A GENERALIZATION OF INNER PRODUCT

R. K. Ritt

The purpose of this note is twofold: first, to show that if B is a real Banach space whose conjugate space B* is uniformly convex [2], it is possible to define a real-valued function on $B \times B$ which for every $x \in B$ is a linear functional in y, for every $y \in B$ is a continuous (although not necessarily linear) function of x, and which is the usual inner product when B is a unitary (or Hilbert) space; second, to show that if B^* is strictly convex, a necessary and sufficient condition that B be unitary is that if $x \in B$, $y \in B$, and ||x|| = ||y|| = 1, then

$$\frac{\mathrm{d}}{\mathrm{d}t} \| \mathbf{x} + \mathbf{t} \mathbf{y} \| \Big]_{t=0} \quad \text{and} \quad \frac{\mathrm{d}}{\mathrm{d}t} \| \mathbf{y} + \mathbf{t} \mathbf{x} \| \Big]_{t=0}$$

exist and are equal. This condition is not new; James proved a similar result for Banach spaces of three or more dimensions [5, p. 283]. His proof depends on a generalization of orthogonality, ours on a generalization of inner product; even this generalization appears in a disguised form in James' paper; the elementary nature of our argument is the justification for its presentation here. We recall two definitions: A Banach space is *strictly convex* if $\|x + y\| = \|x\| + \|y\|$ implies that there exists a $\lambda \ge 0$ such that $x = \lambda y$; a Banach space is *uniformly convex* if

$$||x_n|| = ||y_n|| = 1$$
,

together with $\lim \|(x_n + y_n)/2\| = 1$, implies that $\lim \|x_n - y_n\| = 0$. This definition of uniform convexity is given by Hille [3, p. 11], and it can be shown to be equivalent to the definition originally given by Clarkson.

THEOREM. Let B be a real Banach space whose conjugate space B* is strictly convex. Then if $x \in B$ ($x \neq 0$), there exists a unique $\phi_x \in B^*$ such that $\phi_x(x) = 1$ and $\|\phi_x\| = 1/\|x\|$. If B* is uniformly convex, the mapping $x \rightarrow \phi_x$ is continuous.

Proof. A slightly different version of the first statement has been proved by Pettis [7]. Briefly, if x*(x) = y*(x) = 1 and ||x*|| = ||y*|| = 1/||x||, then

$$\frac{1}{2}(x^* + y^*)(x) = 1;$$

thus $1/\|x\| \le \|(x^* + y^*)/2\| \le 1/\|x\|$, which contradicts the strict convexity of B*, unless $x^* = y^*$.

To prove the second statement, we first observe that a uniformly convex space is reflexive [7] and that bounded sets are therefore sequentially compact [8]. Second, we prove that if $\{x_n^*\}$ is a sequence in B* converging weakly to x_o^* , and if $\|x_n^*\|$ converges to $\|x_o^*\|$, then x_n^* converges uniformly to x_o^* . Since $x_n^*/\|x_n^*\|$ converges weakly to $x_o^*/\|x_o^*\|$, we can assume that $\|x_n^*\| = \|x_o^*\| = 1$. It remains to show that $\|(x_n^* + x_o^*)/2\|$ converges to 1.

Clearly $\| (x_n^* + x_o^*)/2 \| \le 1$, for all n. Let

$$x^{**} \in B^{**}, \quad ||x^{**}|| = 1, \quad x^{**}(x_0^*) = 1.$$

Received February 15, 1955.

Then

$$|x^{**}(x_n^*) + 1| = |x^{**}(x_n^* + x_o^*)| \le ||x_n^* + x_o^*||.$$

If $\epsilon > 0$, the weak convergence of $\{x_n^*\}$ guarantees that if n is sufficient $\|x_n^* + x_0^*\| \ge 2 - \epsilon$, so that $\lim \|(x_n^* + x_0^*)/2\| = 1$.

To complete the proof we have only to show that if $\lim x_n = x_0 \neq 0$ (x_n then a subsequence of $\{\phi_{x_n}\}$ converges weakly to ϕ_{x_n} . But since $\{\phi_{x_n}\}$ is

formly bounded, it contains a subsequence which converges weakly to some For simplicity, and without loss of generality, we shall suppose that this su is $\{\phi_{\mathbf{x}_n}\}$. Now

$$x_o^*(x_o) = (x_o^* - \phi_{x_n})(x_o) + \phi_{x_n}(x_o - x_n) + \phi_{x_n}(x_n).$$

Therefore $x_0^*(x_0) = 1$ and $||x_0^*|| \ge 1/||x_0||$.

Further, $|\mathbf{x_o}^*(\mathbf{x})| = \lim |\phi_{\mathbf{x_n}}(\mathbf{x})| \le \lim \sup \|\phi_{\mathbf{x_n}}\| \|\mathbf{x}\| \le \|\mathbf{x}\|/\|\mathbf{x_o}\|$, for a so that $\|\mathbf{x_o}^*\| \le 1/\|\mathbf{x_o}\|$. This, together with the uniqueness of $\phi_{\mathbf{x_o}}$, prove $\mathbf{x_o}^* = \phi_{\mathbf{x_o}}$.

COROLLARY.

$$\langle x, y \rangle = \begin{cases} \|x\|^2 \phi_x(y) & (x \neq 0), \\ 0 & (x = 0) \end{cases}$$

is a continuous linear functional in y for every $x \in B$, and it is a continuou of x for every $y \in B$.

THEOREM (Mazur [6]). If ||x|| = ||y|| = 1, then

$$\phi_{\mathbf{x}}(\mathbf{y}) = \frac{\mathrm{d}}{\mathrm{d}t} \| \mathbf{x} + \mathbf{t}\mathbf{y} \| \bigg]_{\mathbf{t}=\mathbf{0}}.$$

Proof. If $y = \pm x$, then

$$\phi_{x}(y) = \pm 1$$
 and $\frac{d}{dt} ||x + ty|| = \pm 1$

for all t. Otherwise, y is independent of x. Reconstructing the proof of the Banach extension theorem, [1, p. 28], and extending the linear functional ϕ_s from the subspace generated by x to that generated by x and y we have, for uniqueness of $\phi_x(y)$,

$$\sup_{\lambda} (-\|\lambda x + y\| - \lambda) = \phi_{x}(y) = \inf_{\lambda} (\|\lambda x + y\| - \lambda).$$

Now if $\lambda_1 > \lambda_2$, then

$$-\|\lambda_1 x + y\| + \|\lambda_2 x + y\| \le \|(\lambda_2 - \lambda_1)x\| = \lambda_1 - \lambda_2,$$

so that

$$-\|\lambda_1 x + y\| - \lambda_1 \le -\|\lambda_2 + y\| - \lambda_2$$
.

Therefore

$$\phi_{x}(y) = \lim_{\lambda \to -\infty} (-\|\lambda x + y\| - \lambda) = \lim_{t \to 0-} (-\|x/t + y\| - 1/t)$$

$$= \lim_{t \to 0-} (\|x + ty\| - \|x\|)/t.$$

Similarly, $\phi_{x}(y) = \lim_{t \to 0+} (\|x + ty\| - \|x\|)/t$.

COROLLARY. If ||x|| = ||y|| = 1, then $\phi_x(y) = \phi_y(x)$ if and only if

$$\frac{d}{dt} \| x + ty \|_{t=0} \quad and \quad \frac{d}{dt} \| y + tx \|_{t=0}$$

exist and are equal. (We notice that if these derivatives exist for all x and y, the uniqueness of ϕ_x is assured without regard to strict convexity of B*.)

THEOREM. The three conditions

- (a) if ||x|| = ||y|| = 1, then $\phi_{x}(y) = \phi_{y}(x)$,
- (b) $\|x\|^2 \phi_x(y) = \|y\|^2 \phi_y(x)$, for all $x \in B$, $y \in B$,
- (c) $\langle x, y \rangle$ is an inner product for B

are equivalent.

Proof. That (b) implies (a) is obvious. To prove that (a) implies (b), observe that $\phi_{\lambda_x} = (1/\lambda)\phi_x$ for $\lambda \neq 0$. Thus

$$\begin{aligned} \|x\|^{2} \phi_{x}(y) &= \|x\| \|y\|\phi_{x/\|x\|}(y/\|y\|) \\ &= \|x\| \|y\|\phi_{y/\|y\|}(x/\|x\|) \\ &= \|y\|^{2} \phi_{y}(x). \end{aligned}$$

If (b) holds, then $\langle x, y \rangle$ is linear in $x, \langle x, y \rangle = \langle y, x \rangle$, and $\langle x, x \rangle = \|x\|^2$, so that (c) is proved. Finally, if $\langle x, y \rangle$ is an inner product for B, then $B = B^*$, and the unique function $\phi_x(y)$ is given by the formula

$$\phi_{x}(y) = \frac{\langle x, y \rangle}{\|x\|^{2}},$$

which is readily seen to imply (b).

Example. If $B = L^p(E)$, where E is a measure space and p > 1, then if $x \in B$, $\phi_x(y) = \int y |x|^{p-1} \sin x / ||x||^p dE$. If p = 2, $\langle x, y \rangle$ is the usual inner product $\int xy dE$.

REFERENCES

- 1. S. Banach, Théorie des opérations linéaires, Warsaw, 1932.
- 2. J. A. Clarkson, *Uniformly convex spaces*, Trans. Amer. Math. Soc. 40 (1 396-414.
- 3. E. Hille, Functional analysis and semi-groups, Amer. Math. Soc. Colloque Publications XXXI (1948).
- 4. P. Jordan and J. von Neumann, Inner products in linear, metric spaces, I Math. (2) 36 (1935), 719-723.
- 5. R. C. James, Orthogonality and linear functionals in normed linear space Trans. Amer. Math. Soc. 61 (1947), 265-292.
- 6. S. Mazur, Über convexe Mengen in linearen normierten Räumen, Studia 1 (1933), 70-84.
- 7. B. J. Pettis, A proof that every uniformly convex space is reflexive, Duk J. 5 (1939), 249-253.
- 8. ——, A note on regular Banach spaces, Bull. Amer. Math. Soc. 44 (19: 420-428.

University of Michigan