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Twins of k-Free Numbers and
Their Exponential Sum

J. BRUDERN, A. PERELLI, & T. D. WOOLEY

1. Introduction

For any integek > 2, let u;(n) denote the characteristic function on the set of
k-free numbers; that iy, (n) = O if there is a primep with p*|n, andu,(n) =

1 otherwise. A twin ofk-free numbers is a natural numbesuch thatu,(n) =

ur(n +1) = L It has long been known that the set of these twins has positive

density
2
Q=Qk=n<1——k>; L.1)
) p

although the first explicit reference to an asymptotic formula for the counting
function

Ar(x) =) ) (n +1)
seems to be a paper by Carlitz [2], the estimate

A(x) = ox + O(x*/*FDFe) (1.2)

is at least implicit in the work of Evelyn and Linfoot [4] and Estermann [3]. The
latter formula (1.2) was then proved in refined form, withreplaced bylogx)#/3,
by Mirsky [7]. More recently, Heath-Brown [5] considered the case 2 and
obtained (1.2) witho(x71*¢) in place of O(x%/3+¢).

In this paper we study the exponential sum

S(@) = Sp(@) = Y p(mype(n + De(an) (1.3)

associated witti-free twins. In recent years there has been an increased interest
in the L;-norm of exponential sums over reasonably dense sets of whi¢kfthe

twins form an example. Our first theorem adds to the small stock of such sums for
which a nontrivial estimate can be obtained.

THEOREM 1. Letk > 2. Then

1
/ 1S ()] dar < xY/KHD+e
0
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The trivial upper bound for this integral @(,/x ), which is obtained through the
Cauchy—Schwarz inequality and Parseval’s identity

1
/0 1Se(@)|? do = Ag(x). (1.4)

According to general principles, thHg -norm is bounded below by a function not
much smaller thar/x if the underlying sequence is not well distributed among a
fair share of the arithmetic progressions. Conversely, if the sequence is well and
(reasonably) equidistributed in most arithmetic progressions, theh th@rm
(1.4) tends to be concentrated on the major arcs in a standard Hardy-Littlewood
dissection of the unit interval. Not unexpectedly, thfree twins fall into the lat-
ter category, as the next theorem shows.

Letl< Q < %ﬁ and letht = M (Q) denote the union of the intervals

Mg, a) ={ee[Q "1+ Q7" |ga —a| < Q/x},
withl<a < ¢ < Q and(a, q) = 1 Moreover, let

m=m(Q) =[07% 1+ Q7 \M(Q).
THEOREM 2. Letk > 2. Then

/ |Sk(a)|2 do < x1+£Q1/k—1+ Q3—2/kx2/k—1+£ +.x4/(k+1)_1+£Q2.
m(Q)

These estimates should be compared with the results of a recent investigation by
Brudern et al. [1], where the exponential sum dkfree numbers was studied. In
particular, it was shown that one has

r

/ > k(nye(an)
m() | =,

These estimates seem to be the first instances wher®mrms andL ,-norms
over minor arcs allowed for a breaking through the familiar “square root cancella-
tion” barrier, leaving aside trivial examples such as arithmetic progressions. The
results of this paper show that such is possible even if the underlying sequence is
not multiplicative. We refer the reader to Perelli [8] for a more exhaustive survey
of this matter.

Note that the estimates (1.5) and in Theorem 1 are of the same strength. The
proof of (1.5) in [1] is elementary and depends mainly on the convolution formula

we(n) =Y (). @7

dk|n

da & xYkHbte, (1.5)

Z ik (n)e(an)

n<x

2
da < xreQYk1y x2/k-1reg3-2/k, (1.6)

In the new context of twins, we make use of (1.7) fcandn + 1. By Schwarz’s
inequality applied to a suitable portion of the resulting exponential sum, it is pos-
sible to link theL1-norm of S(«) to an upper bound for the number of solutions of
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the Diophantine equatian* — ru* = 1, with all four variables in certain ranges.
An elaboration of the ideas of [1] then leads to Theorem 1. We present the details
in Section 2.

Theorem 2 compares easily with the very similar bound (1.6). The strategy is
the same as in [1], though in the present context we must examine the distribution
of k-free twins in arithmetic progression. By standard methods, this information
can be transported to an asymptotic formula for the major arc contribution to (1.4).
This takes the form

/m|5(a>|2da ~ 06z, (1.8)

where® is the singular series associated naturally with the trivial equatienn
in k-free twins (see (4.4) for a precise definition). A comparison of Euler products
shows thats = o1, and from (1.8), (1.4), and (1.2) one finds

/ IS(@)|? da = o(x)

asx — oo. Explicit control of error terms in this argument yields Theorem 2.

As in [1], from Theorem 2 one can deduce results for binary additive problems
with twins of k-free numbers. We content ourselves with just one example. For
k>1>2,let

ram) = Y @ w(a+ D b)ub + D)
a+b=n
denote the number of representations ak the sum of a-free twin and ari-free
twin. Let &, ;(n) denote the natural singular series associated with this binary
problem (see (6.6) for a definition).

THEOREM 3. Letk > > 2. Then
re.1(n) = &g (n)oroin + O(n9/10+g).

We are certainly not asserting that this asymptotic formula could not be obtained
by an elementary argument, or that the error term is the sharpest obtainable. The
pointis the relative ease with which the result is obtained and that the circle method
succeeds at all with a binary additive problem, contrary to a widely held belief.
As we shall see in Section 6, the circle method neatly disentangles the different
multiplicative constraints on the two summands.

One might ask whether the results of this paper persist in more general situa-
tions such as-tuples ofk-free numbers—that s, integersuch that:, n+by, ...,
n + b,_q are allk-free. This is indeed the case, and at least this particular exam-
ple can be treated by the ideas in this paper (at the cost of extra complication in
detail). The arguments in Section 2 may be extended to establish the bound

1
)
Similarly, the conclusions of Theorem 2 can be validated for exponential sums
overr-tuples by working along the lines of Tsang [9]. However, there is a grander

D s+ by) - i+ by_pe(an) | da < X

n<x
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design underneath the surface of the present article, one that relates the study of
exponential sums cognate to their prototype (1.3) with a sieve theory that we hope
to present in a forthcoming publication.

Our notation is standard or otherwise explained at the appropriate stage of the
argument. Statements involving aare true for alk > 0, with implicit constants
in Vinogradov or Landau symbols dependingson

2. TheL;-Norm

We prepare for the proof of Theorem 1 with a simple lemma, which will also be
of use in the next section when we deal with the distributiok-ee numbers in
arithmetic progressions.

LEmMA 2.1. Letl <y < x%* andlet®(x, y) denote the number of quadruples
r, s, u, v satisfying the conditions

svk—rut =1, ruf <x (2.1
anduv > y. Then
O(x,y) « x?tey* (2.2)
and
O(x, y) & xtTeyl=h 4 x2/(ktDte, (2.3)

Proof. From (2.1) we haveu*sv* < x(x +1), whencers < x(x + 1)y~* for any
guadruple counted b§ (x, y). The total number of choices fat s is therefore
bounded byo(x?+¢y~=k), by a divisor argument. For any such choice of, the
number of solutions im, v of the equation v’ — ru* = 1is O(x?) (see e.g. [3]),
and (2.2) follows.

To derive (2.3) we note that, foy > x%*+Y one hasx?y=* < x2/k+D
whence (2.3) follows from (2.2). Therefore, we may suppose thatx?/ ¢+,
Then, counting those quadruples whete> x%/*+D again by (2.2), we find that

@(‘x, y) << x2/(k+1)+s + @*,

where®* is the number of quadrupless, u, v satisfying (2.1) and

y < uv < x2/*+D,

From (2.1) we haveu, v) = 1. For any fixed choice of, v, it follows thatru* =
—1 (modv*), which fixes the value of modulov*. By (2.1), the total number of
possibilities forr is O(1 + x(uv)~*). But for any givenv, u, v, the value ofs is
fixed by the equation in (2.1). Hence,

0* « Z (1+x(uv)—k) & 2/ D+e +xl+€y1_k,

y<uv<x2/(k+D

which implies (2.3). O



Twins ofk-Free Numbers and Their Exponential Sum 177

The proof of Theorem 1 is now swiftly overwhelmed. To simplify notational ob-
stacles, let/(r, s, u, v) denote the condition that s, u, v satisfy (2.1). Then, by
(1.3) and the convolution formula (1.7), imported for(n) andu,(n + 1), we in-

fer that

Sy = ) up@elrd).

I(r,s,u,v)
Letl< y < x?* and write
T = ) up@ern®), T = ) ppueru).

I(r,s,u,v) I(r,s,u,v)
uv<y uv>y

Then, by Schwarz’s inequality,

1 1 1 1/2
/ |S(@)| do S/ |T1(a)| dox + (/ ITz(Ot)Izda> . (2.4
0 0 0

To estimate the second summand on the right-hand side, we observe that the num-
ber of quadruples s, u, v satisfying (2.1) with a prescribed valuesef is O(x°),
by an immediate divisor argument. Hence, by Parseval’s identity and Lemma 2.1,

1
/ |To(@)?da < x°O(x,y) « x1Teyl=k 4 x2/tktbte,
0

The treatment of the first term on the right-hand side of (2.4) is different. We
pick up the conditiosv* = ru* + 1implicitin I(r, s, u, v) by orthogonality, and
we rewriteT1(«) as

1
71 = Y ) [ VG + b cuVpot, s+ Do bres) ap

uv=<y
where

Viy,2) =) e(ym).

m=<z

It follows that

1 1 p1
/ |Ty(e) da < ) / / V(@ + Bu, xu )V (=pv", (x + Dv )| da dB.
0 o=y Y0 JO
The functionV (y, z) has period 1 iry. By a change of variable, we infer that

1 1 p1
[ in@ida= 3 [ [1vi@ povep, o vl deds
0 0 JO

1 p1
« X [ [ mince g1 minGe, 1517 dadp
uv<y 70 /O
< y(logy)(logx)>.

Choosingy = xY*+D Theorem 1 now follows from (2.4).
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3. Twins of k-Free Numbers in Arithmetic Progressions

The relevance of the distribution in arithmetic progressions for the success of our
method has already been stressed. Neither an asymptotic formula for the counting
function

Arxigoa) = ) pum(n +1) (3.)

n<x
n=a (modgq)

nor an estimate for the variance of the ensuing error terms seem to be available in
the literature. We therefore proceed by supplying such formulas. Let

o0
u(uv)
8= Y, (g uth) (3.2)
u,v=1
w*.q)a
Wk @la+1

We then have the following elementary estimates.

Lemma 3.1.  Uniformly ina andg, one has
Ax(x:q,a) = g %g(q, a)x + O(x?/*+D+ey,

Once a main term foA,(x; g, a) has been determined, it is natural to consider
the variance

q
Ti(x, Q) =Y Y |A(x; g, a) — g g(g, a)x|”.

q<Q a=1
LEmMa 3.2. Whenl < Q < x, one has
To(x, Q) <« x2/k+eQ2-2/k | y4/(k+De

Both lemmata follow from a common principle. We continue to use the notational
conventions introduced in Section 2. Then, writing= ru* andn + 1 = sv* in
(3.1), we infer from (1.7) that

Ar(xig.a)= > u@p@) = Big.a)+ Bag.a),  (3.3)
ruk[(zr:,(blfr;;giq)
where Bi(q, a) is the portion of the central sum wittw < y and B(q, a) is
the complementary part withw > y. Here 1< y < x?/¥ is a parameter at our
disposal.

We evaluateBi(q, a) by counting, for any given pair, v with uv < y, the num-
ber ofr, s such thatu* = a (modg) andI(r, s, u, v) holds. Fromsv* — ru* =1
one hagu, v) = 1. Moreover, the congruences® = a (modg) andsvf = a +1
(modg) imply that(u*, ¢) |a and(vt, ¢) | a + 1 Thus, the simultaneous conditions
I(r, s, u, v) andru* = a (modqg) necessitate that

w,v)=1 @ la, 5 q)la+1 (3.4)
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as we henceforth assume. Subject to these extra conditions, we note that for a
givenr there will be an integer such thatv* — ru* = 1if and only ifru* = —
(modv*).

Next, sinceu, v) = landz = —1(mod(q, v*)), the simultaneous congruences

r w _ _a (mod 1 ) and ru* =—1 (modv") (3.5)
whq) W) Wk, q) - '

are compatible and combine to a single congruence to modulus

qv*

Wk @) (v, q)
It follows that the congruences (3.5) have

k k
x(gq,u")(q,v") + o)
qu¥vk
solutionsr with 1 < r < xu =¥, provided that (3.4) holds. Thus we have

k. k
Big.a)= Y. (’“q’—ff)u(um(v) + 0<1)>.
uv=y qutv
(3.4) holds
Finally, we note thati(uv) = Oif (u, v) > 1, so that we may replage(u)u (v) by
w(uv) and then drofu, v) = 1 from the summation condition. In order to com-
plete the sum ovetv < y to an infinite series, we proceed as follows. Fot 1
i < k we define the integers

=T rn o= ] »

pill(g.a) pill(g.a+1)
as well as
m= T rn o= [[ »
p*l(g.a) pkl(g,a+D)

By invoking the simple bound

2 (q:ukvk)
Z Z W) =
u*v
U<u<2U V<v=<2V
W la *g)la+1

< wv)™* Z Z Lﬁ(@f‘)i
B eifi-efiry

€l|nl ekl”k
flor filow

k
L g U [,
i=1
we find that
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k

(g, u*vk) B o
> )T < gy [ Jemen
uv>y i=1

w*.q)la
Wk, q)|a+1
(the reader may care to compare this argument with that on [1, pp. 744—745]). We
then find that

k

o0
X u(uv) _ _ i
Big.a)—= Y (g ufvh) <yt oyt et [
u*v .
u,v=1 i=1
Wk, q)la
W .q)la+1

This confirms the asymptotic formula

k
Bi(q,a) = xq~'g(q, a) + O(y”*’" + gt eyt H(”iwi)i_l>- (3.6)
i=1

To complete the proof of Lemma 3.1, we merely observe Bdly, a) <
O(x, y), in the notation of Lemma 2.1. By (2.2), (3.6), and (3.3), it follows that

Ak(xiq.a) = xq g(q, a) + O(x* ey~ 4 y1+e),
from which Lemma 3.1 is obtained by choosing= x2/*+9
To derive Lemma 3.2, we observe that (3.6) and (3.3) yield
|Ak(x; g, @) — g7 g(q, a)x|?
k
LY+ g Ay A [ 2 + 1 Ba(q, ).

i=1

Now
q

> IBa(g. ) < U(g),

a=1

whereU(q) is the number of;, s;, u;, v; (j = 1, 2) satisfyingI(r;, s;, u;, v;) for
j=12and

rlull‘ = rzulé (modq), wuvi >y, uzvz > y.

We sum ovey and find that

ZXq:|Bz(6],G)|2§ > Yoo

g<Q a=1 I*(rj,sj,uj,vj) q=0
j=12 q|r1u11‘—r2u§

<Q E 1+ x° E 1,
I*(rjosjsujs vj) I*(rjssj s vj)
rlull‘:rzué rluiyérzulé

wherel* indicates thaf is supplemented byv > y. For the first remaining sum
we note thatjuf = rou% implies thats¥ = sov5. Hence, if1*(ry, s1, ug, v1)
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holds, there are atmoét(x®) quadrupless, sz, uz, vo satisfyingl *(ra, s2, uz, v2)
andrlu1 = r2u2 In the notation of the statement of Lemma 2.1, we thus have

q
D Y IBag, @) € Qx°O(x, y) + x°O(x, y)?
g<Q a=1
and therefore, by (2.3) and an argument similar to that straddling pp. 746-747
of [1],

Ti(x, Q) < Qz 2+s+x2+sy2—2k+ Q(xl+eyl—k+x2/(k+l)+s)+x4/(k+l)+e’

from which Lemma 3.2 follows by choosing= (x/Q)Y*.
For Q > x, a simple bound suffices for our needs. Since

k
g(g.a) < ¢° [ [mm)'™
i=1

andA;(x; q,a) < xg~* 4 1 by obvious estimates, in this case we have

Ti(x. Q) < ) Z(xcf 11‘[(n,w,)' l+1) «2%Q" + Q%
g<Q a=1

Perhaps it is worth pointing out that our approachfi@x, Q) is rather crude
and susceptible to various improvements. Wies small, the methods of [5] and
[9] will provide a better estimate, at least whee:= 2. Indeed, whetk = 2, Heath-
Brown [5] has showntha (x, y) « x7¢+t¢y=58wheny > x¥2. Using thisin the
foregoing argument, the error term in Lemma 3.1 may be reduced td'1++¢),
and also Lemma 3.2 may be improved in certain range@.ofFurthermore, the
work of Vaughan [11] is likely to yield superior bounds whefr < Q0 < x. In
the ranges fo that are of interest in arithmetic applications such as Theorem 3,
such improvements seem to have little impact.

A noticeable feature of our variance estimate is that the fungtigna) does
not depend only og and(«, q), unlike most sequences investigated hitherto. We
draw the reader’s attention to [6], part X of Hooley’s acclaimed series on this sub-
ject matter, where situations of this kind are analyzed in an abstract set-up.

We close this section with a brief analysisgf;, a). By (3.2),

(61, 5

g(g,a) = Z ()
n=1
wherey (n; ¢, a) denotes the number of paisv of natural numbers withv =
n that satisfy (3.4). Itisimmediate that, for any fixed;, the functiony, (n; g, a)
is multiplicative inn. Henceg(q, a) can be written as an Euler product that takes
the provisional form

g(q.a) = ]"[(1— (”p D y(pia, a))

p

Yi(n; q, a),

By (3.4), we havel (p; ¢, a) = 2 for all p1q. Itis therefore convenient to intro-
duce the functions
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2\* k
f(q)zl_[<l—?>, h(q,m:]"[(l—(ppk”wup;q,a)), (3.7)

rlg plq

so that from(1.1) we can novinfer the basic identity

g(g.a) =of(q)h(g,a). (3.8)

For anyp|q, let p”‘ q; theny (p; g, a) = ¥ (p; p*, a). The equationiv = p
admits the solutions = p, v = 1andu = 1, v = p. However, forv > 1, we
cannot have p*, p*)|a and(p*, p”)|a + 1 simultaneously. By (3.4), it follows
thaty, (p; p¥, a) = 1if (pX, p¥)|a(a + 1) andy(p; p*, a) = 0 otherwise. Con-
sequently, we have

k v k
hg.a)= ] (1——(p’,f’))= I1 (1——(”p’k‘”>. (3.9)

" P
p'llq plg
(p".pMata+) (p*.@lata+D

From this handier formula one readily confirms the quasi-multiplicative property
that, for any co-prime natural numbers ¢, and any integeras, a,,

h(q1g2, a192 + axq1) = h(q1, a1g2)h(q2, axq1). (3.10)

4. Gaussian Sums and Singular Series

Recalling (3.2) and (3.7), we now form the sums of Gaussian type
! ab ! ab
G(q,a) :Zg(q,b)e(—), H(q,a) :Zh(q,b)e(—), 4.
b=1 q b=1 q
which by (3.8) are related by
G(g,a) =of(q)H(q, a). (4.2)
Then we introduce the sum

q
H(g) = Y |H(g, ), (4.3)
(a,aqz)l=1
which is used in turn to define the singular series
S =Y q *f(@)°H(g). (4.4)
g=1

LemMA 4.1. The functionH (¢) is multiplicative. For all primesp, one has

H(p) =2p>* (1— E);
p

2p¥ 21— ) f2<v<k

H(p)z{o if v>k.
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Proof. The multiplicative property follows from the Chinese remainder theorem,
(3.10), (4.1), and (4.3) by a standard argument (see [10, Lemma 2.11] for a model);
we omit the details.

For any primep and anyv > 1, the orthogonality of characters together with
(4.1) and (4.3) yield

P’ p’ ab\ |2 P’ r ab\ |2
H(p") =) | > h(p", W(T) =Y 1D hp”. b)e(—u>’
a=1!p=1 p a=1lp=1 p
pla
= p’Ka(p") — p"'Ka(p"), (4.5)
where
pv
Ki(p") =) h(p",a),
a=1
p’ (4.6)
Ka(p'y= Y h(p" ah(p",b).
a,b=1

a=b (modp'~1

We dispose of the case> k first. By (3.9), one hag(p*, a) = h(p*, b) when-
evera = b (modp*). Hence, forv > k,

p’ p’
Ka(p) = h(p".a® > 1= pKi(p").
a=1 b=1
a=bmodp’1

and (4.5) yieldsH(p") = 0, as required.
We may now suppose thatd v < k. By (3.9),

1— p¥ % if p'la(a +1),
h(p'a) = { 1 ’ otrl!17e||fwgse4.r ) @.7)
From (4.6), we now find that
p’=2
Ki(p') =20-p" ™+ > 1=20-p""?+p' -2 (4.8)
a=1

Similarly, whenv = 1, we deduce from (4.6) and (4.7) that
p 2
Ka(p) = (Zh(p, a)) =QA-p™H+p-2=p*A-2p7>
a=1

When combined with (4.8) for = 1, the identity H(p) = 2p32%(1 - 2/p) is
readily confirmed from (4.5).

It remains to consider the case wheree2 < k. By (4.6), terms withu = b
will contribute exactlyK;(p") to K»(p"). Hence, on writing



184 J. BRUDERN, A. PERELLI, & T. D. WOOLEY

v

p
Ks(py= Y h(p",a)h(p"b),

a,b=1
a=b (modp’ 1
a#b
we infer from (4.5) that
1
H(p") = p“<1 - ;)Kl(p“) — p"'Ka(pY). (4.9)

Since a formula foiKy( p”) is already available, we proceed to evaluktg p").
By (4.7), we havei(p”,a) = 1forl< a < p' — 2. We therefore split the sum
K3(p") into the subsunkK 4(p"), wherel<a < p*—2and1< b < p" — 2, and
its complemenKs(p"), where one at least afandb is eitherp” — 1 or p”. Now

Ka(p') =#{(a,b):1<a,b<p’"—2,a#b,a=b (modp' )
="' =2p(p-D+@2p—-2(p—-2)
=(p"—H(p-D.
In order to evaluat&s(p"), note that by the symmetry betweerandb, one has

v v

p P
Ks(p)=2 Y h(p“a) > 1=41-p" " (p-1.
a=p'—1 b=1
’ b=a (modp’ 1
b#a

SinceKs(p”) = K4(p”)+ Ks(p¥), we deduce from (4.8) and (4.9) and a straight-
forward computation thak (p¥) = 2p3'~2%(1 — 1/p), as claimed. The proof of
Lemma 4.1is complete. O

LeEmmA 4.2. ForanyQ > 1,
> a7 f(@%H(g) < QYFHE
0<q=<20

The singular serie®s defined by(4.4) converges absolutely, and one h&s=
ot
Proof. By (3.7) one hag(¢) <« 1, and therefore we begin with

Y a i f@?H(g) < QYY" gV H(g).

0<q=<20 q<20

By Lemma 4.1, we havél(g) = 0 unless; is (k + 1)-free. Any(k + 1)-free in-
tegerg has a unique representatign= g145 - - - gf with pairwise co-prime and
square-free natural numbeys (1 < j < k). By Lemma 4.1 again, together with
an elementary estimate for the divisor function, we have

k
Z q—l—l/kH(q) < Qs Z quv—v/k—Zk < Q2£’

4<2Q a195-+qf <20 V=1
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which confirms the first statement of the lemma. The absolute convergete of
is an immediate corollary, and the general term in the series (4.4) is multiplica-
tive as a consequence of (3.7) and Lemma 4.1. There®in be rewritten as

an Euler product, say
6= l_[ Xp>
P

where by another application of (3.7) and Lemma 4.1, the Euler fagtis

Xp =14+ p 2 f(P")V?H(p")
v=1

—1+ 2(1— %)2(1712"(1— ;) + épV2k<l_ %))
-3y

A comparison with(1.1) yields the identitys = o2, as required. O

5. The Major Arc Contribution

It is time to embark on the main argument. We follow [1] in spirit and provide
an asymptotic formula for the integral (1.8). With this end in view, let D <
%ﬁ and?t = M(Q) be the set of major arcs defined prior to the statement of
Theorem 2. Whetlya — a| < Q/x withl<a < g < Q and(a, ¢) =1, define

$*@) = ¢"YG(q, a)I(a — g) (5.1)

where

1(B) =) e(pn)
andG(q, a) is given by (4.1). This defines a functisri on9t which serves as an
approximation taS(«). The next lemma controls the error betweeand S$* in
mean square.

Lemma 5.1, Suppose that < @ < 3./x. Then
/ |S(C¥) _ S*(a)|2da << Q3—2/kx2/k—1+8 +x4/(k+1)_1+£Q2.
M(Q)

Proof. This lemma should be compared with [1, Lemma 3.2]. The proof is al-
most identical save that the functiéi(g, a) in (5.1) is, in the context of [1], only

a function ofg. The slightly more general situation hardly affects the argument,
S0 we content ourselves with a few hints on the necessary changes. The definition
(3.8) in [1] now takes the form

wi(m)pr(n +De(an/q) — g~ G(g,a) when 1<n <x,

u(n; q,a) = { 0 otherwise.
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Then the proof of [1, Lemma 3.2] still applies in the new context and yields
/ 1S(a) — $*()|? dt
m
. 0* 0 Q2 !
<0 x| 1 —Q(R) +—= Tk(x 2R) + 2R Ti(y, 2R) dy
0

(cf. [1, (3.15)]), whereX (x, Q) is the variance estimated in Lemma 3.2 and where

GR)= Y q Z 1G(g, ).

Rea=2h om
By (4.2), (4.3), and Lemma 4.2,

G(R) « RYk-1+e, (5.2)
Lemma 5.1 follows by invoking Lemma 3.2 to boufig. O

LEMMA 5.2. Forl1<2R<Q < %ﬁ,

/ |S*(e)* der < xRY*He
M2R)\M(R)

Proof. Note that, for 8| < 2, one has
(B < x(1+x|D7" (5.3)
Hence, the integral in question is
< g(R)f A4 p) 28+ Y g Y 6. a) [ g
q<R a=1 R/(qx)

(a,q)=1
The conclusion of the lemma is now readily verified by recalling (5.2). O
To establish Theorem 2, we integrate the identity
S = IS*(@)? = [S(@) — $*@)* + 2 ReS* (@) (S(a) — $*(«))
over9i(Q). By Lemma 5.1 and a dyadic splitting argument, it follows that

/ |S(a)|2da—/ 1S*(a)|? do
M(Q) M(Q)
< xs(Qa_z/kxz/k_l_l_x4/(k+l)—lQ2 + E), (54)

where

E = max / 15%(@)(S(@) — §*(@))] de.
1=R=Q Jom@r)\9n(R)

By Schwarz’s inequality, Lemma 5.1, and Lemma 5.2,
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E <« max(xRYk—Yreyl/2(R3-2/k 2/k=Lre | \4/(k+D-1tep2)1/2
R=<Q
& xVktel-l/2k | \2/(k+D+e)l/2+1/2k

The second integral on the left-hand side of (5.4) is evaluated by recalling (5.3).
Since

1/2
/ [1(B)1?dB = [x].
—-1/2
we deduce that

q
s@ida = Y0 Y 6.k (1x+0( %3 ).
[, s @itar=3q% 3 16a.ar(1+0( g

q=0 a=1
(a,9)=1

By (5.2) it follows that

(o] q
/ |S*(@)|? da = x Zsz Z 1G(q, @)% + O(xQY<1+¢).
o q=1 a=1
(a,q)=1

By (4.2) and (4.4), the infinite sum on the right$S, and Lemma 4.2 yields
/ |S*(e)|? da = ox + O(xQY* ).
M(Q)

We substitute back into (5.4) and subtract the resulting formula from (1.4). Invok-
ing (1.2), we then find that

[ |S((X)|2 do < Xs(le/k71+ Q372/kx2/k71+x4/(k+l)*lQ2
(@)
" + xl/le—l/Zk + xz/(k+l)Ql/2+1/2k)‘

Here the last two terms on the right-hand side are always dominated by the others,
and Theorem 2 follows.
6. A Binary Additive Problem

We briefly sketch a proof of Theorem 3. It will now be useful to take N in the
previous analysis and to fix the value @fasQ = NY°. Then, withm = m(Q)
and9t = M(Q), by Theorem 2 one has

flSr(a)lzda << x9/10+8
m

for all » > 2. Since

1
rk,z(N)=/O Sk(@)Si(@)e(—aN) da
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by orthogonality, we may conclude from the Cauchy—Schwarz inequality that
ra(N) = / Se(@)Si(@)e(—aN) da + O(N Y10+, (6.1)
m

We now replaces; andsS; by their approximations; andS;* defined in (5.1).
Here it is advisable to make the dependencé and! explicit; we also apply this
convention to the sums (4.1) by writig (¢, a) andH, (¢, a) and similarly fi.(¢)
instead off(g). Forl1< R < Q,

|(Sk () — S (@) Sy ()| dex

1/2 1/2
5(/ |Sk(a)—S,f<a)|2da) (/ |Sl<a>|2da> ,
IM(2R) m(R)

whence by Lemma 5.1, Theorem 2, and a dyadic splitting argument, we find that

/DJT(ZR)\DR(R)

/ |(Sk(@) — S{(@)Si ()| dor < xV%. (6.2)
m
Similarly, by applying Lemmata 5.1 and 5.2, one confirms the estimate
/ 1S (@) (Si(e) — S} ()| dar < x¥°. (6.3)
m

We now substitutes;(«) for Si(«) in (6.1), and control the error with (6.2).
Then we substitutd;*(«) for S;(a) and deduce from (6.3) that

ri(N) = / Si@)Sf(@)e(—aN) da + O(NY10¢)
m

q
= Z q7? Z Gk(‘]»a)Gl(q,a)€<—%>J*(q) + O(NY0+ey,

q<0 a=1
(a,@)=1

where we write

Q/(@N)
Jq) = / 1(Be(~BN) dB.
—Q/(@gN)

By (5.2) and Schwarz’s inequality,

q
Z qu Z |Gk(q,a)Gl(q,a)| << R(l/z)(l/k+l/l)7l+5 (64)

R<q=2k (ab,lq_)lzl
and
L2 gN gN
Jq) = / 1(B)?e(—pN ) df + o(—) N+ 0(—). (6.5)
~1/2 0 0

By (6.4) and (6.5), we routinely deduce that

o0 q
i) =NY g2 ) Gilg,)Gi(q, a)e<—%) + O(NY0F),

q=1 a=1
(a.q)=1
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The infinite series on the right-hand side converges absolutely and, by (4.2), fac-
tors aser0:6.1(N), where

o] q
Sui(N) =D qfi@) filg) Y Hilg.a)Hi(q, a)e(—ﬂ). (6.6)
g=1 a=1 4

(a,q)=1

This proves Theorem 3. We remark that arguments such as those used in the
proof of Lemma 4.1 can be used to show that the innermost sum in (6.6) is a multi-
plicative function ofg. Therefore, the singular series can be rewritten as an Euler
product. Moreover, as in the proof of Lemma 4.1, one confirms that ferk >
[ > 2 one has

v

p
v " aN
> He(p' a)Hi(p ,a)e(——v) =0,
a=1 P
pta
irrespective of the value df. Hence
Sei(N) = [ A+ wwi(p)).

P

where
2\ 2\t P aN
w1 (p) = (1— —k) (1— —1) D op Y H(p' a)Hi(p", a)e(——u)
p p v=1 a=1 p
pta

One can now follow the pattern laid down in the proof of Lemma 4.1 to compute
the Euler factors explicitly. We spare the reader the tedious details.
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