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L4-Differentials for Weighted Sobolev Spaces

JANA BIJORN

1. Introduction

Let B(xo, r) denote the open ball iR"” with centerxy and radius. Throughout
the paper we assume that all measures are Borel and satisfy(B) < oo for
all balls B.

DEerINITION 1.1.  Letu be a measure oR”. We say that a function is differen-
tiable atxq in the L9(u) sensef

1 1/q
lim —(][ lu(x) — u(xo) — Vu(xo) - (x — x0)|” dM(X)> =0. ()
B(xo,r)

r—>0r

Here and in what follows, the symbglstands for the mean-value integral

For u equal to the Lebesgue measure, the following theorem abytuliffer-
entials of Sobolev functions is well known (see e.g. Theorem 12 in Calderén and
Zygmund [3] or Theorem 1, Chapter VIII in Stein [14]).

THEOREM 1.2. Let u be a function from the Sobolev spaég-?(S2), where

Q CR'(n > 2 andl < p < n. Thenu is differentiable in theLY sense
withg = np/(n — p) a.e. inQ. If p = n, then the same is true for ajl < oc.
Moreover, ifu € H-7(Q2) and p > n, thenu can be modified on a set of measure
zero so that it becomes differentiable a.eCinn the classical sense.

Theorem 1.2 can be regarded as a higher-order analog of the classical Lebesgue
differentiation theorem: Ifi € L{, .(R", 1), 1 < p < oo, andu is a Radon mea-
sure, theru-a.e.xg € R" is anL?(u)-Lebesgue point af; that is,

1p
lim ( ][ lu(x) — M(xo)lpdu(x)> =0. ©)
B(xo,r)

r—0
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(See e.g. [15, p. 14] for the cage= 1, the casep > 1 then follows from the in-
equality|a — b|? < |a? — bP|fora, b > 0.)

It has been shown (see e.g. [8; 11; 12]) that weak solutions of certain elliptic
partial differential equations are differentiable a.e. in the classical sense provided
that, ata.exo, the L?-norms of their difference quotients(X) = (u(xo+hX)—
u(xp))/h remain uniformly bounded as — 0. This, in turn, follows from (1)
with g = p.

When applying the same method to weighted elliptic partial differential equa-
tions and systems (see [1]), the author arrived at the following problem.

ProBLEM 1.3. For which measures is there a weighted analog of Theorem 1.2?

Inthe affirmative case, the spalié-?(Q) in the formulation of Theorem 1.2 is to be
replaced by the weighted Sobolev spate’ (2, 1), and the exponent will also
depend on the measuge In order to be able to define weighted Sobolev spaces,
we restrict our considerations to doubling measures admittifig j@-Poincaré
inequality, for which the theory of Sobolev spaces is well developed (see e.qg. [9]).

In this note we prove the following generalization of Theorem 1.2. The proof
is surprisingly simple and seems to be of interest even in the unweighted case,
whenu is the Lebesgue measure. In Section 4, further generalizations of this the-
orem are developed. In particular, a two-weighted situation and Sobolev spaces
on metric measure spaces are considered.

ProrosiTioN 1.4, Let 1 be a doubling measure dr”" admitting a weak(q, p)-
Poincaré inequalityl < p < oo. Then every e H-?(Q, w) is differentiableu-
a.e. inQ inthe LY(u) sense.

The following theorem gives a more geometrical sufficient condition for differen-
tiability of Sobolev functions in thé.?(u) sense.

THeorEM 1.5. Let u be a doubling measure oR” admitting a weak(l, p)-
Poincaré inequalityl < p < co. Assume that there exists a constant 0 such

that ) s
ne=c(n) ©)
w(B) r

wheneveB = B(x,r)andB’ = B(x’,r’) are balls, whera’e Band0 < r’' <r.
Letu € H-P(2, n). Then the following are true.

(i) If p < s, thenu is differentiablex-a.e. inQ in the L4(u) sense for aly <
sp/(s — p). If p = s, then the same is true for &}l < cc.

(i) If p > s, thenu can be modified on a set pf-measure zero so that it becomes
differentiableu-a.e. inQ in the classical sense.

It is shown in Example 3.2 that the critical exponernh Theorem 1.5(ii) cannot
be made smaller in general.

Let us also mention the special cage= w dx, wherew is anA, weight. By
[9, Sec. 15.5], the decay condition (3) holds with= np wheneverdy = w dx
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andw is anA, weight. Hence, the following result is an immediate consequence
of Theorem 1.5. Note also that the proofs of Theorem 1.2 given in Stein [14] and
Ziemer [15] can also be applied #, weights.

CorOLLARY 1.6. Letw be anA, weight inR", with po = inf{p : w € 4,},
du = wdx, andu € HY?(2, u).

(i) If p < pon, thenu is differentiable a.e. ir2 in the L(u) sense for aly <
ponp/(pon — p). If p = pon, then the same is true for ajl < co.

(i) If p > pon, thenu can be modified on a set of measure zero so that it be-
comes differentiable a.e. @ in the classical sense.

ACKNOWLEDGMENT. The author is grateful to Juha Heinonen for useful remarks
and to the referee whose comments made her reconsider and improve the results
of this paper.

2. Weighted Sobolev Spaces andl, Weights

DErFINITION 2.1.  We say that a measyreon R" admits aweak(q, p)-Poincaré
inequality if there are constant§ > 0 ando > 1 such that, for all ball8 =
B(xo,7) C R" and allp € C*®(B(xo, o1)),

1/q 1/p
(][ |¢—¢B|"du) scr<][ Ilede) ,
B(xo,r) B(xo,0r1)

wheregp = f, ¢ dpu.

Letl < p < oo and letu be a measure dR” admitting a weakl, p)-Poincaré
inequality. Assume also that is doubling—that is, assume there is a constant
C > 0 such that

wu(B(xo, 2r)) < Ciu(B(xo0,7))
for all balls B(xg, r). Let 2 be an open subset & and define a norm o> (£2)

by
1/p 1/p
10l ere = (f|<o|”du> 4 <f|V¢>I"du) .
Q Q

The weighted Sobolev spaéet?($2, u) is the closure of
{peC™(Q): lollgrrg, < oo}

in the H7(Q, w)-norm. In other wordsy € H*P(Q, ) if and only if u €
L?(2, n) and there exisp; € C*°(2) and a vector-valued functiof such that
¢; > uwandVy; — &in LP(Q, u) asj — oo. By the doubling property of
and the Poincaré inequality, the “gradiegtdf u is unique (see [5, Thm. 10]). We
shall denote the unique “gradient” Byu. If du = w dx andw¥? is locally
integrable, thervu is the distributional gradient aof. Note that the weakl, p)-
Poincaré inequality holds for all functions -7 (2, 1) and all ballsB(x, r) with
B(xg, 0r) C Q2.
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DerFINITION 2.2, Letl< p < oo. Thenw is anA, weight(w € A)) if there is
a constantC such that, for all ball8 ¢ R”,

p—1
][ w(x)dx<][ w(x)Ya=p dx> <C.
B B

It is well known that ifdu = wdx andpg = inf{p : w € A,}, thenpu is doubling
and admits thé&q, p)-Poincaré inequality for aly < ponp/(pon — p) if po <
p < pon andforallg < coif p > pon (see e.g.[9, Sec. 15]).

3. Proofs and an Example

In this section we give proofs of Proposition 1.4 and Theorem 1.5. Itis also shown

that the critical exponent in Theorem 1.5(ii) cannot be made smaller in general.
Unless otherwise stated, the let@will denote a positive constant whose exact

value is unimportant and may change even within a line. We alladevdepend on

fixed parameters such as the constants in the doubling condition and the Poincaré

inequality.

Proof of Proposition 1.4Let xo € 2 be anL?(u)-Lebesgue point of both and
Vu. By (2), u-a.e.xg €  has this property. Let

v(x) = u(x) —u(xo) — Vu(xo) - (x — xo).
ThenVu(x) = Vu(x) — Vu(xg) andv € Hé‘f(Q, w). Let0 < or < dist(xq, 082)
andB; = B(xp,27/r) for j = 0,1,.... Sincevp, = fB, vdu — v(xg) =0 as
J — oo, by the doubling property ofi and the weakl, p)-Poincaré inequality
we have

oo oo
|vgol = [V(x0) — vgol <Y lvg,,, — gl <C Y |v—vgldu
j=0 j=0" B

ol 1/p
<C — ][ [Vul|? du)
j:ZO 2 ( B(x0,2 Jor)

Yp
<Cr Sup(][ |Vv|pdu> .
O<p=<r B(x0,0p)

Hence, by the weal, p)-Poincaré inequality,

1 1/q 1 1/q v
—<][ Ivlqdu) §—<][ Iv—vBolqu) +ﬂ
"' \J B(xo.r "' \J B(xo.r) r

/p
<C sup<][ |Vv|”du) —0
0<p=r\J B(x0.0p)

asr — 0, by (2). O

Theorem 1.5(i) follows directly from Proposition 1.4 and the following result,
which is a special case of [7, Thm. 5.1].
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THEOREM 3.1. Let u be a doubling measure oR" admitting a weak(l, p)-
Poincaré inequalityl < p < oo, and satisfying the decay conditi¢®). Then the
following are true.

(i) If p < s, thenu admits a weak(g, p)-Poincaré inequality for ally <
sp/(s — p). If p = s then the same is true for ajl < co.

(i) If p > s, then everyu € H-?(Q, 1) can be modified on a set @f-measure
zero so that it becomes locally Hélder continuous and

1/p
lu(x) —u(y)| < Cr*/?|x —y|“/P(][ IVulde)
B

(x0,507)

forall x, y € B(xg, r) with B(xg, 50r) C Q.

Proof of Theorem 1.5(ii)Modify u as in Theorem 3.1(ii) and let, € 2 be an
L?(u)-Lebesgue point oVu. Letv(x) = u(x) —u(xg) — Vu(xg) - (x —xg). Then
Vu(x) = Vu(x) — Vu(xg) andv € Hé’c”(Q, n). Let 0 < 5or < dist(xg, 0€2).
Thenv is Holder continuous iB(xg, r) and, by Theorem 3.1(ii), for € B(xoq, )
we have

p

V(X v(X) —v(x ) .

Pl _ () = (o) SCré/p_lu_xoll_é/,,(][ IVvl”du>
r r B(x0,507)

1/p
< c(f Vu(x) — Vu(xo)l"du(x)) -0
B(x0,5071)
asr — 0, by (2). O

It is well known that, in the unweighted case, the critical exporeatn in The-
orem 1.2 is best possible. On the other hand, the weigtftswith « > 0 have
lower order of decay > n + « but their critical exponent (for differentiability a.e.
in the classical sense)is We next show that, also in the case- n, the critical
exponent in part (ii) of Theorem 1.5 cannot be made smaller in general.

Note that ifdu = wdx, then lim,_ o u(B(x,r))/|B(x,r)] = w(x) > 0 for
somer € R" and hence > n. Atthe same time, the existence of singular doubling
measures ilR" admitting a(1, p)-Poincaré inequality is still an open question.

ExampLE 3.2. Givens > n > 2 and O< § < 1, we find a numbep > s — §
and construct @-admissible weightv satisfying the decay condition (3) so that
the Sobolev spac&?(R", 1) with du = i dx contains a function that is not
differentiable at any point.

Fix & > 0 such thak — nd/(s —n) < o < n and let{g;};2, be a countable
dense subset d?". Consider the weight

o0
w(x) =Y alx — gl ™
k=1

with a; > O forallk and)_;-,a; < oo. Each summandy (x) = |x — gx| ™ is
an A; weight; that is, eacly, satisfies the condition
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][ wi(x)dx < Cessinfwg(x)
B XeB

for all balls B ¢ R" and a constant’ independent o andk. Hence, from the
Fubini theorem we derive that(x) is finite for a.ex € R" andw is also anA4;
weight.

Lett = s/n < s — 8. Thenw = wl™' is an A, weight and the lower decay
condition (3) holds witly = tn. Let

up(x) = log max{l, log } (k=12,...) and u(x)= Za,guk(x).
k=1

|x — gl

Clearly, the functiorx is unbounded in every neighborhood of every point and, in
particular, it is not differentiable at any point. An elementary calculation shows
thatu belongs toH>?(R*, w)for p=n+a(t —1) > s — 6.

4. Generalizations

In this section we describe two further generalizations of Theorem 1.2.

4.1. Two-Weighted Situation

Consider a paifv, n) of doubling measures dR”. We say that the paiw, n) ad-
mits aweak two-weightedy, p)-Poincaré inequalityf there are constans > 0
ando > 1such that, for all ball® = B(xq,7) € R" and allp € C*(B(xq, or)),

1/q 1/p
(f |¢—¢B|qdv) SCr<][ |V<p|”du> ,
B(xo,r) B(xo,07)

wherepg = f, @ dv.
A slight modification of the proof of Proposition 1.4 leads to the following two-
weighted version of Proposition 1.4.

TueoreM 4.1. Let (v, ) be a pair of doubling measures & admitting a weak
two-weightedq, p)-Poincaré inequalityl < p < oco. Letu € H*P(Q, 11). Then
there exists a representativiec H-”(Q, i) of u such thati € L1.(Q,v)andi
is differentiableu-a.e. inQ2 in the L9(v) sense.

Proof. Note first that the weak two-weightdd, p)-Poincaré inequality implies
the following Sobolev inequality:

1/q 1/p
(][ )¢ dv) < Cr(][ Ilede) , (@)
B(x,r) B(x,r)

for all balls B(x, r) and allp € C§°(B(x, r)). This is proved in the same way as
Theorem 13.1in [7].
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Let g € C¥(R), k =1, 2, ..., be a sequence convergingiton HY7(Q, 11).
Let B(x,r) be a ball such thaB(x, 2r) U B(x,or) C £, and choose; €
CE(B(x,2r)) sothat 0< n < 1, n =1onB(x,r), and|Vy| < 2/r. Then, by
(4), for g g = £, ¢x dv we have

lox, B — @1.8|

1/q
SC(][ I(wk—cpz)nl"dV)
B(x,2r)

1/p Yp
SCF(][ |V<pk—V<P1|de> +C<][ |<Pk—<P1|de) .
B(x,2r) B(x,2r)

This and the weak two-weightegg, p)-Poincaré inequality imply that the func-
tions¢, form a Cauchy sequencelri(B(x, r), v) and converge to a functiaghe
L1 (2, v). By taking a subsequence converging pointwise hothe. and-a.e,
we obtain that = . on Q \ (E1 U E5), whereu(E;) = 0 andv(E,) = 0. Let
i=uonQ\ E;andi = ii on E1. Theni € HX7(Q, ) NL{.(2,v), Vit = Vu,
andu = u p-a.e. inQ2, while i = iz v-a.e. inQ.

Let xo € Q \ E; be anL”(u)-Lebesgue point ovi: such thaty,(xg) —
i(xg). Definev, € C®(R) by vi(x) = @r(x) — ut(xg) — Viu(xg) - (x — xo).
Let 0 < or < dist(xo, 822) andB; = B(x0,27/r), j = 0,1,.... Sincev s, =
fB/_ v dv — vi(xg) asj — oo, by using the doubling property ofand the weak
two-weighted(l, p)-Poincaré inequality (as in the proof of Proposition 1.4) we
have

1p
[k, 8ol < Cr SUP(J[ |Vvk|pd,u> + [vi(x0)l-
B(x0,0p)

O<p=<r

Consequently, by the weak two-weighted p)-Poincaré inequality fo¢v, 1),

1 1/q 1 1/q v
—(][ |vk|‘1dv> < - ][ |[vk — v, Bo|? dv '|'M
"' \J B(xo.n "' \J B(xo.r) r

1/p
<cC sup<][ |Vvk|”du) 4+ o)l
B(x0.0p) r

O<p=<r

As vi(xg) = @ (xg) — u(xg) andVu,(x) = Vi (x) — Vie(xg), lettingk — oo
yields

r

1 1/q
—<][ lit(x) — i(xo) — Vit(xo) - (x —xo)l"dv(x))
B(xo,7)

1/p
<C sup (][ [Vie(x) — Vﬁ(xo)l”du(x)> ,
B(x0,0p)

O<p<r

which tends to zero as— 0, by (2). O

In [2], the following sufficient condition for the validity of a two-weightégl, p)-
Poincaré inequality is proved.
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ProrosiTiON 4.2. Let u be a doubling measure admitting a weak one-weighted
(1, p)-Poincaré inequalityl < p < co. Letg > p, and letv be a doubling mea-
sure satisfying the condition

/ B/ 1/11 B/ 1/P
r_<v( )) 5C<“( )) 5)
r \ v(B) w(B)
for someC > O and all ballsB = B(x,r) and B’ = B(x’,r’) such thatx’ € B

andO < r’ < r. Thenthe pairv, 1) admits a weak two-weighte&d, p)-Poincaré
inequality.

This, together with Theorem 4.1, immediately gives the following result.

CoroLLARY 4.3. Let u be a doubling measure admitting a weak one-weighted
(1, p)-Poincaré inequalityl < p < oo. Letq > p, and letv be a doubling
measure satisfying the conditi¢®). Letu € H?(2, u). Then there exists a rep-
resentativer € H-7(2, u) of u such thatz € LY (2, v) and is differentiable
u-a.e. inQ inthe LY(v) sense.

q
loc

REMARK. Note that the decay condition (3) is equivalent to the condition (5) with
v =pandg = sp/(s — p).

4.2. Sobolev Spaces on Metric Measure Spaces

LetX = (X, d, u) be a metric space equipped with a Borel regular megssi-
isfying 0 < u(B) < oo for every ballB = B(xq,7) = {x € X : d(x,x0) < r}in
Xwith0 <r < 0.

Recently, there have appeared several different definitions of Sobolev spaces
on metric measure spaces (see e.g. [4; 5; 6; 13]). Here we follow Cheeger [4],
which is the most convenient for our purposes. Note that the definition given in
Shanmugalingam [13] leads to the same space but does not involve the “differen-
tial” D.

A Borel functiong on X is anupper gradienbf a real-valued functiorf on X
if, for all rectifiable pathg/: [0, [,] — X parameterized by the arc length,

F( ) — F(rU))] S/gds.

14

Afunctiong € L?(X, n), 1 < p < o0, is called aweak(generalized upper gra-
dientof f if there exist sequence$ andg; (j =1, 2, ...) such thag; is an upper
gradient off; and f; — f andg; — gin L?(X, u). By Theorems 2.10 and 2.18
in [4], there exists a minimal weak upper gradigpof f satisfyingg, < g u-a.e.
in X for all weak upper gradienfsof f.

We say thatX admits aweak(q, p)-Poincaré inequalityif there are constants
C > 0 ando > 1 such that, for all ball8 = B(xq, ) C X and all measurable
functionsf on X,
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1/q Yp
(][ If—fBquM> sCr(][ gfpdu> ,
B(xo,r) B(xg,or)

where fz = f, f du. Equivalently, we can consider all upper gradientsf f. If
X is quasi-convex and all closed balls of finite radius are compact, then by [10] it
suffices to consider only Lipschitz functiorfs
The following theorem about differentiability of Lipschitz functions ¥is due
to Cheeger [4, Thm. 4.38].

THEOREM 4.4. Let X = (X, d, u) be a metric measure space equipped with a
doubling Borel regular measure. Assume thak admits a weakl, p)-Poincaré
inequality for somel < p < oo. Then there exists a countable collection
(Uq, X%) of measurable set§, and of Lipschitz “coordinate” functionX® =
(X{, ..., Xg): X — R such thatu(X \ U, U.) = 0and, for all, the
following hold.

The functionsXy, ..., X are linearly independent oty, and1 < k(a) <
N, whereN is a constant depending only on the doubling constant @nd the
constants from the Poincaré inequality.fIf X — R is Lipschitz, then there exist
bounded vector-valued functiodsf : U, — R*® such that, foru-a.e.xq € U,

lim  sup |f(x) = fxo) —d*f(x0) - (X¥(x) — X*(x0))| _

r—0 B(x0,7) r

0. (6

Moreover, the functiongd®f are unique in the sense that the vecttstf (xo) in
(6) cannot be replaced by any other vectoRA®.

We can assume that the séf§ are pairwise disjoint and extent¥*f by zero
outsideU*®. Regardd“f(x) as vectors irRY and letDf = " d®f. The “dif-
ferential” mappingD: f +— Df is linear and, for all Lipschitz functiong and
u-a.ex e X,

C7gs(x) < |Df(x)| < Cgs(x), @)

see [4; Sec. 4]. Also (by [13] or [4, Prop. 2.2D)f = 0 u-a.e. on every set where
f is constant.

Define the Sobolev spadé’”(X, d, v) as the closure in thél-?(X, d, u)-
norm of the collection of locally Lipschitz functions dnwith

1/p 1p
1 arrx,d,m = (/X|f|pd,u> + (/XlDflpdpL) < 00.

The uniqueness dbu for everyu € HY?(X, d, 1) is guaranteed by [5, Thm. 10].
We can now adapt the proof of Proposition 1.4 to this setting and obtain the fol-
lowing result.

THEOREM 4.5. Let X = (X, d, u) be a metric measure space equipped with a
doubling Borel regular measupe. Assume thaX admits a weakq, p)-Poincaré
inequality,1 < p < co. LetX%: X — R¥® < R be the “coordinate” functions
provided by Theorem 4.4 and lete HY?(X, d, ). Then, foru-a.e.xqe U®,
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1 1/q
|ImO - (][ |u(x) — u(xo) — Du(xo) - (X*(x) — X*(xo))|? dM(X)>
=97 \J B(xo.r)
=0. (8)

Proof. Note first that, according to [7, Sec. 14.6], the Lebesgue differentiation the-
orem (2) holds under the foregoing assumptionsXorLet f; (k =1,2,...) be
a sequence of locally Lipschitz functions converging:tboth in H7(X, d, 1)
and pointwiseu-a.e. inX. Letxo € U* be anL”(u)-Lebesgue point obu and a
point of density ofU“ such thatfy (xo) — u(xg) ask — oc.

Letvi(x) = fr(x) —u(xo) — Du(xo) - (X*(x) — X*(x0)); letr > 0 andB; =
B(x0,277r), j = 0,1,.... Sincev 5, = fB/_vk du — vi(xg) asj — oo, we
obtain (as in the proof of Theorem 4.1) that

1 1/q 1/p _
_<][ |vk|qdu) <c Sup<][ &Ifkdﬂ) | i) —utxo)|
r B(xg,r) O<p=<r B(xp,0p) r

The first term on the right-hand side is estimated using (7), and gmgéx) =
Dfy(x) — Du(xp), lettingk — oo yields

r

1 1/q
—<][ lu(x) — u(xo) — Du(xo) - (X“(x) — X“(x0))|? dM(X)>
B(xo,r)

1/p
<C sup <][ |[Du(x) — Du(Xo)I”éW(X)) ;
B(xo0,0p)

O<p<r

which tends to zero as— 0. O

Combining Theorem 4.5 and a general version of Theorem 3.1 (see [7, Thm. 5.1]),
we derive the following analog of Theorem 1.5 in the setting of metric measure
spaces.

CoroLLARY 4.6. LetX = (X, d, n) be a metric measure space equipped with a
doubling Borel regular measune. Assume thak admits a weakl, p)-Poincaré
inequality withl < p < oo and thatu satisfies the decay conditidB). Let
X%: X — RK® < RN pe the “coordinate” functions provided by Theorem 4.4
and letu e H-?(X, d, ). Then the following are true.

(i) If p < s, then(8) holds foru-a.e.xoe U* and allg < sp/(s — p). If p =,
then the same is true for afl < oco.

(i) If p > s, thenu can be modified on a set gf-measure zero so th&b) holds
foru andu-a.e.xge U”.
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