbf{j}}(t_{\mathbf{k}}e^{\mathrm{i}\theta}) = a_{\mathbf{k}}\binom{n_{\mathbf{k}}}{\mathbf{j}}(t_{\mathbf{k}}e^{\mathrm{i}\theta})^{n_{\mathbf{k}}-\mathbf{j}} + \sum_{\mathbf{p}>\mathbf{k}} a_{\mathbf{p}}\binom{n_{\mathbf{p}}}{\mathbf{j}}(t_{\mathbf{k}}e^{\mathrm{i}\theta})^{n_{\mathbf{p}}-\mathbf{j}}.$$

The term of index p under the summation sign has modulus less than

$$|a_p| n_p^j t_k^{n_p - j} = |a_p| (n_p/t_k)^j t_k^{n_p} \le |a_p| (n_p/t_k)^{n_k} t_k^{n_p}$$
.

Once n_k (and hence t_k) is chosen, the last quantity can be made arbitrarily small for each p by choosing n_p sufficiently large. It follows that

$$|b_{j}(t_{k}e^{i\theta})| \geq \frac{1}{2}|a_{k}|\binom{n_{k}}{i}t_{k}^{n_{k}-j}$$

for $n_{k-1} < j \le n_k$ (k = 2, 3, ...) and all θ , if $n_k \to \infty$ (rap). Therefore it will be sufficient to prove that the sequence of sums

$$a_k^2 \sum_{j=1+n_{k-1}}^{n_k} j \left[\binom{n_k}{j} t_k^{n_k-j} (1-t_k)^j \right]^2$$

is unbounded if $n_k \to \infty$ (rap). The quantity in brackets has its greatest value when $j = [(1 - t_k) n_k - t_k] = \log n_k + O(1)$. We therefore require that $\log n_k > n_{k-1}$; Stirling's formula then gives the result that some of the terms under the summation sign have a modulus of approximately $1/2\pi$. Moreover, the number of terms with modulus at least $1/3\pi$ is greater than $k/|a_k|^2$, if n_k is sufficiently large. This completes the proof of the theorem.

COROLLARY. There exists a function f, continuous in $|z| \le 1$, for which every point $e^{i\theta}$ is a Lusin point.

This follows at once from Theorem 1, since the sequence $\{a_k\}$ can be taken so that $\Sigma \ |a_k| < \infty.$

3. A FUNCTION WITHOUT LUSIN POINTS

THEOREM 2. There exists a function $f(z) = \sum a_n z^n$, holomorphic in |z| < 1, continuous in |z| < 1, and such that

- i) $\sum n |a_n|^2 = \infty$;
- ii) f has no Lusin points on |z| = 1;
- iii) no value is taken infinitely often by f in |z| < 1.

The example to be constructed will be of the form

(2)
$$f(z) = z + \frac{1}{2} \sum_{k=1}^{\infty} \frac{z_k c_k k^{-1/2}}{1 + c_k - z/z_k},$$

where $z_k = e^{ik^{-1}/4}$ and $\{c_k\}$ is an appropriate sequence of small positive numbers. An intuitive discussion of the mapping function will make the motivation of the proof obvious.

If the constants c and d are positive and fairly small, the function

$$\mathbf{w_1} = \mathbf{z} + \frac{\mathbf{cd}}{1 + \mathbf{c} - \mathbf{z}}$$

maps the unit disc upon a region which consists roughly of the unit disc with lar disc of diameter d attached near z=1; the smaller the constant c, the is the isthmus joining the two discs. This follows from the identity

$$z + \frac{cd}{1 + c - z} = z + d/2 + \frac{c - (1 - z)}{c + (1 - z)} \frac{d}{2};$$

for as z moves around the unit circle in the positive direction, the point

$$w_2 = \frac{c - (1 - z)}{c + (1 - z)}$$

moves similarly around the circle whose diameter is the segment [-(2-c)] on the real axis; and if c is small, the image point w_2 describes almost all circular path while z moves along a short arc through z = 1.

Similar considerations show that the function w = f(z) defined by (2) ma unit disc upon a roughly circular disc to which circular discs of radius 1/2 ($k = 1, 2, \cdots$) are attached at arg $w = k^{-1/4}$. Naturally, the attached discs. The area of the image of |z| < 1 is infinite; but the mapping function is ver at z = 1, since the diameter of the kth disc is small compared with the dist tween its point of attachment and the point w = f(1).

Let A_k denote the circular disc with center at $z=z_k(1+c_k)$ and with 1/(k+3)!; then no two of the discs A_k overlap. Since the modulus of the k of the series (2) is arbitrarily small outside of A_k , for c_k small enough, a bounded by $k^{-1/2}$ on |z|=1, it follows that if $c_k \rightarrow 0$ (rap), the function f morphic in the extended plane, except for simple poles at the points $z=z_k$ and an essential singularity at z=1, and that it is continuous in |z|<1.

To establish property (i), we observe that

$$\frac{c_k k^{-1/2}}{1 + c_k - z/z_k} = \frac{c_k k^{-1/2}}{1 + c_k} \sum_{j=0}^{\infty} \left(\frac{z}{z_k (1 + c_k)}\right)^j = \sum_{j=0}^{\infty} b_{kj} z^j;$$

because

$$\sum_{j=0}^{\infty} j |b_{kj}|^2 = c_k^2 k^{-1} \sum_{j=0}^{\infty} j (1 + c_k)^{-(2j+2)} = k^{-1} (2 + c_k)^{-2},$$

it is an elementary exercise to show that $\sum n |a_n|^2 = \infty$ if $c_k \rightarrow 0$ (rap).

Since z=1 is the only singularity of f on |z|=1, it is the only possib point on |z|=1. To show that it is not a Lusin point, it is sufficient to proevery open disc |z-t|<1 - t (0< t<1) the derivative f' is bounded. N

$$\left| \frac{d}{dz} \left(\frac{z_k c_k k^{-1/2}}{1 + c_k - z/z_k} \right) \right| = \frac{c_k k^{-1/2}}{|(1 + c_k)z_k - z|^2} < \frac{c_k k^{-1/2}}{|z_k - z|^2}.$$

In every disc |z - t| < 1 - t,

$$|z - z_k| > B(t) \arg^2 z_k = B(t) k^{-1/2}$$

where B(t) is independent of k. It follows that

$$|f'| < 1 + \sum_{k=1}^{\infty} c_k k^{1/2} / B^2(t)$$

throughout the disc. The right member is finite for all t, if $c_k \rightarrow 0$ (rap).

Finally, suppose that f takes the same value w at the distinct points $z=t_n$ ($|t_n| \le 1$, $n=1, 2, \cdots$). Since z=1 is the only singular point of f on |z|=1, the sequence $\{t_n\}$ converges to 1; and since f is continuous, w=f(1). But from (2) it follows that

(3)
$$f(z) - f(1) = (z - 1) \left\{ 1 + \frac{1}{2} \sum_{k=1}^{\infty} \frac{c_k k^{-1/2}}{(1 + c_k - z/z_k)(1 + c_k - 1/z_k)} \right\}.$$

For each index k and each z in $|z| \le 1$,

$$\left|1+c_k-z/z_k\right| \geq 1+c_k-\left|z/z_k\right| \geq c_k.$$

Moreover, except when

$$(k + 1/2)^{-1/4} < \arg z < (k - 1/2)^{-1/4}$$

we have the stronger inequality

$$|1 + c_k - z/z_k| \ge |z_k - z| \ge Bk^{-5/4},$$

where B is a positive constant. Therefore, if $|z| \le 1$,

$$\frac{c_k}{\left|1+c_k-z/z_k\right|} \le 1$$

for every k, and

$$\frac{c_k}{\left|1+c_k-z/z_k\right|} < \frac{c_k k^{5/4}}{B}$$

for every k except one. Since

$$\frac{k^{-1/2}}{|1+c_k-1/z_k|} < \frac{k^{-1/2}}{|1-1/z_k|} = \frac{k^{-1/2}}{2\sin\frac{1}{2}k^{-1/4}} < \frac{4}{3}k^{-1/4},$$

the kth term under the summation sign has modulus less than $\frac{4}{3}k^{-1/4} \le 4/3$, and in every case except one it has modulus less than $4kc_k/3B$. It follows that the sum of the series in (3) has modulus less than 3/2 if $c_k \to 0$ (rap). The value f(1) is then not taken by f in $|z| \le 1$, except at z = 1. This implies that f takes no value infinitely often in |z| < 1. The proof is complete.

REFERENCES

- 1. P. P. Kufarev and N. V. Semukhina, On a problem of N. N. Lusin, Uspel Nauk 9 (1954), 183-185.
- 2. N. N. Lusin, On the localization of the principle of finite area, Doklady Nauk SSSR (N.S.) 56 (1947), 447-450.
- 3. R. Salem and A. Zygmund, Lacunary power series and Peano curves, D J. 12 (1945), 569-578.
- 4. A. C. Schaeffer, Power series and Peano curves, Duke Math. J. 21 (195 390.

University of Michigan