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Lq-Differentials for Weighted Sobolev Spaces

Jana Björ n

1. Introduction

Let B(x0, r) denote the open ball inRn with centerx0 and radiusr. Throughout
the paper we assume that all measures are Borel and satisfy 0< µ(B) < ∞ for
all ballsB.

Definition 1.1. Letµ be a measure onRn. We say that a functionu is differen-
tiable atx0 in theLq(µ) senseif

lim
r→0

1

r

(∫
B(x0,r)

|u(x)− u(x0)−∇u(x0) · (x − x0)|q dµ(x)
)1/q

= 0. (1)

Here and in what follows, the symbol
∫

stands for the mean-value integral∫
B

f dµ = 1

µ(B)

∫
B

f dµ.

Forµ equal to the Lebesgue measure, the following theorem aboutLq-differ-
entials of Sobolev functions is well known (see e.g. Theorem 12 in Calderón and
Zygmund [3] or Theorem 1, Chapter VIII in Stein [14]).

Theorem 1.2. Let u be a function from the Sobolev spaceH 1,p(�), where
� ⊂ Rn (n ≥ 2) and 1 ≤ p < n. Thenu is differentiable in theLq sense
with q = np/(n − p) a.e. in�. If p = n, then the same is true for allq < ∞.
Moreover, ifu∈H 1,p(�) andp > n, thenu can be modified on a set of measure
zero so that it becomes differentiable a.e. in� in the classical sense.

Theorem 1.2 can be regarded as a higher-order analog of the classical Lebesgue
differentiation theorem: Ifu ∈Lploc(R

n, µ), 1≤ p <∞, andµ is a Radon mea-
sure, thenµ-a.e.x0 ∈Rn is anLp(µ)-Lebesgue point ofu; that is,

lim
r→0

(∫
B(x0,r)

|u(x)− u(x0)|p dµ(x)
)1/p

= 0. (2)
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(See e.g. [15, p. 14] for the casep = 1; the casep > 1 then follows from the in-
equality|a − b|p ≤ |ap − bp| for a, b ≥ 0.)

It has been shown (see e.g. [8; 11; 12]) that weak solutions of certain elliptic
partial differential equations are differentiable a.e. in the classical sense provided
that, at a.e.x0, theLp-norms of their difference quotientsvh(X) = (u(x0+hX)−
u(x0))/h remain uniformly bounded ash → 0. This, in turn, follows from (1)
with q = p.

When applying the same method to weighted elliptic partial differential equa-
tions and systems (see [1]), the author arrived at the following problem.

Problem 1.3. For which measures is there a weighted analog of Theorem 1.2?

In the affirmative case, the spaceH 1,p(�) in the formulation of Theorem1.2 is to be
replaced by the weighted Sobolev spaceH 1,p(�,µ), and the exponentq will also
depend on the measureµ. In order to be able to define weighted Sobolev spaces,
we restrict our considerations to doubling measures admitting a(1, p)-Poincaré
inequality, for which the theory of Sobolev spaces is well developed (see e.g. [9]).

In this note we prove the following generalization of Theorem 1.2. The proof
is surprisingly simple and seems to be of interest even in the unweighted case,
whenµ is the Lebesgue measure. In Section 4, further generalizations of this the-
orem are developed. In particular, a two-weighted situation and Sobolev spaces
on metric measure spaces are considered.

Proposition 1.4. Letµ be a doubling measure onRn admitting a weak(q, p)-
Poincaré inequality,1< p <∞. Then everyu ∈H 1,p(�,µ) is differentiableµ-
a.e. in� in theLq(µ) sense.

The following theorem gives a more geometrical sufficient condition for differen-
tiability of Sobolev functions in theLq(µ) sense.

Theorem 1.5. Let µ be a doubling measure onRn admitting a weak(1, p)-
Poincaré inequality,1< p <∞. Assume that there exists a constantC > 0 such
that

µ(B ′)
µ(B)

≥ C
(
r ′

r

)s
(3)

wheneverB = B(x, r)andB ′ = B(x ′, r ′)are balls, wherex ′ ∈B and0< r ′ ≤ r.
Letu∈H 1,p(�,µ). Then the following are true.

(i) If p < s, thenu is differentiableµ-a.e. in� in theLq(µ) sense for allq ≤
sp/(s − p). If p = s, then the same is true for allq <∞.

(ii) If p > s, thenu can be modified on a set ofµ-measure zero so that it becomes
differentiableµ-a.e. in� in the classical sense.

It is shown in Example 3.2 that the critical exponents in Theorem 1.5(ii) cannot
be made smaller in general.

Let us also mention the special casedµ = w dx, wherew is anAp weight. By
[9, Sec. 15.5], the decay condition (3) holds withs = np wheneverdµ = w dx
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andw is anAp weight. Hence, the following result is an immediate consequence
of Theorem 1.5. Note also that the proofs of Theorem 1.2 given in Stein [14] and
Ziemer [15] can also be applied toAp weights.

Corollary 1.6. Letw be anAp weight inRn, with p0 = inf {p : w ∈ Ap},
dµ = w dx, andu∈H 1,p(�,µ).

(i) If p < p0n, thenu is differentiable a.e. in� in theLq(µ) sense for allq <
p0np/(p0n− p). If p = p0n, then the same is true for allq <∞.

(ii) If p > p0n, thenu can be modified on a set of measure zero so that it be-
comes differentiable a.e. in� in the classical sense.

Acknowledgment. The author is grateful to Juha Heinonen for useful remarks
and to the referee whose comments made her reconsider and improve the results
of this paper.

2. Weighted Sobolev Spaces andAp Weights

Definition 2.1. We say that a measureµ onRn admits aweak(q, p)-Poincaré
inequality if there are constantsC > 0 andσ ≥ 1 such that, for all ballsB =
B(x0, r) ⊂ Rn and allϕ ∈ C∞(B(x0, σr)),(∫

B(x0,r)

|ϕ − ϕB |q dµ
)1/q

≤ Cr
(∫

B(x0,σr)

|∇ϕ|p dµ
)1/p

,

whereϕB =
∫
B
ϕ dµ.

Let 1< p <∞ and letµ be a measure onRn admitting a weak(1, p)-Poincaré
inequality. Assume also thatµ is doubling—that is, assume there is a constant
C > 0 such that

µ(B(x0,2r)) ≤ Cµ(B(x0, r))

for all ballsB(x0, r). Let� be an open subset ofRn and define a norm onC∞(�)
by

‖ϕ‖H1,p(�,µ) =
(∫

�

|ϕ|p dµ
)1/p

+
(∫

�

|∇ϕ|p dµ
)1/p

.

The weighted Sobolev spaceH 1,p(�,µ) is the closure of

{ϕ ∈ C∞(�) : ‖ϕ‖H1,p(�,µ) <∞}
in theH 1,p(�,µ)-norm. In other words,u ∈ H 1,p(�,µ) if and only if u ∈
Lp(�,µ) and there existϕj ∈ C∞(�) and a vector-valued functionξ such that
ϕj → u and∇ϕj → ξ in Lp(�,µ) asj → ∞. By the doubling property ofµ
and the Poincaré inequality, the “gradient”ξ of u is unique (see [5, Thm. 10]). We
shall denote the unique “gradient” by∇u. If dµ = w dx andw1/(1−p) is locally
integrable, then∇u is the distributional gradient ofu. Note that the weak(1, p)-
Poincaré inequality holds for all functions inH 1,p(�,µ) and all ballsB(x, r)with
B(x0, σr) ⊂ �.
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Definition 2.2. Let 1< p < ∞. Thenw is anAp weight(w ∈Ap) if there is
a constantC such that, for all ballsB ⊂ Rn,∫

B

w(x) dx

(∫
B

w(x)1/(1−p) dx
)p−1

≤ C.

It is well known that ifdµ = w dx andp0 = inf {p : w ∈Ap}, thenµ is doubling
and admits the(q, p)-Poincaré inequality for allq < p0np/(p0n − p) if p0 <

p < p0n and for allq <∞ if p ≥ p0n (see e.g. [9, Sec. 15]).

3. Proofs and an Example

In this section we give proofs of Proposition 1.4 and Theorem 1.5. It is also shown
that the critical exponent in Theorem 1.5(ii) cannot be made smaller in general.

Unless otherwise stated, the letterC will denote a positive constant whose exact
value is unimportant and may change even within a line. We allowC to depend on
fixed parameters such as the constants in the doubling condition and the Poincaré
inequality.

Proof of Proposition 1.4.Let x0 ∈� be anLp(µ)-Lebesgue point of bothu and
∇u. By (2),µ-a.e.x0 ∈� has this property. Let

v(x) = u(x)− u(x0)−∇u(x0) · (x − x0).

Then∇v(x) = ∇u(x)−∇u(x0) andv ∈H 1,p
loc (�,µ). Let 0< σr < dist(x0, ∂�)

andBj = B(x0,2−jr) for j = 0,1, . . . . SincevBj =
∫
Bj
v dµ → v(x0) = 0 as

j → ∞, by the doubling property ofµ and the weak(1, p)-Poincaré inequality
we have

|vB0| = |v(x0)− vB0| ≤
∞∑
j=0

|vBj+1 − vBj | ≤ C
∞∑
j=0

∫
Bj

|v − vBj | dµ

≤ C
∞∑
j=0

r

2j

(∫
B(x0,2−jσr)

|∇v|p dµ
)1/p

≤ Cr sup
0<ρ≤r

(∫
B(x0,σρ)

|∇v|p dµ
)1/p

.

Hence, by the weak(q, p)-Poincaré inequality,

1

r

(∫
B(x0,r)

|v|q dµ
)1/q

≤ 1

r

(∫
B(x0,r)

|v − vB0|q dµ
)1/q

+ |vB0|
r

≤ C sup
0<ρ≤r

(∫
B(x0,σρ)

|∇v|p dµ
)1/p

→ 0

asr → 0, by (2).

Theorem 1.5(i) follows directly from Proposition 1.4 and the following result,
which is a special case of [7, Thm. 5.1].
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Theorem 3.1. Let µ be a doubling measure onRn admitting a weak(1, p)-
Poincaré inequality,1< p <∞, and satisfying the decay condition(3). Then the
following are true.

(i) If p < s, thenµ admits a weak(q, p)-Poincaré inequality for allq ≤
sp/(s − p). If p = s then the same is true for allq <∞.

(ii) If p > s, then everyu ∈H 1,p(�,µ) can be modified on a set ofµ-measure
zero so that it becomes locally Hölder continuous and

|u(x)− u(y)| ≤ Cr s/p|x − y|1−s/p
(∫

B(x0,5σr)
|∇u|p dµ

)1/p

for all x, y ∈B(x0, r) withB(x0,5σr) ⊂ �.
Proof of Theorem 1.5(ii).Modify u as in Theorem 3.1(ii) and letx0 ∈ � be an
Lp(µ)-Lebesgue point of∇u. Letv(x) = u(x)−u(x0)−∇u(x0) ·(x−x0). Then
∇v(x) = ∇u(x) − ∇u(x0) andv ∈ H 1,p

loc (�,µ). Let 0 < 5σr < dist(x0, ∂�).

Thenv is Hölder continuous inB(x0, r) and, by Theorem 3.1(ii), forx ∈B(x0, r)

we have

|v(x)|
r
= |v(x)− v(x0)|

r
≤ Cr s/p−1|x − x0|1−s/p

(∫
B(x0,5σr)

|∇v|p dµ
)1/p

≤ C
(∫

B(x0,5σr)
|∇u(x)−∇u(x0)|p dµ(x)

)1/p

→ 0

asr → 0, by (2).

It is well known that, in the unweighted case, the critical exponents = n in The-
orem 1.2 is best possible. On the other hand, the weights|x|α with α > 0 have
lower order of decays ≥ n+α but their critical exponent (for differentiability a.e.
in the classical sense) isn. We next show that, also in the cases > n, the critical
exponent in part (ii) of Theorem 1.5 cannot be made smaller in general.

Note that ifdµ = w dx, then limr→0 µ(B(x, r))/|B(x, r)| = w(x) > 0 for
somex ∈Rn and hences ≥ n. At the same time, the existence of singular doubling
measures inRn admitting a(1, p)-Poincaré inequality is still an open question.

Example 3.2. Givens > n ≥ 2 and 0< δ < 1, we find a numberp ≥ s − δ
and construct ap-admissible weight̃w satisfying the decay condition (3) so that
the Sobolev spaceH 1,p(Rn, µ) with dµ = w̃ dx contains a function that is not
differentiable at any point.

Fix α > 0 such thatn − nδ/(s − n) ≤ α < n and let{qk}∞k=1 be a countable
dense subset ofRn. Consider the weight

w(x) =
∞∑
k=1

ak|x − qk|−α

with ak > 0 for all k and
∑∞

k=1ak <∞. Each summandwk(x) = |x − qk|−α is
anA1 weight; that is, eachwk satisfies the condition
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B

wk(x) dx ≤ C ess inf
x∈B

wk(x)

for all ballsB ⊂ Rn and a constantC independent ofB andk. Hence, from the
Fubini theorem we derive thatw(x) is finite for a.e.x ∈ Rn andw is also anA1

weight.
Let t = s/n < s − δ. Thenw̃ = w1−t is anAt weight and the lower decay

condition (3) holds withs = tn. Let

uk(x) = log max

{
1, log

1

|x − qk|
}
(k = 1,2, . . . ) and u(x) =

∞∑
k=1

atkuk(x).

Clearly, the functionu is unbounded in every neighborhood of every point and, in
particular, it is not differentiable at any point. An elementary calculation shows
thatu belongs toH 1,p(Rn, µ) for p = n+ α(t −1) ≥ s − δ.

4. Generalizations

In this section we describe two further generalizations of Theorem 1.2.

4.1. Two-Weighted Situation

Consider a pair(ν, µ) of doubling measures onRn. We say that the pair(ν, µ) ad-
mits aweak two-weighted(q, p)-Poincaré inequalityif there are constantsC > 0
andσ ≥ 1 such that, for all ballsB = B(x0, r) ⊂ Rn and allϕ ∈ C∞(B(x0, σr)),(∫

B(x0,r)

|ϕ − ϕB |q dν
)1/q

≤ Cr
(∫

B(x0,σr)

|∇ϕ|p dµ
)1/p

,

whereϕB =
∫
B
ϕ dν.

A slight modification of the proof of Proposition 1.4 leads to the following two-
weighted version of Proposition 1.4.

Theorem 4.1. Let (ν, µ) be a pair of doubling measures onRn admitting a weak
two-weighted(q, p)-Poincaré inequality,1< p <∞. Letu∈H 1,p(�,µ). Then
there exists a representativeū ∈H 1,p(�,µ) of u such thatū ∈ Lqloc(�, ν) and ū
is differentiableµ-a.e. in� in theLq(ν) sense.

Proof. Note first that the weak two-weighted(q, p)-Poincaré inequality implies
the following Sobolev inequality:(∫

B(x,r)

|ϕ|q dν
)1/q

≤ Cr
(∫

B(x,r)

|∇ϕ|p dµ
)1/p

, (4)

for all ballsB(x, r) and allϕ ∈ C∞0 (B(x, r)). This is proved in the same way as
Theorem 13.1 in [7].



Lq -Differentials for Weighted Sobolev Spaces 157

Let ϕk ∈ C∞(�), k = 1,2, . . . , be a sequence converging tou in H 1,p(�,µ).

Let B(x, r) be a ball such thatB(x,2r) ∪ B(x, σr) ⊂ �, and chooseη ∈
C∞0 (B(x,2r)) so that 0≤ η ≤ 1, η = 1 onB(x, r), and|∇η| ≤ 2/r. Then, by
(4), forϕk,B =

∫
B(x,r)

ϕk dν we have

|ϕk,B − ϕl,B |

≤ C
(∫

B(x,2r)
|(ϕk − ϕl)η|q dν

)1/q

≤ Cr
(∫

B(x,2r)
|∇ϕk −∇ϕl|p dµ

)1/p

+ C
(∫

B(x,2r)
|ϕk − ϕl|p dµ

)1/p

.

This and the weak two-weighted(q, p)-Poincaré inequality imply that the func-
tionsϕk form a Cauchy sequence inLq(B(x, r), ν) and converge to a functioñu∈
L
q

loc(�, ν). By taking a subsequence converging pointwise bothµ-a.e. andν-a.e,
we obtain thatu = ũ on� \ (E1 ∪ E2), whereµ(E1) = 0 andν(E2) = 0. Let
ū = u on� \E1 andū = ũ onE1. Thenū∈H 1,p(�,µ)∩Lqloc(�, ν), ∇ū = ∇u,
andū = u µ-a.e. in�, while ū = ũ ν-a.e. in�.

Let x0 ∈ � \ E1 be anLp(µ)-Lebesgue point of∇ū such thatϕk(x0) →
ū(x0). Definevk ∈ C∞(�) by vk(x) = ϕk(x) − ū(x0) − ∇ū(x0) · (x − x0).

Let 0 < σr < dist(x0, ∂�) andBj = B(x0,2−jr), j = 0,1, . . . . Sincevk,Bj =∫
Bj
vk dν → vk(x0) asj →∞, by using the doubling property ofν and the weak

two-weighted(1, p)-Poincaré inequality (as in the proof of Proposition 1.4) we
have

|vk,B0| ≤ Cr sup
0<ρ≤r

(∫
B(x0,σρ)

|∇vk|p dµ
)1/p

+ |vk(x0)|.

Consequently, by the weak two-weighted(q, p)-Poincaré inequality for(ν, µ),

1

r

(∫
B(x0,r)

|vk|q dν
)1/q

≤ 1

r

(∫
B(x0,r)

|vk − vk,B0|q dν
)1/q

+ |vk,B0|
r

≤ C sup
0<ρ≤r

(∫
B(x0,σρ)

|∇vk|p dµ
)1/p

+ |vk(x0)|
r

.

As vk(x0) = ϕk(x0) − ū(x0) and∇vk(x) = ∇ϕk(x) − ∇ū(x0), letting k →∞
yields

1

r

(∫
B(x0,r)

|ū(x)− ū(x0)−∇ū(x0) · (x − x0)|q dν(x)
)1/q

≤ C sup
0<ρ≤r

(∫
B(x0,σρ)

|∇ū(x)−∇ū(x0)|p dµ(x)
)1/p

,

which tends to zero asr → 0, by (2).

In [2], the following sufficient condition for the validity of a two-weighted(q, p)-
Poincaré inequality is proved.
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Proposition 4.2. Letµ be a doubling measure admitting a weak one-weighted
(1, p)-Poincaré inequality,1< p <∞. Letq > p, and letν be a doubling mea-
sure satisfying the condition

r ′

r

(
ν(B ′)
ν(B)

)1/q

≤ C
(
µ(B ′)
µ(B)

)1/p

(5)

for someC > 0 and all ballsB = B(x, r) andB ′ = B(x ′, r ′) such thatx ′ ∈ B
and0< r ′ ≤ r. Then the pair(ν, µ) admits a weak two-weighted(q, p)-Poincaré
inequality.

This, together with Theorem 4.1, immediately gives the following result.

Corollary 4.3. Let µ be a doubling measure admitting a weak one-weighted
(1, p)-Poincaré inequality,1 < p < ∞. Let q > p, and let ν be a doubling
measure satisfying the condition(5). Letu∈H 1,p(�,µ). Then there exists a rep-
resentativeū ∈ H 1,p(�,µ) of u such thatū ∈ Lqloc(�, ν) and ū is differentiable
µ-a.e. in� in theLq(ν) sense.

Remark. Note that the decay condition (3) is equivalent to the condition (5) with
ν = µ andq = sp/(s − p).

4.2. Sobolev Spaces on Metric Measure Spaces

LetX = (X, d, µ) be a metric space equipped with a Borel regular measureµ sat-
isfying 0< µ(B) <∞ for every ballB = B(x0, r) = {x ∈X : d(x, x0) < r} in
X with 0< r <∞.

Recently, there have appeared several different definitions of Sobolev spaces
on metric measure spaces (see e.g. [4; 5; 6; 13]). Here we follow Cheeger [4],
which is the most convenient for our purposes. Note that the definition given in
Shanmugalingam [13] leads to the same space but does not involve the “differen-
tial” D.

A Borel functiong onX is anupper gradientof a real-valued functionf onX
if, for all rectifiable pathsγ : [0, lγ ] → X parameterized by the arc lengthds,

|f(γ (0))− f(γ (lγ ))| ≤
∫
γ

g ds.

A functiong ∈Lp(X,µ), 1< p <∞, is called aweak(generalized) upper gra-
dientof f if there exist sequencesfj andgj (j = 1,2, . . . ) such thatgj is an upper
gradient offj andfj → f andgj → g in Lp(X,µ). By Theorems 2.10 and 2.18
in [4], there exists a minimal weak upper gradientgf of f satisfyinggf ≤ g µ-a.e.
in X for all weak upper gradientsg of f.

We say thatX admits aweak(q, p)-Poincaré inequalityif there are constants
C > 0 andσ ≥ 1 such that, for all ballsB = B(x0, r) ⊂ X and all measurable
functionsf onX,
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B(x0,r)

|f − fB |q dµ
)1/q

≤ Cr
(∫

B(x0,σr)

g
p

f dµ

)1/p

,

wherefB =
∫
B
f dµ. Equivalently, we can consider all upper gradientsg of f. If

X is quasi-convex and all closed balls of finite radius are compact, then by [10] it
suffices to consider only Lipschitz functionsf.

The following theorem about differentiability of Lipschitz functions onX is due
to Cheeger [4, Thm. 4.38].

Theorem 4.4. LetX = (X, d, µ) be a metric measure space equipped with a
doubling Borel regular measureµ. Assume thatX admits a weak(1, p)-Poincaré
inequality for some1 < p < ∞. Then there exists a countable collection
(Uα,X

α) of measurable setsUα and of Lipschitz “coordinate” functionsXα =
(Xα

1 , . . . , X
α
k(α)) : X → Rk(α) such thatµ

(
X \⋃α Uα

) = 0 and, for all α, the
following hold.

The functionsXα
1 , . . . , X

α
k(α) are linearly independent onUα and 1 ≤ k(α) ≤

N, whereN is a constant depending only on the doubling constant ofµ and the
constants from the Poincaré inequality. Iff : X→ R is Lipschitz, then there exist
bounded vector-valued functionsd αf : Uα → Rk(α) such that, forµ-a.e.x0 ∈Uα,

lim
r→0

sup
B(x0,r)

|f(x)− f(x0)− d αf(x0) · (Xα(x)−Xα(x0))|
r

= 0. (6)

Moreover, the functionsd αf are unique in the sense that the vectord αf(x0) in
(6) cannot be replaced by any other vector inRk(α).

We can assume that the setsUα are pairwise disjoint and extendd αf by zero
outsideUα. Regardd αf(x) as vectors inRN and letDf = ∑

α d
αf. The “dif-

ferential” mappingD : f 7→ Df is linear and, for all Lipschitz functionsf and
µ-a.e.x ∈X,

C−1gf (x) ≤ |Df(x)| ≤ Cgf (x), (7)

see [4; Sec. 4]. Also (by [13] or [4, Prop. 2.2]),Df = 0µ-a.e. on every set where
f is constant.

Define the Sobolev spaceH 1,p(X, d, µ) as the closure in theH 1,p(X, d, µ)-
norm of the collection of locally Lipschitz functions onX with

‖f ‖H1,p(X,d,µ) =
(∫

X

|f |p dµ
)1/p

+
(∫

X

|Df |p dµ
)1/p

<∞.

The uniqueness ofDu for everyu∈H 1,p(X, d, µ) is guaranteed by [5, Thm. 10].
We can now adapt the proof of Proposition 1.4 to this setting and obtain the fol-

lowing result.

Theorem 4.5. LetX = (X, d, µ) be a metric measure space equipped with a
doubling Borel regular measureµ. Assume thatX admits a weak(q, p)-Poincaré
inequality,1< p <∞. LetXα : X→ Rk(α) ⊂ RN be the “coordinate” functions
provided by Theorem 4.4 and letu∈H 1,p(X, d, µ). Then, forµ-a.e.x0 ∈Uα,
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lim
r→0

1

r

(∫
B(x0,r)

|u(x)− u(x0)−Du(x0) · (Xα(x)−Xα(x0))|q dµ(x)
)1/q

= 0. (8)

Proof. Note first that, according to [7, Sec.14.6], the Lebesgue differentiation the-
orem (2) holds under the foregoing assumptions onX. Let fk (k = 1,2, . . . ) be
a sequence of locally Lipschitz functions converging tou both inH 1,p(X, d, µ)

and pointwiseµ-a.e. inX. Let x0 ∈Uα be anLp(µ)-Lebesgue point ofDu and a
point of density ofUα such thatfk(x0)→ u(x0) ask→∞.

Let vk(x) = fk(x)−u(x0)−Du(x0) · (Xα(x)−Xα(x0)); let r > 0 andBj =
B(x0,2−jr), j = 0,1, . . . . Sincevk,Bj =

∫
Bj
vk dµ → vk(x0) asj → ∞, we

obtain (as in the proof of Theorem 4.1) that

1

r

(∫
B(x0,r)

|vk|q dµ
)1/q

≤ C sup
0<ρ≤r

(∫
B(x0,σρ)

gpvk dµ

)1/p

+ |fk(x0)− u(x0)|
r

.

The first term on the right-hand side is estimated using (7), and sinceDvk(x) =
Dfk(x)−Du(x0), lettingk→∞ yields

1

r

(∫
B(x0,r)

|u(x)− u(x0)−Du(x0) · (Xα(x)−Xα(x0))|q dµ(x)
)1/q

≤ C sup
0<ρ≤r

(∫
B(x0,σρ)

|Du(x)−Du(x0)|p dµ(x)
)1/p

,

which tends to zero asr → 0.

Combining Theorem 4.5 and a general version of Theorem 3.1 (see [7, Thm. 5.1]),
we derive the following analog of Theorem 1.5 in the setting of metric measure
spaces.

Corollary 4.6. LetX = (X, d, µ) be a metric measure space equipped with a
doubling Borel regular measureµ. Assume thatX admits a weak(1, p)-Poincaré
inequality with1 < p < ∞ and thatµ satisfies the decay condition(3). Let
Xα : X → Rk(α) ⊂ RN be the “coordinate” functions provided by Theorem 4.4
and letu∈H 1,p(X, d, µ). Then the following are true.

(i) If p < s, then(8) holds forµ-a.e.x0 ∈Uα and allq < sp/(s−p). If p = s,
then the same is true for allq <∞.

(ii) If p > s, thenu can be modified on a set ofµ-measure zero so that(6) holds
for u andµ-a.e.x0 ∈Uα.
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