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and Dynamics of Injective Planar Maps
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1. Introduction

Let f: R? — R? be acC* diffeomorphism. Letp e Fix(f) be a fixed point that
is adirect saddlethat is, the derivative of at p has eigenvalues, n such that
0 < A <1 < u. The Hartman—Grobman theorem implies that there is a topo-
logical coordinate system centeredpatepresenting’ as a linear map with these
eigenvalues (see [13; 20]).
Our main results assert that, when the closures of the stable and unstable curves
at p intersect in certain ways, there exists a fixed-point free Jordan curveS
whose index undef (defined below)is1. Such a curve surrountek B of fixed
points (i.e.,B is open and closed in Fix)) that is disjoint fromp and has fixed
point index 1. In particulathere exists a fixed point different frgm When fixed
points are isolated with negative indices, the dynamics is shown to be rather simple.
For nonplanar surfaces, even a homoclinic point does not guarantee a second
fixed point, as shown by the diffeomorphism of the toR&Z? induced by the

matrix [i i] .
Section 3 contains background material and proofs of the main results. Section

4 shows that many results on planar homeomorphisms generalize to homologi-

cally nilpotent injective maps in planar surfaces. In particular, the theorems of

Brouwer and Brown, as well as the new results, hold for such maps.

TerMINOLOGY.  All maps are assumed to be continuous; diffeomorphism€are
(continuously differentiable). A seX is forward invariantfor a mapg if gX C
X, overflowingif gX D X, andinvariantif gX = X. Homeomorphism is indi-
cated by~. The set of fixed points of is denoted by Fikg). The omega limit
setw(x) is the limit set of the sequendg”x},n. The set of natural numbers is
N = {0, 1, ...} and the set of integers &. The Euclidean norm af € R? is de-
noted|| x||.

2. Background

Brouwer’s1912plane translation theorem [1] can be stated as follows.
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THEOREM 2.1 (Plane Translation Theorem)Let f be an orientation preserving
homeomorphism of the plaf®? having no fixed point. Then every point has an
open neighborhoo® with the following properties: The boundary Bf consists

of two disjoint closed set4, B, each homeomorphic to the line, such thfan) =
Band f"WnWw =g forall n £ 0.

For an elegant recent proof, see Franks [10].

This theorem is usually used contrapositively to obtain fixed points, as follows.
Recall that a poinp is wanderingfor a mapg if it has a neighborhood disjoint
from its images under iterates @f otherwise p is nonwanderingThe closed in-
variant set NWg) of nonwandering points contains all periodic points and omega
limit points. An immediate consequence of the plane translation theorem is the
following.

THEOREM 2.2 (Wandering Theorem).If an orientation preserving homeomor-
phism of the plane has no fixed point, then every point is wandering.

We will use the following two theorems, which embody further developments of
Brouwer’s ideas.

A surface mapf is free (see [3]) provided that, for every closed 2-c8l] if
DN f(D) =@ thenf™(D)N f"(D) = o forallm # n. This implies that every
nonwandering point is fixed but is a strictly stronger condition. Brown [3] proves
the following result, crediting it to Brouwer [1].

THEOREM 2.3 (Index Theorem). If an orientation preserving homeomorphism of
R? is not free, then there exists a Jordan curve with intlex

A translation linefor a mapf is a set having the forg)___,_., f¥C, whereC
is a closed 1-cell meeting(C) only at a common, nonfixed endpoint. Afis a
branch of a stable or unstable curve at a direct saddze below), thep \ { p}
is a translation line. Here we restate [4, Thm. 4.7].

THEOREM 2.4 (Translation Line Theorem).For any free, orientation preserving
homeomorphism oR?, every translation line is homeomorphicko

The main results for plane diffeomorphisms are developed in the next section. The
chief dynamical application is Theorem 3.3. In the last section, results are ex-
tended to injective, homologically nilpotent diffeomorphisms in open subsets of
the plane.

All the results are valid for homeomorphisms that are local diffeomorphisms at
saddle fixed points. And the full strength of saddles is not needed; the proofs can
be adapted to negative index fixed points having finitely many stable and unstable
branches and having a suitable canonical form. It is sufficient that there be a local
branched covering space for which the fixed point is covered by a saddle.

Fixep-PoinT INDICES.  Fixed-pointindices are briefly reviewed here; for the gen-
eral theory see [5; 9].
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Let V ¢ R? be an open set] ¢ V a Jordan curve, and: V — R? a map.
We say thatf hasindexd € Z on J, denoted by Indf, J) = d, provided f has
no fixed point on/ andd is the degree of the map

x — f(x)
lx = fOI
whereS® ¢ R? denotes the unit circle and the orientations@ndJ are induced
from that ofR?.

When the boundaryD of a closed 2-cellD C V contains no fixed points,
we calculate Indf, D) as follows. WhenD contains a unique fixed point,
then Ind f, aD) depends only om; it is denoted by Indf, p) and can be com-
puted from any convenient small disk aroymdin general, leg: V — R? be an
g-approximation tof with only finitely many fixed points irD. If ¢ > 0 is small
enough then

J—>Sl, X

Ind(f,9D) =Ind(g.9D) = > Ind(g. p).
peFix(g)ND
Itis known that FiX f) N D # @ if Ind(f, 0D) # 0.
It is easy to see that a direct saddle has fixed point ingkexThis yields the
useful fact:

If D is aclosed-cell suchthatnd(f, 9D) > 0, thenD contains a fixed
point that is not a direct saddle.

3. Fixed-Point Indices and Homoclinic Contacts

HypotaEesis. In this section,S ¢ R? is an open set and € S is a direct saddle
for an orientation preserving diffeomorphisfn S — S.
Thestable curveat p is

W, = W,(p) = Wi(p, ) = {x eR?: lim (o) = p.

This curve is the image of & immersiony : R — R? [16]. Assumingy (0) =
p, we define the images @f-oo, 0] and [Q —o0) to be the twostable branches
at p. Theunstable curvés defined asv, = W,(p, f1); unstable branches are
defined analogously.

Thelimit setof a branchg is the closed invariant set

L(B) =) clos(z([t. 00))),
t>0
where¢: [0, 00) — B is any bijective map; it is a closed invariant set indepen-
dent ofz. The limit set£(W,) is defined to be the union of the limit sets of the
two branches ofv,, and similarly forZ(Wy).
Points inW, N W; \ {p} arehomoclinic pointfor p. We introduce the more
general notion of Aomoclinic contactmeaning a point of the closed invariant set

(Wu N W\ {phH U LW,) N W, ULW,)NW,.
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The horseshoe theorem of Smale [22] shows that Wwhgand W, cross trans-
versely at a homoclinic point;(W,) N L(W;) contains a compact invariant set
in which there are periodic orbits of arbitrarily high cardinality. 1 do not know
whether this holds for homoclinic contacts. For related results see [6; 7; 8; 12; 18;
19; 21].

LemMma 3.1.  Every homoclinic contacs for p is nonwandering.

Proof. We must show that an arbitrary neighborhdddof ; meets somef U
(k # 0). We may assume # f(z). Then there is a smooth open atcC U
throughz such thatA meetsW, and W, transversely at pointg andb, respec-
tively. By a basic result known as th&-lemma” [20] or the “inclination lemma”
[17], there is a sequence of diffeomorphisiys [0,1] ~ J, C A onto nested
neighborhoodd,, D J,41 D --- (n > 1) of a in A such that theC! embeddings
f"oj.:[0,1 — R? (n > 0) converge to &' embedding whose image ar¢
is a neighborhood op in W,. Likewise, there is a sequence of diffeomorphisms
k.:[0,1] ~ K,, C A onto nested neighborhood§, D K,,.1 D --- (m > 1)
of b in A such that thec* embeddingsf " o j,.: [0,1] — R? (n > 0) converge
to aC' embedding whose image akt is a neighborhood op in W;. SinceK’
andJ’ cross afp, their respective approximation@'J and f 7K meet for suffi-
ciently largen, m > 0; thereforeU N f""U # &. O

THEOREM 3.2. There exists a Jordan curvesuch thatind(f, J) = 1in each of
the following cases

(@ LW, UW,) N (W, UW,) # T

(b) p admits a homoclinic contactsuch that eithet = p or z # f(2);

(c) there is a branchy at p with y compact andy N Fix(f) = {p};

(d) there exists a branch at p that is not homeomorphic {0, co).

Proof. We will prove in each case thatis not free; the index theorem will then
complete the proof.

If p e L(W,) then ar-lemma argument (see the proof of Lemma 3.1) shows
NW(f) contains a stable branch at and analogously ifp € £(W;); whence
f is not free. Therefore we assurpez L(W; U W,). This precludes (a) by in-
variance ofW, U W, and with (c) it impliesC(y) N Fix(f) = @. So under (c),
NW(f) \ Fix(f) is not empty, as it contains(x) for everyx € y \ { p}. Lemma
3.1 implies the theorem when (b) holds. Under assumptiorg(§),p} is a trans-
lation line that is not homeomorphic B, whencef is not free by the translation
line theorem. O

THEOREM 3.3. Assume that every fixed point is isolated and has ird8xThen
the following statements hold.
(i) Foreveryx, asn goes totoo, either f"x goes to a fixed point of x| —
Q.
(if) For each direct saddlg, every homaoclinic contact is a fixed poigtp and
each branch ap is homeomaorphic tf0, co).
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(iii) If the only fixed point is a direct sadd}e then there are no homoclinic con-
tacts and every branch is unbounded.

Proof. As there cannot be a Jordan curve of positive index, the wandering theo-
rem implies (i). Conclusion (ii) follows from Theorem 3.2(d). For (iii), suppose
there is a homoclinic contaet Thenz is nonwandering (Lemma 3.1). If either

7z = p, orz # p (whencez # f(z)), there is an index-1 curve by Theorem 3.2(b),
contradicting the hypothesis. Lgtbe a bounded branch, assumed unstable to fix
ideas. Letx € L(B) \ {p}. If p € w(x) thenx is a homoclinic point, contradict-

ing (ii), but any point ofw (x) \ { p} is a nonfixed nonwandering point, yielding an
index-1 curve by the translation line theorem. Thus, every branch is bounded.

Notice that Theorem 3.3 does not say every branch is closed and unbounded. Lit-
tle is known about limit sets of branches.
The following result is an analog of Theorem 3.2 for a heteroclinic cycle.

THeEOREM 3.4. For somem > 1, let po, ..., p,n = po be direct saddles for an
orientation preserving diffeomorphisyhof R?. Suppose that an unstable branch
a;_1 at p;_1 meets a stable branch; at p; at a pointz; ¢ {p;_1, p;} fori =

1, ..., m. Then there exists a Jordan curve of indeand hence there is a fixed
point different from all thep;.

Proof. Eachz; is nonwandering, by a well-known argument similar to the proof
of Lemma 3.1; now apply the index theorem. O

4. Homologically Nilpotent Maps

Let M denote a surface. The first rational singular homology groud,afenoted
by H = Hi(M,; q), is a vector space over the rational figldA mapg: M - M
induces a linear map,: H — H.

Callg: M — M homologically nilpotenif eachc € H is annihilated by some
iterategX, k = k(c). This holds wherg" = 0 for somen > 1, for example, when
gM lies in a simply connected subsetMf. For a more interesting example, take
M to be the complement iR? of the positive integer points on the horizontal axis;
then H1(M; q) has the countably infinite basig}ren, , Whereey is represented
by a small oriented circle centered(@t 0). Letg: M — M be the restriction of
a mapR? — R? taking (k, 0) to (k — 1, 0). Theng is homologically nilpotent
becausg’e; = 0 for all k.

LemMma 4.1. If M admits an injective homologically nilpotent mgp then M
embeds in the sphere.

Proof. We argue by contradiction. I is not embeddable in the sphere, then there
exist Jordan curve€, C’ crossing each other ate M and otherwise disjoint,
with mod 2 intersection numbé&r# C’ # 0. By injectivity, g"CNg"C’ = {g"q}
foralln > 1; andg”C crosseg”"C’ atg"q becausg”, being injective, maps/
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homeomorphically onto an open set by Brouwer’s invariance of domain. There-
fore,g"C#g"C’ # 0. This impliesgc # O, wherec € H1(M; q) is the homology
class defined by an orientation 6f Thusg is not homologically nilpotent. [

In contrast, every orientable, connected noncompact suaegimits a homo-
logically nilpotent mapVf — M that islocally injective. For there exists an im-
mersion of M in the plane (see e.g. [14, Thm. 4.7]) and hence there is a locally
injective mapf: M — M whose image lies in an open 2-cell.

HypotHEsis. From now on,S ¢ R?is an open setand: S — S is injective
(thus a homeomorphism onto an open set), homologically nilpotent, and orienta-
tion preserving.

The construction in the following proof gives a canonical embeddingjiofa
surfaceE ~ R? together with a canonical extension pfto a bijective homeo-
morphismi: E — E.

ProposiTION 4.2.  There exists a surfadé ~ R2 a homeomorphism: S~ jS C
E onto an open set, and an orientation preserving homeomorphisi#i ~ E
such that the following hold.

@ hoj=jof
(b) For everyx € E, there exists a natural number= n(x) such thath"(x) €
J(S).

(c) If f: § — fSisadiffeomorphism, thefA has a natural differential structure
diffeomorphic taR?, and j andh are diffeomorphisms.

Proof. We obtaink: E — E as the direct limit of the infinite sequence

stst..
An element ofE is an equivalence class [k] (where(x, k) € S x N) under the
equivalence relation, k] = [y, {] if there existsn > k, [ with f"*x = Iy,
Give E the largest topology making continuous the natural projecfionN —
E, (x,k) — [x,k]. Definej: § — E by j(x) =[x, 0], and set

h: E— E, [x,k] = [x,k —1] =[fx, k].

It is easy to see that, for eaehe N, the mapj,: S — E, x — [x, n] maps
S homeomorphically onto an open sub#gt C E, andE = | J E,. HenceE
is a two-dimensional manifold, and it is not hard to show that metrizable,
connected, and noncompact. We h#li#€E; q) = 0 because’ is homologically
nilpotent and the singular homology functor commutes with direct limits. The
classification of surfaces therefore implies titais homeomorphic to the plane.
The homeomorphisi is surjective because, for any,[k],

h([x,k+1]) =[fx,k+1] =[x, k];
h is injective because ifi([x, j]) = h([y, k]) then [f(x), j] = [fy, k] and
there exists: > j, k such thatf"—/+ix = f7=k+1y implying [x, j] = [y, k].
Conclusions (a) and (b) follow from the construction. Wheiis a diffeomor-
phism, the mapg, define a differential structure aB; the resulting manifold is
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diffeomorphic toR? by the classification of smooth surfaces, and the rest of (c) is
easy to verify. O

CoroLLARY 4.3. Letf, S, h, E, j be as in Proposition 4.2. Then

(a) each compact subset @&f has a neighborhood/ such thath"U c jS for
somen > 0;

(b) y € E is nonwandering fok if and only ify = j(x), wherex € S is nonwan-
dering for f;

(c) h'y =yeEifandonlyify = j(x) and f"x = x;

(d) if adisk D C E has no fixed points on its boundary, there exists 0 such
thath"D c S andInd(f, j(h"J)) = Ind(h, J).

These results enable us to extend the earlier theorems on planar homeomorphisms
to surface mapy: S — S that are injective and homologically nilpotent. For
example, the plane translation theorem extends as follows.

THEOREM 4.4. If f has no fixed point, then every point is wandering. More pre-
cisely, every point lies in an open Sétwith the following properties

@ fr'vnv =g foralln#0;

(b) V is surface whose bounda#y is the union of disjoint nonempty sets B
that are closed i®V, and each component dfand B is homeomorphic t&;

(©) f(V)NV = f(A) C B;

(d) fKV)NV =g forall k > 2.

Proof. By Theorem 4.2 and Corollary 4.3(c), we assujfec R? is the inclu-
sion of an open subseét; R? ~ R? is orientation preserving and fixed-point free,
hS C S, andf = h|S. Givenx € S, there is open séV/ C E containingx and
satisfying the plane translation theorem applied.tblow defineV = wns. O

The index theorem may be generalized as follows.
THeorEM 4.5. If f isnotfree, thery hasindex on the boundary of some digk

Proof. Make the same identifications as in the preceding proof. By the index the-
orem,h has index 1 on the boundary of a diBk c R2. For some: > 0, the disk
D = h"D’ lies in § and satisfies the theorem, by Corollary 4.3(a) and (d). O

The other results can be similarly extended. Thus, the theorems in Section 3 ex-
tend to orientation preserving diffeomorphistfis R? ~ X c R2.
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