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For a monic polynomialp of degreed, we writeE(p) := { z : |p(z)| = 1}. A
conjecture of Erd̋os, Herzog and Piranian [4], repeated by Erdős in [5, Prob. 4.10]
and elsewhere, is that the length|E(p)| is maximal whenp(z) := zd+1. It is easy
to see that, in this conjectured extremal case,|E(p)| = 2d +O(1) whend →∞.

The first upper estimate|E(p)| ≤ 74d2 is due to Pommerenke [10]. Recently,
Borwein [2] gave an estimate that is linear ind, namely

|E(p)| ≤ 8πed ≈ 68.32d.

Here we improve Borwein’s result.
Let α0 be the least upper bound of perimeters of the convex hulls of compact

connected sets of logarithmic capacity 1. The precise value ofα0 is not known, but
Pommerenke [8] proved the estimateα0 < 9.173. The conjectured value isα0 =
33/222/3 ≈ 8.24.

Theorem 1. For monic polynomialsp of degreed, |E(p)| ≤ α0d < 9.173d.

A similar problem for rational functions turns out to be much easier, and can be
solved completely by means of Lemma 1.

Theorem 2. Letf be a rational function of degreed. Then the spherical length
of the preimage underf of any circleC is at mostd times the length of a great
circle.

This is best possible, as shown by the example off(z) = zd andC = R.

Remarks. Borwein notices that his method would give the estimate 4πd ≈
12.57d if one knew one of the following facts: (a) the precise estimate of the size
of the exceptional set in Cartan’s lemma (Lemma 3 here); or (b) for extremal
polynomials, the setE(p) is connected. It turns out that (b) is true (this is our
Lemma 3), and in addition we can improve from 4π to 9.173 by using more pre-
cise arguments than those of Borwein.

The main property of the level setsE(p) is the following.
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Lemma 1. For every rational functionf of degreed, thef -preimage of any line
or circle has no more than2d intersections with any line or circleC, except finitely
manyC.

Proof. The group of fractional-linear transformations acts transitively on the set
of all circles on the Riemann sphere, and a composition of a rational function with
a fractional-linear transformation is a rational function of the same degree.

Thus it is enough to prove that, for a rational functionf of degreed, the set
F := { z : f(z) ∈ R } has at most 2d points of intersection with the real lineR,
unlessR ⊂ F. Let z0 be such a point of intersection. Thenz0 is a zero of the ra-
tional functionf1(z) = f(z)− f(z̄). But f1 evidently has degree at most 2d and
thus cannot have more than 2d zeros, unlessf1≡ 0.

The length of sets described in Lemma 1 can be estimated using the following
lemma, in which we denote byπx andπy the orthogonal projections onto a pair
of perpendicular coordinate axes.

Lemma 2. If an analytic curve0 intersects each vertical and horizontal line at
mostn times, then|0| ≤ n(|πx(0)| + |πy(0)|).
Proof. We break the curve0 into finitely many pieceslj such that everylj inter-
sects each vertical or horizontal line at most once. Then we have

|lj | ≤ |πx(lj )| + |πy(lj )|.
We obtain this by approximatinglj by broken lines whose segments are parallel
to the coordinate axes. Adding these inequalities for all pieces and using the fact
that both projection maps are at mostn-to-1 on0, we obtain the result.

Corollary. Every connected subsetl ofE(p) has the property

|l| ≤ 2d(|πx(l)| + |πy(l)|) ≤ 4d diam(l ).

Lemma 3 (H. Cartan, see e.g. [7, p. 19]).For a monic polynomialp of degreed,
the set{ z : |p(z)| < M } is contained in the union of discs the sum of whose radii
is 2eM1/d .

Pommerenke [9, Satz 3] improved the constant 2e in this lemma to 2.59, but we
will not use this result.

Now we can prove the existence of extremal polynomials for our problem.

Lemma 4. The length|E(p)| is a continuous function of the coefficients ofp.

For every positive integerd there exists a monic polynomialpd with the property
|E(pd)| ≥ |E(p)| for every monic polynomialp of degreed.

Proof. Every monic polynomial of degreed can be written as

p(z) =
d∏
j=1

(z− zj ).
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We consider vectorsZ = (z1, . . . , zd) in Cd and denote bypZ the monic polyno-
mial with the zero-setZ.

First we show that|E(p)| → 0 as diamZ → ∞, p = pZ. LetM be a num-
ber such thatM > (4e)d . If the diameter of the setZ is greater than 4Md, then
we can splitZ into two parts,Z = Z1∪ Z2, such that dist(Z1, Z2) > 4M.

Indeed, LetD be the union of closed discs of radii 2M centered at the points
z1, . . . , zd . If D is connected, then diamD ≤ 4Md, contradicting our assumption.
ThusD is disconnected—that is,D = D1 ∪ D2, whereD1 andD2 are disjoint
compact sets. We setZi = Z ∩Di for i = 1,2, which proves our assertion.

Consider two polynomials

pk(z) :=
∏
w∈Zk

(z− w), k = 1,2,

so thatp = p1p2. By Lemma 3, the unionL of two sets

Lk := { z : |pk(z)| < M−1 }, k = 1,2,

can be covered by discs the sum of whose radii is 4eM−1/d < 1. Thus, the sum of
the lengths of the projections ofL satisfies

|πx(L)| + |πy(L)| ≤ 16eM−1/d . (1)

On the other hand, each component of a setLk contains a zero ofpk and has di-
ameter less than 2, so that dist(L1, L2) > 4M − 4> 2M sinceM > 4e.

Next we show thatE(p) ⊂ L1∪ L2. Indeed, suppose thatz ∈ E(p). Assume
without loss of generality that dist(z, L1) ≤ dist(z, L2). Then dist(z, L2) > M

and thus|p2(z)| > M, so that

|p1(z)| = |p(z)|/|p2(z)| < M−1,

and this implies thatz∈L1.

We conclude that|πx(E(p))| + |πy(E(p))| ≤ 16eM−1/d , which tends to 0 as
M →∞. Now an application of the corollary following Lemma 2 concludes the
proof of our assertion that|E(p)| → 0 as diamZ→∞.

Now we show that|E(pZ)| is a continuous function of the vector

Z = (z1, . . . , zd)∈Cd .

Consider the multivalued algebraic function

q(Z,w) = (d/dw)(p−1(w)).

The coefficients of the algebraic equation defining this functionq are polyno-
mials ofZ andw, andq(Z,w) 6= 0 in Cd × C because this is a derivative of an
inverse function. So all branches ofq are continuous with respect tow andZ at
every point where these branches are finite (see e.g. [6, Thm. 12.2.1]). Denoting
by T the unit circle, we have

|E(p)| =
∫

T
Q(Z,w)|dw|, whereQ(Z,w) =

∑
|q(Z,w)|;
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the summation is over all values of the multivalued functionq. To show that this
integral is a continuous function of the parameterZ,we will verify that the family
of functionsw 7→∑|q(Z,w)|, T → R has a uniform integrability property.

LetK be an arc of the unit circle of lengthδ < π/6. Then this arc is contained
in a discD(w, r) of radiusr = δ/2, centered at the middle pointw of the arcK.
By Lemma 3 applied top − w, the full preimagep−1D(w, r) can be covered by
discs the sum of whose radii is at most 2er1/d . So the sum of the vertical and hor-
izontal projections ofp−1D(w, r) is at most 8er1/d . Finally, by the corollary after
Lemma 2, the length of the part ofE(p) that is mapped toK is at mostε :=
16der1/d = 16de(δ/2)1/d . Thus∫

K

Q(Z,w)|dw| < ε, (2)

whereε→ 0 asδ→ 0 uniformly with respect toZ.
Suppose now thatZ0 ∈ Cd . Consider the pointsw1, . . . , wk on the unit circle

T such thatQ(Z0, wj ) = ∞. Thenk ≤ d − 1, because a polynomialp of de-
greed can have no more thand − 1 critical points. Given thatε > 0, we choose
open arcsKj such thatwj ∈ Kj ⊂ T (1 ≤ j ≤ k) and that (2) is satisfied with
K =⋃j Kj wheneverZ ∈Cd . Now we haveQ(Z,w)→ Q(Z0, w) asZ→ Z0

uniformly with respect tow in T \K, so that∣∣∣∣∫
T
Q(Z,w)|dw| −

∫
T
Q(Z0, w)|dw|

∣∣∣∣ ≤ 3ε

whenZ in Cd is close enough toZ0.

We have proved thatZ 7→ |E(pZ)| is a continuous function inCd and that
|E(pZ)| → 0 asZ → ∞. It follows that a maximum of|E(p)| exists. To show
that|E(p)| is a continuous function of the coefficients, we again refer to the well-
known fact [6, Thm. 12.2.1] that the zeros of a monic polynomial are continuous
functions of its coefficients.

In what follows we will callextremalany polynomialp that maximizes|E(p)| in
the set of all monic polynomials of degreed.

Lemma 5. There exists an extremal polynomialp such that all critical points of
p are contained inE(p).

Remarks. From this lemma it follows that the polynomialz2+1 is extremal for
d = 2. The level set{ z : |z2 + 1| = 1} is known as Bernoulli’s lemniscate (it is
also one of Cassini’s ovals), and its length is expressed by the elliptic integral

4
∫ 1

0

1√
1− x4

dx ≈ 7.4163.

This curve, as well as the integral played an important role in the history of math-
ematics (see e.g. [11]).

Proof of Lemma 5.Let p be a polynomial anda a critical value ofp such thata
does not lie on the unit circleT. Let U be an open disc centered ata such that
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U does not contain other critical values. Let8 : C → C be a smooth function
whose support is contained inU and such that8(a) = 1. If λ ∈C andλ satisfies
|λ| < ε := (maxU |grad8|)−1, then the mapφλ : C→ C, φλ(z) = z + λ8(z), is
a smooth quasiconformal homeomorphism ofC. Hence we have a family of qua-
siconformal homeomorphisms depending analytically onλ for |λ| < ε.

The compositionqλ := φλ Bp is a family of quasiregular maps of the plane into
itself. We denote byµf the Beltrami coefficient of a quasiregular mapf ; that is,
µf := fz̄/fz, wherefz := ∂f/∂z andfz̄ := ∂f/∂z̄. By the chain rule (see e.g.
[1, p. 9]),

µqλ =
( |p ′|
p ′

)2

µφλ B p, (3)

so thatµqλ depends analytically onλ for |λ| < ε. According to the existence and
analytic dependence on parameter theorems for the Beltrami equation (see e.g.
[3, Chap. I, Thms. 7.4 and 7.6]), there exists a family of quasiconformal homeo-
morphismsψλ : C→ C, that (a) satisfies the Beltrami equations

µψλ = µqλ,
(b) is normalized byψλ = z + o(1), z → ∞, and (c) depends analytically onλ
for |λ| < ε for every fixedz.

It follows that
pλ := qλ B ψ−1

λ = φλ B p B ψ−1
λ

are entire functions. Since they are alld-to-1, they are polynomials of degreed,
and the normalization ofψ implies that these polynomials are monic. These poly-
nomialspλ may be considered as obtained fromp by shifting one critical value
from a to a + λ, while all other critical values remain unchanged. The functions
λ 7→ pλ(z) are continuous (in fact, analytic) for everyz. Thus the coefficients of
pλ are continuous functions ofλ. It follows by Lemma 4 that|E(pλ)| is a contin-
uous function ofλ.

Now we assume thatp is an extremal polynomial and that a critical valuea of p
does not belong to the unit circleT. Then we can choose the discU in the preced-
ing construction such thatU does not intersect the unit circle. Asφλ is conformal
outsideU, we conclude from (3) thatqλ and thusψλ are conformal away from
p−1(U). This implies thatψλ is conformal in the neighborhood ofE(p), and we
have

|E(pλ)| = |ψλ(E(p))| =
∫
E(p)

∣∣∣∣dψλdz
∣∣∣∣|dz|.

Sinceφλ depends analytically onλ, so doesdψλ/dz; thus, for every fixedz,
|dψλ/dz| is a subharmonic function ofλ for |λ| < ε. It follows that |E(pλ)| is
subharmonic for|λ| < ε. Because we assumed thatp is extremal, this subhar-
monic function has a maximum at the point 0, so it is constant.

Now we consider all critical valuesa1, . . . , an of p that do not belong to the unit
circleT, and we connect eachaj with T by a curveγj such that all these curves are
disjoint and do not intersectT except at one endpoint. Performing the deformation
described previously, we move all critical valuesaj, one at a time, alongγj to the
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unit circle; as a result, we obtain a monic polynomialp∗ of degreed all of whose
critical values belong toT. This is equivalent to the property that all critical points
of p∗ belong toE(p∗). We have|E(p∗)| = |E(p)|, because|E(p)| remains con-
stant as a critical valueaj is moved alongγj . Thusp∗ is also extremal.

Lemma 6. There exists an extremal polynomialp for which the setE(p) is con-
nected.

Proof. PutD = { z ∈ C̄ : |P(z)| > 1} and1 = { z ∈ C̄ : |z| > 1}. Let p be an
extremal polynomial constructed as in Lemma 5. Thenp : D → 1 is a ramified
covering of degreed having exactly one critical point of indexd −1, namely, the
point∞. By the Riemann–Hurwitz formula,D is simply connected, soE(p) is
connected.

Remarks. By moving those critical values whose moduli are greater than 1 to-
ward infinity rather than to the unit circle, and using the arguments from the proof
of Lemma 4, one can show that an extremal polynomial cannot have critical values
with absolute value greater than 1. In fact, it follows that, for all extremal poly-
nomialsp, the level setsE(p) are connected. We will not use this additional
information in the proof of Theorem 1.

Lemma 7 (Pommerenke [8, Satz 5]).LetE be a connected compact set of loga-
rithmic capacity1. Then the perimeter of the convex hull ofE is at most

π
(√

10− 3
√

2+ 4
)
< 9.173.

Proof of Theorem 1.Let p be an extremal polynomial with connected setE(p).

Such ap exists by Lemma 6. Applying Lemma 7, we conclude that the perimeter
of the convex hull ofE is at most 9.173.

Now the integral-geometric formula [12] for the length of a curve gives

|E| = 1

2

∫ π

0

∫ ∞
−∞

NE(θ, x) dx dθ,

whereNE(θ, x) is the number of intersections ofE with the line

{ z : <(ze−iθ ) = x }.
A connected compact setE intersects exactly those lines that the boundary of its
convex hull intersects. But the boundary of the convex hull intersects almost every
line either 0 or 2 times, while a setE(p) intersects each line at most 2 degp times.
Thus|E| < 9.173d. This proves our assertion.

Proof of Theorem 2.Following Borwein, we use the Poincaré integral-geometric
formula [12]. Assuming that the great circles have length 2π, we denote byl(E)
the spherical length ofE, by dx the spherical area element, and byv(E, x) the
number of intersections ofE with the great circle, one of whose centers isx. The
Poincaré formula is

l(E) = 1

4

∫
v(E, x) dx.
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Now, if E(f ) is the preimage of a circle under a rational functionf of degreed,
then by Lemma 1 we have thatE(f ) intersects every great circle at most 2d times,
so that the spherical lengthl(E(f )) is at most 2πd.

We are very grateful to Christian Pommerenke for helpful discussion and refer-
ences. We also thank the referee, whose suggestions improved our original esti-
mate in Theorem 1.
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