A GENERALIZATION OF INNER PRODUCT
R. K. Ritt

The purpose of this note is twofold: first, to show that if B is a real Banach
space whose conjugate space B* is uniformly convex [2], it is possible to define a
real-valued function on B X B which for every x € B is a linear functional in y, for
every y € B is a continuous (although not necessarily linear) function of x, and
which is the usual inner product when B is a unitary (or Hilbert) space; second, to
show that if B* is strictly convex, a necessary and sufficient condition that B be
unitary is that if x € B,y ¢ B, and |x| =|y[ =1, then
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exist and are equal. This condition is not new; James proved a similar result for
Banach spaces of three or more dimensions [5, p. 283]. His proof depends on a
generalization of orthogonality, ours on a generalization of inner product; even this
generalization appears in a disguised form in James’ paper; the elementary nature
of our argument is the justification for its presentation here. We recall two defini-
tions: A Banach space is strictly convexif ||x +y| = ||x| + ||y]l implies that there
exists a A> 0 such that x = Ay; a Banach space is uniformly convex if

ol = Iyall =1,

together with lim || (xn + yn)/2 || = 1, implies that lim [|xp - ynl = 0. This defini-
tion of uniform convexity is given by Hille [3, p. 11], and it can be shown to be equi-
valent to the definition originally given by Clarkson.

THEOREM. Let B be a real Banach space whose conjugate space B* is sitrictly
convex. Thenif x € B (x + 0), theve exists a unique ¢, € B* such that ¢x(x) =1
and ||o.|| = 1/||x||. If B* is uniformly convex, the mapping x>¢, is continuous.

Proof. A slightly different version of the first statement has been proved by
Pettis [7]. Briefly, if x*(x) = y*(x) = 1 and ||x*|| = [|y*| = 1/| x|, then

%(X* +y*)&) = 1;

thus 1/||x|| < || &* + y*)/2|| < 1/ x|, which contradicts the strict convexity of B*,
unless x* = y*,

To prove the second statement, we first observe that a uniformly convex space
is reflexive [7] and that bounded sets are therefore sequentially compact [8]. Second,
we prove that if {xp*} is a sequence in B* converging weakly to xg*, and if [Ixn* ”
converges to || Xo¥ “, then xp* converges uniformly to xo*. Since xn*/”xn* ” con-
verges weakly to xg*/ ”xo* ||, we can assume that ” Xn* ” = “xo* " =1, It remains to
show that || & * + x *)/2 || converges to 1.

Clearly | (xo* +xg¥)/2 [| <1, for all n. Let

x** ¢ Bk, ]|x** " =1, xX¥*(xo*)=1.
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Then
|x**xp*) + 1] = |x¥*xp* + x%)| < [xo* + x|
If ¢ > 0, the weak convergence of {x,*} guarantees that if n is sufficient
|xn* + xo*|| > 2 - €, so that lim || (xp* + xg¥)/2 || = 1.

To complete the proof we have only to show that if limx, =x,+ 0 (x,
then a subsequence of {¢x_} converges weakly to ¢x . But since {¢x_} i

formly bounded, it contains a subsequence which converges weakly to some
For simplicity, and without loss of generality, we shall suppose that this st

is {qﬁxn} Now
Xo*(Xo) = (Ko* - s Xo) + by (X - Xp) + ¢y (%),

Therefore x *(x,) =1 and |x*|> 1/|x,]-

Further, [x,*(x)|=1lim |¢px (x)| <1im sup [lpx || [|x]| < |x[//|xoll, for
so that [xo*|| < 1/|xo|]. This, together with the uniqueness of $x s Prove

X* = bx e
COROLLARY.
Ix|Fex) G #0),

0 (x=0)

<Xx,y> =

is a continuous lineay functional in y for every x € B, and it is a continuou
of x for every y € B.

THEOREM (Mazur [6]). If ||x| = |y] = 1, then

o) = gilx+ ] -

Proof. If y = 4x, then
bxG)=x1 and Sfx+tyf=x1

for all t. Otherwise, y is independent of x. Reconstructing the proof of tl
Banach extension theorem, [1, p. 28], and extending the linear functional ¢,
from the subspace generated by x to that generated by x and y we have, 1I
uniqueness of ¢,(y),

sup (-[IAx + ] - A) = ¢yely) = inf (ax + y|| - V.
A

Now if A, > A,, then ‘

-Jux vl + Pax ey | < 100 - A0x] =0 -2,

so that
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Therefore

¢x(y) =f_in.‘m(' o+ vl -2 = lim ¢]xA+y] - /1)

= lim ([|x+ty| - [|x[D.
t>0-

Similarly, ¢.(7) = lim (||x + ty| - | x]])/t.
t>0+
COROLLARY. If [[x[ =|y| =1, then ¢x(y) = ¢(x) if and only if
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t=0 t=0

exist and are equal. (We notice that if these derivatives exist for all x and y, the
uniqueness of ¢, is assured without regard to strict convexity of B*.)

THEOREM. The three conditions
@) 7 x| =yl = 1, then ¢,() = ¢(x),
®) [|x[2¢x0) = |y [P¢, &), for all x € B, y € B,
(c) <x, y> is an innev product for B
arve equivalent,
Proof. That (b) implies (a) is obvious. To prove that (a) implies (b), observe
that ¢, = (1/x)¢, for x #0. Thus
lxlPée@) = 1zl [yl by /sy @/ 1w 1D
= =] lIylley gy &/l
= lly [, 0.

If (b) holds, then <x, y> is linear in x, <x, y> = <y, x>, and <x, x> = ||x|}?, so
that (c) is proved. Finally, if <x, y> is an inner product for B, then B = B*, and
the unique function ¢x(y) is given by the formula

<x,y>
¢.(y) = 2=,
* [B3&

which is readily seen to imply (b).

Example, Ii B =LPE), where E is a measure space and p > 1, then if x € B,
oxy) = [y|x|P7" sig x/||x]||P dE. If p = 2, <x, y> is the usual inner product
Jxy dE.
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