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Uniform Quotient Mappings of the Plane

W. B. JOHNSON, J. LINDENSTRAUSS,
D. PrRE1ss, & G. SCHECHTMAN

1. Introduction

Let X andY be metric spaces. As is well known, a mappifgX — Y is said to
be uniformly continuousdf there is a continuous increasing functienr), r > 0
with Q(0) = 0, so thatd(f(u), f(v)) < Q(d(u, v)) for all u andv; or, in other
words, f (B, (x)) C Bq)(f(x)) forallx € X andr > 0. (We use B(x) to denote
the open ball with radius and center in the appropriate space.) The mapping
f is calledco-uniformly continuoud there is a continuous increasing function
w(r), r > 0withw(r) > 0 forr > 0O, so that B,,,(f(x)) C f(B,(x)). The con-
tinuity and monotonicity assumptions are made here for convenience and, if not
assumed, can be achieved by changing the original funcfdgnsandw (r). The
only necessary requirement is that the limita(r) is zero as- — 0.

A surjective mappingf is said to be ainiform quotient mappindf it is uni-
formly continuous and co-uniformly continuous. In other worgisrom X onto
Y is a uniform quotient mapping ifand only jf x f: X x X — Y x Y maps
the uniform neighborhoods of the diagonalinx X onto the uniform neighbor-
hoods of the diagonal ilf x Y. Note thatif f: X — Y is uniformly continuous
and co-uniformly continuous thefi(which of course is open) mapsto a closed
set; hence the image d&f is both closed and open. Consequenthyy ifs con-
nected thenf is automatically surjective. Note also thatfifis continuous and
open andK is a compact subset df, then for eachr > 0 there isw(r) > 0
such that B, (f(x)) C f(B,(x)) is satisfied forx in K. In particular, a contin-
uous open mapping on a compact space is co-uniformly continuous. Findlly, if
is uniformly continuous and co-uniformly continuous, then foralc Y the re-
striction of f to f~1(Z), when considered as a mapping itois also uniformly
continuous and co-uniformly continuous; moreover, the image of every compo-
nent of f ~%(Z) is a component of provided that the balls of are connected and
Z C f(X) is open. A discussion of the notion of co-uniform continuity and uni-
form quotient mappings (in the context of general uniform spaces) can be found
in [J]. For normed spaces, the moduli always sati3fy) > Cr andw(r) < cr
for suitableC andc. If Q(r) < Cr (more precisely, i€2 can be chosen to satisfy
Q) < Cr for some O< C < oo and allr > 0), then we say thaf is Lipschitz.
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Similarly, if w(r) > cr then we say thaf is co-Lipschitz.A surjective mapping
that is both Lipschitz and co-Lipschitz is calledLipschitz quotient mapping.

In arecent paper [BJLPS] we dealt with these notions for general Banach spaces
X andY. Here we are interested mainly in the case whére Y is the plane. (As
a matter of notation we shall consider the plane botR4and as the complex
planeC. When we consider it aR? we use| - || to denote the Euclidean norm;
when we consider the plane @swve use - | for that purpose.)

Nontrivial examples of Lipschitz quotient mappings from the plane to itself are
fure®®y = re™® n =1,2,.... Our main aim is to show that these examples are
in a sense typical for general uniform quotient mappings of the plane. We prove,
under some conditions a2 andw, that any uniform quotient mapping of the
plane is of the formf = P o h, whereh is a homeomorphism of the plane afAd
a polynomial. In the preceding examplgs,= P, o h, whereh,(re’?) = rl/et®
and P,(z) = z". Conversely, we show that for any givéhthere is a homeomor-
phism#h of the plane so thaP o & is even a Lipschitz quotient mapping.

We prove the theorem just mentioned in c&sandw satisfy at least one of the
following three conditions:

(1) @ is arbitrary andw > cr—that is, f is uniformly continuous and co-
Lipschitz;

(2) wis arbitrary and2 (r)/+/r — 0 asr — 0;

(3) there are, C, p, g withg < 1+ p such that, forO< r <1, w(r) > cr? and
Q@) <Cr?.

The proofs of parts 1 and 2 of this theorem constitute most of Section 2; the
proof of part 3 is contained in Section 4. The main arguments of the proofs pre-
sented here involve checking that, under each of our three assumptiduas) is
a discrete set for every. Once this is done, the representation theorem (Theorem
2.8) is proved using a result of Stoilow [S] that gives a topological characterization
of analytic functions.

We actually show that, for every uniform quotient mapping of the plane, there
is a numbemV such that the sef ~X(y) has at mosiV connected components for
everyy. Assumption (1), (2), or (3) is then used to prove that every such compo-
nent is a singleton.

In Section 3 we present an example showing that some restrictions on the mod-
uli are required. More precisely, there is a uniform quotient mapgiraf the
plane onto itself with moduli of power type that maps an interval to zero. Such a
mapping cannot, of course, be a superposition of a homeomorphism and a poly-
nomial. As a corollary to this example we also obtain (in Remark 3.3) a relatively
simple construction of an example of a continuous open monotone mapping of the
plane onto itself which is not a homeomorphism. Such an example was first given
by Anderson [A], although his construction is much more complicated.

Theorem 2.8 applies only to mappings defined on the entire plane. However,
under assumption (3) we also prove (in Section 4) a local result. For every uni-
form quotient mapping’ from a domain in the plane into the plane satisfying (3),
f~Y(y) is discrete for every in the range. Example 4.1 shows that some restric-
tion on the relation betweemandg is needed; it fails fop = 1, ¢ = 3. The same
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example shows that assumption (2) cannot guaranteeftiay) is discrete if f
is only assumed to be defined on a domain in the plane.

Section 5 deals with Lipschitz and uniform quotient mappings fifro R.
The analysis here is much simpler. We show in particular that, for uniform quo-
tient mappingf fromR2to R, R?\ £ ~Y(y) has a bounded number of components
for y ranging ovemR. If f is a Lipschitz quotient then alsb6~(y) has a bounded
number of components.

The methods of proof in this paper are particular to the plane. One can ask
many natural questions concerning uniform quotient mappings Rérto R™,
n > max(m, 3). This area of research is wide open. Some comments on these
guestions as well as results in the infinite-dimensional situation are presented in
[BILPS].

2. Global Results
We begin with a restatement of Proposition 4.3 of [BJLPS].

ProposiTION 2.1. Let f: R?> — R? be a continuous and co-Lipschitz mapping.
Then, for every € R?, the setf ~1(y) is discrete.

We repeat the proof from [BJLPS]. We first state the following simple lemma con-
cerning the lifting of Lipschitz curves.

LEMMA 2.2. Suppose thaf: R” — X is continuous and co-Lipschitz with con-
stantl, f(x) = y. Suppose also that: [0, c0) — X is a curve with Lipschitz
constantl and thaté(0) = y. Then there is a curve: [0, co) — R” with Lip-
schitz constant such thatp (0) = x and f(¢(¢)) = &£(¢) fort > 0.

Proof. For m = 1,2,..., define ¢,,(0) = x. By induction, assuming that
£(@n(;r)) = &(5). choosep,, (££) such that|e, (S5) — ¢ (;)| < 5 and
f(pm(E2)) = £(E). Extendg,, (1) to a Lipschitz curvep,, : [0, 00) — R" hav-

ing Lipschitz constant 1. The limét of any convergent subsequencepgfhas the
desired properties. 0

Proof of Proposition 2.1Without loss of generality, assume that(B(x)) C
f(B,.(x)) for everyx in R? and every > 0 and thaty = 0 and f(0) = 0. Let
up = e*™3andS = {tu; 1t >0,k =0,2,4). Letalso O< § < 1 be such that
Ix[l. Iyl < 2 and|lx — y|| < & imply that|| f(x) — f() < 1/2.

For eachx € By(0) N f7%0) andk = 1,3 5, use Lemma 2.2 to choose
éx..: [0,00) — R? having Lipschitz constant 1 such thaf ,(0) = x and
f(@i.<(t)) = tu; fort > 0. Let D, , be the component dR? \ f~%(S) con-
taining ¢ (0, co). Noting that B (¢, (1)) C Dy N B3(0), a comparison of
areas shows that the set of all subh, has at most &2 elements. Suppose
now that B(0) N £~%(0) has more thav = [(956~2)°] elements. Then it con-
tains elements # y such thatD, ., D3, Ds .} = {D1,, D3y, Ds,}. Hence
Dy, = Dy, for k = 1,35, since the (connected) image Df := Dy . con-
tainsu; and so can contain no othey, and we infer that there are simple curves
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Ve [0,1] — R? such thaty, (0) = x, ¥ (1) = y, andyy (1) € Dy for 0 < t <

1 For each paik,! = 1, 3 5 of different indices, leG, ; be the interior of the
Jordan curvey, — ;) (difference in the sense of oriented curves); B k, [,
we note thalG,; N D; = @ since otherwise; would be bounded. In particular,
G13N3G3s5 =0, so eitherGy 3 C Gzs0r G13N Gszs = @. In the former case,
we would get a contradiction fromi;(0, 1) € G35 because/;(0,1) C D;. Inthe
latter cased(G1,5) = 9(G1.3 U G35). This intuitively clear fact follows, for ex-
ample, from the theorem abatcurves (see e.g. [K, Ch. 10, Sec. 61, I, Thm. 2])
or from Schoenflies’s extension theorem. It follows thats > G1 3 and so we
have a contradiction from3(0,1) C Gys. OJ

ReMaRrk. If we assume in addition that is uniformly continuous, then a more
careful analysis of the proof shows that the cardinalityfof(y) is finite and
moreover is bounded, independentlyyofby a constant depending only on the
co-Lipschitz constant of and its modulus of uniform continuity. We do not ex-
pand on this since we shall present a different proof of it, using Lemma 2.7. See
the beginning of the proof of Theorem 2.8.

We now come to the main result of this paper, which is a version of Proposition
2.1in which the co-Lipschitz condition is weakened to mere co-uniformity but the
continuity assumption is strengthened to uniform continuity with modulus strictly
better than/r.

Tueorem 2.3. Let f: R? — R? satisfyB,,,(f(z)) C f(B,(z)) C Ban(f(z))
for all » > 0andz € R?, whereQ(r), w(r): [0, o0) — [0, 0o) are continuous
strictly increasing functions such th&(0) = w(0) = 0. If lim,_o Q()/ /7 =

0, then the inverse images of points ungieare discrete. Moreover, there isa num-
ber N depending only o& and » such that the cardinality of ~%(y) is bounded
by N for all y € R?.

For the proof we need a sequence of lemmas. In all of these lemmas (2.4-2.7) we
assume thaf : R? — R? satisfies

Buin(f(2)) C f(B(2)) C Ban(f(2) (2.1)

for all » > 0 andz € R?, whereQ(r), w(r): [0, 00) — [0, co) are continuous
strictly increasing functions such th@t(0) = »(0) = 0. The additional assump-
tion, lim,_.o Q(r)/+/r = 0, is not used in these lemmas.

LEmMa 2.4. Let f: R? — R? satisfy(2.1). For everyro > O there is a constant
Ro = Ro(rg) < oo depending only 02, w, andrg such that, for every € R?
and every > rq, every component of 1(B,(y)) has diameter at mostor.

Proof. If not, then for every = 1, 2, ... there exist functiong; : R? — R? sat-
isfying fi(0) = 0 and B, ;) (fx(2)) C fik(B;(2)) C Bay)(fk(2)) foralls > 0and

z € R? as well as numberg > rq such that the componen, of fk‘l(B,.k (0)
containing zero has diameter at least. Observe (or see [BJLPS, Rem. 3.3])
that a uniformly continuoug is Lipschitz for large distances in the sense that
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lg(z) — 8zl < 22Dl|z1— 22|l if 21— 22l = 1. Similarly, for a co-uniformly
continuous functio, g(B;(z)) D Byw,2(g(z)) for s > 1. Hence there is a sub-
sequence off (kryz)/kry converging to a Lipschitz and co-Lipschigz R? —
R2. It follows thatg —%(0) contains a connected set of diameter at leA&tih con-
tradiction to Proposition 2.1. O

Lemma 2.5. Let f: R? — R? satisfy(2.1). For everyx € R? and every unit
vectoru, there is a closed unbounded &t , such thatx € Iy ,, f(Iy.,) =
{f(x) +tu; t > 0}, and{w € [, ,; || f(w) — f(x)|| < t}is compact and con-
nected for every > 0.

Proof. Form = 1,2,..., define¢,,(0) = x. By induction, assuming that
f(@n(y) = fO) + ju, ChOOS%m("f) such that]e, () — ¢u(;,) | <
o (%) and f(¢. (1)) = f(x) + Elu. Extendg, (1) to a Lipschitz curve

m m

¢m: [0,00) — R? having Lipschitz constant at mostw (). Since £ =

||f(¢m(m)) f(x)” = Q(“¢'"(m) - )’ ||¢m(t) - X” — 00 ast — oo.

For anyr > 0 of the form% choose the largest,(r) such thatf (¢,,(s,,.(2))) =
f(x) + tu. By Lemma 2.4, ifm is large enough then dia@,,[0, s,,(t)]) <
Ro- (1+1t/2), whereRg = Ro(1). Let m; be chosen so that, for every ratio-
nalt > 0, s, (¢) is eventually defined and the sequergel[0, s, (1)] of continua
converges to a continuu®y,. Note thatf(C,) = [f(x), f(x) + tu] and thatr’ >
timpliesC, D Cy N fY f(x), f(x) + tu]. In particular,(|lw — x||) > ¢ for
w € Cp \ Cy, which shows thaf’, , = |, C; is closed and unbounded. Clearly
x el and f(Ty,) = {f(x) + tu; t > 0}. Moreover,

(wel . fw)elf(x), f(x)+Tul}=[)C,

1>t

so it is compact and connected. O

LEmMMA 2.6. Let f: R? — R? satisfy(2.1). Suppose that, b belong to different
components of “X(y), r > 4(Ro + |la — b|)), whereRy = Ro(1) of Lemma 2.4
andu is a unit vector. Then

r .
Q*(g) <dist({z el llz—all =r}, {z€lpu; llz—bll =1}
0

+dist{z el —u; lz—all = r} {z€Tp—u; llz = bl = r}.

Proof. Note that, by Lemma 2.5, the sets whose distances we estimate are always
nonempty. Suppose that

dist{zeT,u; lz—all =r}{z€Thu; llz—bll =71}
. r
+dist{z ey —u; llz —all = rh{z€lb s lz =Dl > 1}) < sz—l(ﬁ),
0

Case I.'T,, NIy, #Wandl, _, NT,_, # . Then, for sufficiently large
T, A ={w el Ul Ifw) —yll < ttandB = {w € Ty, UTh_u;
| f(w) — y|| <t} are continua. Bufa, b} Cc AN B C fX(y), SOA N B is not
connected since andb belong to different components ¢f(y). Hence, by [K,
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Ch. 10, Sec. 61, I, Thm. 5R? \ (A U B) has a bounded compone@it But then
f(G) is bounded, open, and with boundary contained (A U B), hence in the
line L = {y +tu; t € R}, which is impossible. Note that the proof actually shows
that there is at most one directiarfor which T, , N T, # 0.

Casell:T,, NIy, =@andl,_,NT,_, # #. Choose a segmedd such
thatD NT,, = {p} andD NT;,, = {g}, where||p —al| > r/2. llq — b|| > r/2.
and dian{D) < Q7 Y(r/6Ry). LetACc T, ,UT, _, U}, _,UT,, be aminimal
continuum containing andg. SinceA N f~({y + tu; t > 0}) is disconnected,
AN fY{y+tu;t <0)) # 0. ByLemma2.4f(p) =y +suwheres > r/2Ry,
and we infer that diartf (A)) > r/2Ro.

From [K, Ch. 10, Sec. 62, V, Thm. 6] we infer thatu D is the boundary
of a bounded component, s&y, of its complement. Sincg is open, f(G) is
open, and since its boundary is contained it Bo ,—py (f(p)) (recall thatl =
{y + tu; t € R}), we infer thatf(G) C Bag—pn(f(P)) C Byer,(f(p)). But
diam(f(G)) > diam f(A) > r/2R,.

Caselll:T,,NTy, #Vandl, _, N[, _, = @. Symmetric to Case II.

Case VI, , NIy, =0WandT, _, N[, _, = #. Choose segmen®*, D~
such thatb™ N T,, = {p*}and D" N T}, = {¢*}, where|pt — a| >
r/27 ||q+ - b” > 7/2, D™ N Fa,fu = {P_} and D™ N Fb,fu = {q_}a Where

lp~ —all =r/2, |lg~ — bl = r/2, and diam(D") + diam(D~) < QX(/6Ro).
Note thatQ (|| p* — p~Il) > r/Ro (otherwise,| f(p™) — f(p~)Il < r/Ro SO one
of | f(pT) =yl or||f(p~) — yl|l is less tham/2R, in contradiction to Lemmas
2.4 and 2.5 and the choice pf, p7),soD™ND~ =¢. LetA c T, ,UT, _, be
a minimal continuum containing™*, p—, and letB c T, , U T}, _, be a minimal
continuum containing ™, ¢ .

Clearly, dian{ f(A)) > r/Ro. Noting thatA and D™ U B U D~ are minimal
continua whose intersection {g*, p~}, we infer from [K, Ch. 10, Sec. 62, V,
Thm. 6] thatA U D* U B U D~ is the boundary of a bounded component, say
G, of its complement. Sincg is open, f(G) is open, and since its boundary
is contained inL U Bgdiamn+))(f(p1)) U Baiamp-)(f(p7)), we infer that
f(G) C Baiamp+)(f(p™)) UBgqiamn-(f(p7)). Since these two discs are
disjoint andf(G) is connected, it is contained in one of them. But digitG)) >
diamf(A) > r/Rq is bigger than the diameter of either of these discs. This con-
tradiction concludes the proof. O

LemMa 2.7. Let f: R? — R? satisfy(2.1). Then there is aW < oo, depending
only on2 and w, such that, for eacly € R?, the cardinality of the set of compo-
nents off ~1(y) is at mostn.

Proof. Choosez € f~Y(y). If s is large enough then, applying Lemma 2.6 with
r = 4(Ro + s), we have that the number of componentsfoft(y) which meet a
disc of radiuss arounda cannot be greater than the largest number of elements of
asetM C {x; ||x —a| <5(Ro+s)} x {y; |y —al <5(Ro+ s)} that has al¥;
distances larger than or equal®(4(Ro + 5)/6Ry).

We may assume that, for> 1, Q(r) < 2Q(1)r. Homogeneity now implies
that, if s is large enough, then the number of element&/ag at most the number
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of couples of points in a disc of radius 1 whose mu#alistances are not smaller
than some positive number(depending only o2 (1) andRy). This number is a
bound forn. O

Proof of Theorem 2.3.Letn be the largest number for which one can findith

n components (sayy, ..., H,) of f7X(y), of which at least one (say{:) is non-
trivial. Lety andHy, ..., H, realize this maximum and I€t; > H; be open, with
disjoint closures. For sufficiently close toy, say|z — y|| < 8, fX(z) meets
eachG,; moreover, fois sufficiently small, the component gf-1(z) meetingG;
must be contained iG;, since otherwise we would have a contradiction by tak-
ing the limit of such components as— y. DenotingH;(z) = f (z) N G;, we
thus havef ~1(z) D U/, Hi(z), and H;(z) are components of 1(z). The com-
ponentH;(z) is nontrivial forz close toy (otherwise, sincé; is nontrivial and
f is a uniform quotient mappingz; would contain an arbitrarily large number
of components for close toy, in contradiction to Lemma 2.7). Also, the maxi-
mality of n implies thatG, contains only one componeft(z). Letu, v be two
different points ofH;, and letL be their perpendicular bisector. ||t — y|| <

81 = min{8, w(||v — ul|/4)}, then £ ~Y(z) meetsL, so f(L) has nonempty inte-
rior. This is not possible if lim_ o Q(r)/+/r = 0; an easy way to see this is to
compare the cardinality of a maximalseparated set of points in a segmenLof
and in its image. O

It now follows from a deep theorem of Stoilow that uniform quotient mappings
satisfying the assumptions of either Proposition 2.1 or Theorem 2.3 are topologi-
cally equivalent to polynomials.

THEOREM 2.8. Let f: R? — R? satisfy one of the following three assumptions.
(i) f is uniformly continuous and co-Lipschitz

(ii) f isuniformly continuous with modulus of continuitsatisfying (r)//r —
Oasr — 0, and f is also co-uniformly continuoygr

(iii) there arec, C, p, g withg < 1+ p such thatf is uniformly continuous with
modulus of continuity2 satisfyingQ2(r) < Cr” for0 < r < 1, and f is also
co-uniformly continuous with modulus of co-uniform continuityatisfying
w@F)=criforO<r <1l

Thenf = P o h, whereh is a homeomorphism dk? and P is a polynomial.

Proof of 2.8(i) and 2.8(ii). By Stoilow’s theorem [S, pl21], since f is discrete

and open it follows thaf = P o h, with 4 a homeomorphism d&? onto a (sim-

ply connected) domai@ in R? and P an analytic function. (In the formulation of
Stoilow’s theorem in [S], the image is a Riemann surface but the uniformization
theorem—see e.g. [FK, p. 195]—implies that it must be a simply connected do-
main in the plane.) By Proposition 2.1 and Lemma 2.7, the inverse image of each
point underf, satisfying assumption (i), is finite (even bounded independently of
the point). The same is true also under assumption (ii), by Theorem 2.3. Thus,
P~Y(y) N G also is finite for each point. We shall show thaG is necessarily

RR?, so thatP is an entire function with the property that the inverse image of each
point is finite. It then follows thaP is a polynomial.
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We now prove thaG, the image ofs, is the entire plane. First notice that
f(z) = oo asz — oo. Indeed, there would otherwise be a sequefycguch that
z, — oo and f(z,) — a. Since f is co-uniformly continuousf will take the
valuea in the disc of radius 1 aroung, for all large enough. This contradicts
the fact thatf ~X(a) is finite.

If f = Pohwith P analytic andi(R?) = G # R? then, sinceG is simply
connected, we may assume without loss of generalityGhat the unit disc. It
follows from the previous paragraph th&tz) tends to infinity agz| — 1. Since
P has only finitely many zeros in the unit disc, by dividing the Blaschke product
corresponding to the zeros [ we obtain an analytic function in the disc tend-
ing to zero agz| — 1. By the maximum principle, this is impossible. O

The proof of Theorem 2.8 under assumption (iii) is delayed to the end of Section 4.

REMARK. Note that the homeomorphisirin the representatiofi = P oh is de-
termined up to a transformation of the fofm— ah + b for some complex and

b (and then necessarily is determined up to a change of variable> az + b).
Indeed, ifP o h = Q o g for polynomialsP and Q and homeomorphisnisand

g, then P and Q must have the same degree (which is equal to the maximal car-
dinality of a preimage of a point unde. If w = gh™(z) andQ is invertible in

a neighborhood ofv, thengh 1 is analytic in a neighborhood ef It is then nec-
essarily a polynomial of degree 1; this follows easily from the equaki¢) =
Q(gh~%(z)). Since there are only finitely many exceptional points (the preimages
undergh~! of the zeroes oD"), it follows thatgh 2, being a homeomorphism of
the plane onto itself and analytic except at finitely points, must be a linear function.

We also have a converse statement to Theorem 2.8.

ProrosiTiON 2.9. Let P be a polynomial in one complex variable with complex
coefficients. Then there is a homeomorphisof the plane such thaf = P o h
is a Lipschitz quotient mapping.

Sketch of Proof Assume without loss of generality thAtz) = z" + a,_1z" 1+
Ay_22""? 4 -+ 4 ao. We first show how to find a homeomorphignihat makes
f = Poh Lipschitz and co-uniformly continuous. Fix a (large)> 0 and define
h by

|z|Ynet ardz) if 2R < |z|,
h(z) = § (BEl|z] 4 EER|zjum)eiagoif R < 7| < 2R,
z if |z] <R.

It is easy to see thatis a homeomorphism d@&? onto itself. Also, is Lipschitz

on the ball of radius B about zero and is co-uniformly continuous on the same
ball in the sense that B, (h(x)) C h(B,(x)) for an appropriate>(r) > 0 and all

x in the ball of radius B about zero. Sincé is Lipschitz on the image of that
ball (as it is on any compact domairy),= P o k is Lipschitz on the ball of radius
2R about zero. Outside that ball,
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f(Z) — |Z|ein arg(z) + an_l|z|(n71)/nei(nfl)arg(z)
+ a,1,2|z|("_2)/"ei("_2) arg(z) +---+ao,

which is checked to be Lipschitz in this domain.

Since any polynomial is an open mapping, a simple compactness argument
(mentioned in the introduction) shows that any polynomial is co-uniformly con-
tinuous when restricted to any bounded domain. It follows ghistco-uniformly
continuous when restricted to the ball of radiug &out zero. The special form
of f outside the ball of radiusR about zero shows that, R is large enoughf
is even co-Lipschitz there.

Assume now thar is such that, in addition to the foregoing implicit require-
ments on its size, all the zeros Bf are in a ball of radiu® /4 about zero. We now
show how to adjusk on a ball of radiusk /2 about zero so as to remain Lipschitz
and be also co-Lipschitz.

Letzy, ..., z, be the distinct zeros af’. Letr > 0 be such that B(z;), j =
1 ..., m, are pairwise disjoint and all contained i, B(0). There is no prob-
lem with the co-Lipschitzity of: outside the union of these balls. Fix apy=
1,...,m. Then, by taking an even smaller> 0, we may also assume that in
B3, (z;) one can writeP(z) = (z — z;)*Q(z) + a, whereQ does not vanish on
Bs, (z;). Next, modify the definition of on B, (z;) as follows. For = z; +se®,

zj + sk fOo<s<r,
h(z) =13 z; + (@sl/k + ?s)eia if r<s<2r,
z if 2r <s < 3r.

We do this on each of the balls;Bz;), leavingh as it was outside the union of
the balls. O

3. The Example

Here we give an example showing that, without some restrictions on the moduli
of uniform continuity or co-uniform continuity of a uniform quotient mapping of
the plane to itself, the conclusions of Theorems 2.3 and 2.8 no longer hold.

LemMA 3.1. Givend > ¢ > 0anda € R? with ||la|| < d, there is a mapping
g: R? — R? such that

(i) g([0,a]) C [0, g(@] and|g(a@)|l < c/4

(i) the Lipschitz constants gfand ofg ! are less than or equal t86(d/c)?;
(iii) forall zeR?andr > 2c¢, g(B,(z)) is 6¢c-dense irB, 4(z);

(iv) forall z e R? andr > 2¢, g(B,(z)) is 6¢-dense imB, (g(z2));

(v) forall ze R?, ||g(z) —z|| < 2d.

Proof. Rotate the coordinate system so thas a positive multiple ofc, —4d).
Define continuous 1-periodig: R — R by n(0) = n(1/2) = 0, n(1/4) = 1,
n(3/4) = —1, andy is affine on every component &\ (1/4)Z. Let p(x, y) =
(x,y +dn(x/c)), ¥(x,y) = (x +dn(y/c), y), andg = ¢ o ¢.
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(i) On the segment = { (tc, —47d) : 0 < 7 < 1/4} we havep(tc, —4td) =
(zc, 0), and on the segment = {(zc,0) : 0 < 7 < 1/4} we havey(tc, 0) =
(tc, 0). Hencel is mapped affinely ory. Sincea € I, this shows (i). (ii) is
obvious.

(iii, iv) Let z = (u, v) and letk and! be the integer parts of/c andv/c, re-
spectively. Foreveryn = 0,1, ..., theg image of

P, =[(k—m)c, (k+1+m)c] x [ —m)c,( + 1+ m)c]
is contained in
On=I[k—m)c—d,(k+1+m)c+d] x[(—m)c—d,(I+1+m)c+d]

and meets every squargd, (p +Dc] x [gc, (g +Dc] that lies insideQ,,,, so itis
4c-dense inQ,,. Choosing the largest such thatP,, C B,(z) (i.e.,m is the in-
teger part ofr/2¢) — 1), we have thaQ,, D B, ,_2.(z), which proves (iii). To
prove (iv), we note thag(z) € Qo, S0 Q0 D B,_2.(g(2)). (v) is obvious. [

To illustrate the complexity of the seemingly simple mapping of Lemma 3.1, Fig-
ure 1 sketches the image under sughadithe boundary of the square with vertices
(0,0, (1,0, (141, (0,1, wherec =1andd = 15.

Figure 1

In the following example we use(B, ¢) to denote B(x).

ExaMPLE 3.2. There is a mapping : R? — R? such thatf ~1(0) contains a
segment and, for evegye R? andr > 0,

B(f(z), Cimin(+?, r)) C f(B(z, 7)) C B(f(z), Camaxr®,r)),
whereq, 8, C1, C, are positive constants.
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Proof. Letco = 1/8 andcy41 = 48~ %12, Leta; = (0, 1) and letg; be the func-
tion obtained by Lemma 3.1 with = ¢;, d = 8¢o, anda = a;. Recursively put
ari1 = ge(ay), note that||ax1ll < ¢k, and letg,,1 be the function obtained by
Lemma 3.1 withe = ¢;41, d = 8¢y, anda = a4 1.

Define f1 = g1 andfi 1 = giv10 fr. Then| fir1— fill < 16¢;, sothe sequence
fx converges uniformly to a continuoys R? — R2. In particular,f(z) = 0 for
all z € [0, a1], so f~%(0) contains [Qa1]. By (ii) of Lemma 3.1, for eaclt the
Lipschitz constants of;. and of its inverse do not exceedzll,&,f. In particular,
fe(B(z. 1) D B(fi(z), 48 %c?r).

Letz € R2and O< r < ¢;. Find the least such that > 48 %¢,, and lets =
48 2kc2r. Then fi(B(z, 1)) D B(fi(z), s) ands > 48 3¢} > 2¢;41.

We prove that, for every > k, f,(B(z,r)) is 6¢,-dense in Bfi.1(z), s). For
n = k + 1, this follows from (iv) of Lemma 3.1. If it holds for someand ify €
B(fi+1(2), 5), choosex € B(z, r) such that]y — f,(x)|| < 6¢c,. Lett = 48 2"¢3
and letu € B(z, r) be such that € B(u, t) C B(z, r). Then| f,(u) — fr(x)] < cn
and f,(B(u, 1)) D B(f,(u), 48 *"¢?) D B(fu(u), 2¢,11). Hencef,11(B(z. ) D
gnJrl(B(fn(u)v 26n+1)) is 6Cn+l'dense in Efn(u)a 8Cn)- Sincey € B(fn(l/t), 80}1)»
the setf,11(B(z, r)) contains a point §,1 close toy.

Using that || f(z) — firai(@)l < 162}”;k+1cj < s/2, we conclude that
f(B(z,7) D B(fiz1(z),s) D B(f(2),s/2). Moreover,s/2 > rPif g > 11
andr is sufficiently small.

Given anyx, y and anyk, we have

1£C) = FOII <32 ¢ + Lip(fo)llx — vl < 64c, + 482 ||x — v /cZ.

j=k

If 2,y < llx — yll < 2, this gives|| f(x) — f(V)] < 48%+2¢; < |x — y|* if
o < 1/15 and||x — y|| is sufficiently small. O

REMARK 3.3.  We now show how to modify any nontrivial uniform quotient map-
ping f of the plane onto itself to obtain a simple construction of an example of a
continuous open monotone mapping of the plane onto itself which is not a homeo-
morphism. (“Monotone” means that the inverse image of each point is a contin-
uum; such a mapping was first constructed by Anderson [A].) Toward this end we
first observe that the complement of the inverse image uyiderany open disc

is connected; indeed, recalling that inverse images of discs are bounded, the op-
posite would allow us to find first a bounded compon€rtf the complement of
f~XB,(y)) and then a bounded open $&t> C whose boundary would lie en-
tirely in £ (B, (y)) and thence to conclude thAtbeing continuous and mapping

the boundary oV to B,(y), cannot be open. Next we observe that the argument
from the beginning of the proof of Theorem 2.3 provides us with an open disc
B,(y) and a bounded open s6t containing a nontrivial component gf~X(y)

such that, for every e B,(y), there is exactly one componeft. of f~(z)
meetingG and such that this component is, in fact, containe@inThentU =
UZGBr(y) H, is a component of ~%(B,(y)) and so, by our first observation, it is
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homeomorphic to the whole plane. Hence it suffices to point outfhatlearly
a nontrivial monotone map df to B, (y).

4. Local Results

If one relaxes the assumptions of Theorem 2.3 by changing the domgifran
R? to a bounded domain, the conclusion fails in a very strong sense.

ExampLE 4.1. Definef: R? — R? by f(x, y) = y?(cogx/y), sin(x/y)) when
y # 0and f(x,0) = 0. Thenf is Lipschitz on bounded sets and for eaih
there exists$ = §(M) > 0 such that, ifz is in R? and |z| < M, then f(B,(z)) D
B;3(f(z)) forall r <1

Proof. That f is Lipschitz on bounded sets follows by taking partial derivatives.
To check the second statement, assume fli&g, yo) = so(C0SHy, Sinfy) and,
without loss of generality, thaty > 0. Assume first that < yp/2 AL

We would like to show that, for an appropriaie f(B, (xq, yo)) contains the
setS = {s(cosb, sind); |s —so| < 8r3, |0 —6o| < 8r?/s} and thus a ball of radius
8'r2 aroundso(coshg, sinfp). We shall actually show that, for an approprite
f([xo—r, x0+ 7] x [yo—r?/4M, yo + r?/4M]) D S, which is clearly enough.

Notice that:

(1) for every O< ¢t < yo,

[(yo— )2 (yo+1)?] D [s0 — tyo, So + tyol;
(2) forO<t < yo/2and|y — yo| <t,

Xo X0 SIM - t2|x0| - 2Mt;
y Yol ™ Yyo y? y?
(3) for afixedy and any positiver,
(arg £ (x, ¥)): | — xol < u) > [@ LN ﬁ] (mod 20).
y yy y
Takingr = r?/4M in (2) andu = r in (3), for a fixedy and fors = y? we have
2 2
farg fe, )i lx —xol =7} o | 2= 224 | (mod 2r).
Yo 2s yo 25

Finally, applying (1) forr = r?/4M, we obtain

r2 2 r2 2 r3 ’,3
orag) T @) |2 T a0

This settles the case of < yg/2 AL If r < (20y9) A 1then f(B,(2)) D
f(Bya0(z)) D By,3(f(2)), sowe are left only with the case 2 < r < 1. In this
case, for every with |y — yo| < r/20, the sef{x/y; |x — xg| < r} (mod 2t) con-
tains all possible arguments. It follows th&tB, (xq, yo)) contains §5+,2/400(0)

and, in particular, B40( f(x0. y0))- U
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REMARK. One can generalize this example. Box 0 andx > 1, let f(x, y) =
ly[f(cosx/|y|%), sin(x/|y|*)). One can check that, when restrictingy to a
bounded domain, the modulus of uniform continuityfofs bounded byCr (i.e.,
f is Lipschitz) if 8 > 1+ « and byCr#/&® if B8 < 1+ «. The modulus of
co-uniform continuity is bounded from below lby?¥#/%) In particular, mini-
mizing overg = 1+ « yields a function that is Lipschitz on bounded domains and
has modulus of co-uniform continuity bounded from below:b$°? on bounded
domains.

In spite of Example 4.1, one can show that—under some restriction concerning
the relation between the modulus of uniform continuityfoénd its modulus of
co-uniform continuity—a local form of Theorem 2.3 still holds.

PrOPOSITION 4.2.  Suppose thgy < 1+¢, G C R?isopen, andf: G — R?is
such thatB.,» (f(2)) C f(B,(z)) C B¢ (f(z)) wheneveB,(z) ¢ G andr < 1.
Then the inverse images of points ungteare discrete.

Proof. It suffices to assume that=C =1, p > ¢, 0€ G, f(0) = 0, and (for
somerq > 0) B3,,(0) = G and to show that B(0) N £ ~%(0) is finite.

LeEmMA 4.3. There exist a positive constamtand a strictly increasing function
h: [0, a] — [0, oo] such that, whenevere B, (0) N f~%(0) andu € R? is a unit
vector, there is a curve: [0, a] — Ba,,(x) with Lipschitz constant such that
¢(0) = x, [ f(p)] = h(1), and f(p (1)) € . Bs/a(su) forz € (0, a].

Proof. Choosep — 1 < a < ¢/(p — ¢). Fix a sufficiently largen and choose
Xm € By,—e/p (x) such thatf(x,,) = m~“u. Fork < m, recursively choose; €
Bovri-@+vp (Xg+1) N Boyo(x) such thatf(x,) = k~“u; the construction stops
when eithek = 1 or no suchy, exists. Ifx; is defined, we use thaw + 1)/p >
1to estimateZlelel — x| < c1k¥~@*V/P Noting thatk = — (k +1)7% <
ak=@+D we infer that there is an integés independent of such thaty,, is de-
fined (as long as: is large enough). Sinae < ¢/(p — ¢), we can enlargé, if
necessary to ensure thet/?k~©+t04/P < =2/4 for k > k.

Leto,.(¢), t €[0, a,,], be the arc-length parameterization of the path obtained
by joining x, x,,, Xu—1, ..., Xk, (in this order) by the linear segments, [x,,] and
[xi41. %), k =0, ....m — 1 Thena,, < m=/” + cikg “"?, so we may find
a subsequence af, converging ta: < clké’("‘“)/” such that the corresponding
subsequence @f,, converges to a Lipschitz curde: [0, ] — R?. Theng(0) =
x and f(¢(a)) = ky“u, soa > ag > 0 wherea is independent of andu. For
any 0 < ¢ < a denotes,, = min{a,,, t}, and for any sufficiently large: choose
km > ko such thaip,,(s,) € [x,+1, Xk, ]; note first thats,, < cikl @V gng
hence a suitable subsequencepfhas a limitk < (t/c1)?/(?~1=%_ Moreover,
1Lf Dusn)) — kpull < Nm(si) — xi, 19 < @?/Phy @097 < k@4, which,
upon taking the limit ag: — oo, gives that| f(¢(¢)) — k~%u|| < k~*/4. Hence,
f@) € U,-oB(su,s/4 and || f(@(0)]| = (t/cr) P*/P~17%)/2 for anyt €
O, a]. O
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Letr = h(a)¥9/4 and assume, as we may, that3 1. We may also assume that
t7 > h(t) for 0 < ¢t < a; in particular,r < a/4. Denotingd = (h(r)/5)Y?, we
show that = B, ,(0) N f~1(0) has at mosN = ((4rg + d)/d)® elements. As-
sume thatVf has more thawv elements.

Let uy = e*™/3 For eachx € M andk = 1, 3,5, chooseg, ,: [0,a] —
B, (x) with Lipschitz constant 1 such thaf ,(0) = x, || f(dr.cE)] = h(2),
and f (¢ (1)) € U, o Bs/a(suy) forr > 0. Note that the last statements also show
that f (¢ (1)) # 0if % 0.

The triples(¢1, . (r), ¢3..(r), ¢s5..(r)), x € M, belong to the product of discs of
radius 2; sinceN > ((2ro+d/2)/(d/2))®, we infer that there are, y € M with
x # y such that|¢y »(r) — ¢r,y(r)|| <dfork =1, 35.

Whenever € [y (). ¢i.,(r)] we havel| f(z) — f(@ix(r)Il < d? < h(r)/5.
Findings > 0 such thatf (¢« (1)) € Byja(suy), we infer from|| f(¢x »(r)|| >
h(r) thath(r) < 5s/4, and we conclude thaf(z) € Byjatn(y/5(sur) C Byjo(sur).
We also note that this implieg(z) £ 0.

Let L, be a simple curve joining andy and lying in the setd; .(r), ¢x,,(r)]U
¢i.x[0, 7] U ¢ [0, r]. By the theorem org-curves [K, Ch. 10, Sec. 61, II,
Thm. 2], one of these curves (sdy,) lies, with the exception of its end points, en-
tirely in the bounded componegt of the complement of the remaining two. By
connectednessy (0, a] C C. Since thep have Lipschitz constant 1 and since
diam(C) < 2r +d < 3r, we arrive at(3r)? > || f(¢r (@) — (P (O] >
h(a) > (3r)?—a contradiction. O

As a simple corollary, we now have the following.

Proof of Theorem 2.8(iii). If f satisfies the assumptions of Theorem 2.8(iii) then
applying first Lemma 2.7 and then Proposition 4.2 with= R? we obtain that,

for someN < oo and for ally e R?, f~(y) is a set consisting of at moat ele-
ments. The proof of the other two cases of Theorem 2.8 can now be carried over
also for this case. O

5. Nonlinear Quotient Mappings from R? to R

Notice that there is no uniform quotient mapping frftoR” fork < n. One way

to see this is to observe that such a mapping would be Lipschitz and co-Lipschitz
for large distances, which leads to a contradiction when looking at the maximal
number of disjoint balls of a certain radius contained in a ball of a larger radius.
Thus, the simplest case of Lipschitz and uniform quotient mappings between Eu-
clidean spaces is that of mappings frifto R (since fromR to R they are all
one-to-one). In this section we briefly discuss this case, which is not entirely triv-
ial, as we shall see. The main result is that, for Lipschitz quotient mappings, the
inverse image of a point has finitely many components. Before we start, consider
the following two examples (Figure 2) of Lipschitz quotient mappings fiRfto

R. In both cases the mappinfjis the distance from the solid lines multiplied, in
each component of the complement of the solid lines, by the sign indicated.
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Figure 2

Note thatf ~1(0) has one component in the first example and two in the second.
It is easy to draw examples with an arbitrary finite number of components. No-
tice also thaiR? \ f~1(0) has six components in the first example and three in the
second.

ProrosiTioN 5.1. Let f: R" — R be a uniform quotient mapping satisfying
(2.1). Then, for each € R, the number of components Bf \ £ ~%(¢) is finite and
bounded by a function af, w(-), and Q(-) only.

Proof. According to the remarks made in the introduction, each component of
R" \ £7Y0) is mapped byf onto a component aR \ {0}, that is, onto either
(0, 00) or (—o0, 0). Recall thatf is Lipschitz and co-Lipschitz for large distances
and letL ands, depending only on the moduli of uniform and co-uniform con-
tinuity, be such that B(f(z)) € f(B,(z)) C B.,(f(z)) forall z € R" and all
r>1

Let Dy, ..., D; be distinct components @&” \ f~1(0) intersecting B(0) for
somer > 1. Increasing, we may also assume that there are D; N B, (0) with
|f(x))] > 1fori = 1,..., k. Note that eachD; intersectsaB,, (0). Moreover,
there is ay; € D; N 9By, (0) such that f(y;)| > ér. Indeed, assuming(x;) > 1,
there is anc! € By(x;) such thatf(x}) > 1+ §. Note that, ifL < 1 as we may
assume, Bx;) C D;. There is anc? € By(x}) such thatf(x?) > 1+ 28; again,
Bi(x}) C D;. Continuing this way at least [+ 1] times (and interpolating be-
tween the last two points) yieldsyae D; N dB,, (0) with f(y;) > 1+ 8[r] > ér.
It follows that Bs,/. (y;) C D;, and we gek disjoint balls of radiusr/L included
in a ball of radius 3. Consequentlyk < (3L/3)". O

We now aim to prove (in Proposition 5.4) that, for eachR, every component
of fX(¢) separates the plane. We first need two lemmas.

LemMma 5.2. Let f: R" — R be a continuous open mapping. Then, for every
t € R, no component of ~1(¢) is bounded.

Proof. Assume thatd is a compact component gf 1(0). Let U be an open
bounded connected set containiigvhose boundary does not megtt(0). One
way to obtain such a set is to lebe such tha#A ¢ B, (0) and letB be the union
of R" \ B,(0) with all the components of ~1(0) meetingR” \ B, (0) (which is a
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closed set). BotlB andA are components a8 U £ ~1(0), so there is an open set
V C R"\ B that containsA and whose boundary does not intersBet £ ~1(0).
Now letU C V be the component containing

Next we would like to make sure that the boundary/ois connected. Toward
this end, look at the complement (Rf) of the unbounded component&f \ U.
ReplaceU with the component of this set containidg By [K, Ch. 8, Sec. 57,
[, Thm. 6], the boundary of this set is connected. We now have an open bounded
connected set containingwhose connected boundary does not mEe{0). The
boundary of such a set and thus also the set itself is mappgdrtg either(0, oo)
or (—oo, 0)—a contradiction. O

LemMa 5.3. Let f: R? — R be a Lipschitz quotient mapping. Then, for each
t € R and for each balB, the number of components 6f(¢) intersectingB is
finite.

Proof. Assume that B(f(x)) C f(B,(x)) C B..(f(x)) for all x € R? and all
r > 0. Assume also that the number of componentg of(0) intersecting B(0)
is infinite, and fix O< ¢ < r/(2+ L). Then there are infinitely many components
A; such that the distance between any twaiein B, (0) is less thare. Because
all the A; are unbounded, we can find two of them (s&yandA,) such that the
distance betweeA; N 9B3,(0) andA, N 9B3,(0) is less thar.

Lety € A1 N B,(0) andz € A; N B3, (0) be such thatA, N B.(y) # 0 #
A, N Be(z). Arguing similarly to Case IV in the proof of Lemma 2.6, we obtain
a bounded connected open éethat meets the discs,By) and B.(z) and whose
boundary is contained in; U A, U B, (y) UB,(z). The latter property o; gives
that|f(x)| < Le ondG, while the former gives thatx € G : 2r — ¢ < |x| <
2r + ¢} is nonempty and open and hence contains a poinith |u| = 2r. By
Lemma 2.2, we may find a curye: [0, oo) — R? with Lipschitz constant 1 and
¢(0) = u and such thaf (¢ (r)) = f(u)+1tsign(f(u)). Since this curve is clearly
unbounded, there isa> 0 such tha® () lies on the boundary af; theng (t) €
B.(y) U B.(z), becausef(¢(r)) # 0 and f is zero onA; U A,. HenceLe >
| f(@(T)] =1 > |d(r) —¢(0)] > r—2¢, which contradicts the choice of O

ProposITION 5.4. Let f: R? — R be a Lipschitz quotient mapping. Then, for
eachr € R, each component of ~1(¢) separates the plane.

Proof. Let A be a component of ~1(r). By Lemma 5.3, 1(r) \ A is closed. Let

G be the component d&? \ (£ ~X(r) \ A) containingA4; G is an open and con-
nected set. Assuming now thatdoes not separate the plane, we claim thatso

does not separatg. Indeed,G \ A = G N (R?\ A) and both sets in the intersec-

tion are connected, so we can apply [K, Ch. 8, Sec. 57, Il, Thm. 2] to deduce that
G \ Ais connected. But it is impossible thatseparates: If G \ A is connected
then f maps it to eithex0, co) or (—oo, 0), but near any point ofi there exist

points whose images are positive and points whose images are negative. This con-
tradiction finishes the proof. O

Propositions 5.1 and 5.4 now imply the following corollary.
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CoroLLARY 5.5. Let f: R> — R be a Lipschitz quotient mapping. Then, for
eacht e R, f~Y(t) has a bounded number of components. The upper bound of the
number of components depends only on the Lipschitz and co-Lipschitz constants

of f.

There are two unsettled problems related to the material of this section. One is
whether one can weaken the assumptions of Lipschitz quotient to uniform quo-
tient in the appropriate places. The other question is to what extent the number of
components off ~X(¢) or of R? \ f~1(¢) is independent of. An examination of

the examples given here shows that these numbers may depebdtdaaves the
possibility that, after excluding finitely many they are constants.
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