On the Length of Lemniscates

ALEXANDRE EREMENKO & WALTER HAYMAN

For a monic polynomiap of degreed, we write E(p) := {z : |p()| = 1}. A
conjecture of Erds, Herzog and Piranian [4], repeated by&sih [5, Prob. 4.10]
and elsewhere, is that the lengfy p)| is maximal wherp(z) := z¢ +1. Itis easy
to see that, in this conjectured extremal ca8&p)| = 2d + O(1) whend — oo.

The first upper estimatiegE(p)| < 74d? is due to Pommerenke [10]. Recently,
Borwein [2] gave an estimate that is lineardnnamely

|[E(p)| < 8med ~ 68.32d.

Here we improve Borwein’s result.

Let g be the least upper bound of perimeters of the convex hulls of compact
connected sets of logarithmic capacity 1. The precise valug isfnot known, but
Pommerenke [8] proved the estimatg < 9.173 The conjectured value gy =
3%222/3 ~ 8.24.

THEOREM 1. For monic polynomialp of degreed, |E(p)| < aod < 9.173.

A similar problem for rational functions turns out to be much easier, and can be
solved completely by means of Lemma 1.

THEOREM 2. Let f be a rational function of degre. Then the spherical length
of the preimage undef of any circleC is at mostd times the length of a great
circle.

This is best possible, as shown by the examplg@f = z¢ andC = R.

REMARKS. Borwein notices that his method would give the estimated 4%
12574 if one knew one of the following facts: (a) the precise estimate of the size
of the exceptional set in Cartan’s lemma (Lemma 3 here); or (b) for extremal
polynomials, the seE(p) is connected. It turns out that (b) is true (this is our
Lemma 3), and in addition we can improve from 40 9173 by using more pre-
cise arguments than those of Borwein.

The main property of the level selq p) is the following.
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LemMma 1. For every rational functionf of degreed, the f-preimage of any line
or circle has no more tha®d intersections with any line or circl€, except finitely
manyC.

Proof. The group of fractional-linear transformations acts transitively on the set
of all circles on the Riemann sphere, and a composition of a rational function with
a fractional-linear transformation is a rational function of the same degree.

Thus it is enough to prove that, for a rational functigrof degreed, the set
F :={z: f(z) € R} has at most 2 points of intersection with the real lirfe,
unlessk C F. Let zo be such a point of intersection. Thegis a zero of the ra-
tional function fi1(z) = f(z) — f(Z). But f; evidently has degree at mosf 2nd
thus cannot have more thad 2eros, unlesg; = 0. O

The length of sets described in Lemma 1 can be estimated using the following
lemma, in which we denote by, andx, the orthogonal projections onto a pair
of perpendicular coordinate axes.

LemMA 2. If an analytic curvel” intersects each vertical and horizontal line at
mostr times, thenl'| < n(|w ()| + |7, (T)]).

Proof. We break the curvé into finitely many piece$; such that every; inter-
sects each vertical or horizontal line at most once. Then we have

1] < ||+ [y ()]

We obtain this by approximating by broken lines whose segments are parallel
to the coordinate axes. Adding these inequalities for all pieces and using the fact
that both projection maps are at masto-1 onI, we obtain the result. O

CoroLLARY. Every connected subgetdf E( p) has the property
1| < 2d (|7 ()] + [y (D)]) < 4d diam(l).

LemmMma 3 (H. Cartan, see e.qg. [7, p. 19]) For a monic polynomiap of degreed,
the set{z : |p(z)| < M }is contained in the union of discs the sum of whose radii
is 2eM Y.

Pommerenke [9, Satz 3] improved the constanirthis lemma to 2.59, but we
will not use this result.
Now we can prove the existence of extremal polynomials for our problem.

LemMma 4. The length|E(p)| is a continuous function of the coefficientsyof
For every positive integef there exists a monic polynomig), with the property
|[E(pa)| = |E(p)| for every monic polynomigh of degreed.

Proof. Every monic polynomial of degreécan be written as

d
p(z) = H(z —Zj).
j=1
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We consider vectorg = (z1, . . ., z4) in C? and denote by, the monic polyno-
mial with the zero-sef.

First we show thatE(p)| — 0 as dianZ — oo, p = pz. Let M be a num-
ber such that/ > (4e)?. If the diameter of the sef is greater than Md, then
we can splitZ into two parts,Z = Z; U Z,, such that distZ,, Z,) > 4M.

Indeed, LetD be the union of closed discs of radil2 centered at the points
71, - - ., 24. If Disconnected, then diald < 4Md, contradicting our assumption.
Thus D is disconnected—that id) = D; U D, where D; and D, are disjoint
compact sets. We s&t = Z N D; fori =1, 2, which proves our assertion.

Consider two polynomials

pi(2) = H(Z—w), k=12,

weZy

so thatp = p1p,. By Lemma 3, the unioid of two sets
Lii={z:Ip@ <M}, k=12,

can be covered by discs the sum of whose radiki®#4Y¢ < 1. Thus, the sum of
the lengths of the projections éf satisfies

|7 (L)] + |7y (L) < 16eM Y4, Q)

On the other hand, each component of alsetontains a zero op; and has di-
ameter less than 2, so that dist, L,) > 4M — 4 > 2M sinceM > 4e.

Next we show thaE(p) C L1 U L,. Indeed, suppose thate E(p). Assume
without loss of generality that di&t, L,) < dist(z, L2). Then distz, L) > M
and thug p2(z)| > M, so that

P12 = [p@)I/Ip2(2)] < MY,

and this implies that € L;.

We conclude thatr,(E(p))| + |7, (E(p))| < 16eM ~Y4, which tends to O as
M — oo. Now an application of the corollary following Lemma 2 concludes the
proof of our assertion thak(p)| — 0 as dian¥Z — oo.

Now we show thatE(pz)| is a continuous function of the vector

Z = (Zl,...,Zd)ECd.
Consider the multivalued algebraic function
q(Z, w) = (d/dw)(p~(w)).

The coefficients of the algebraic equation defining this functioare polyno-
mials of Z andw, andg(Z, w) # 0 in C? x C because this is a derivative of an
inverse function. So all branches gfare continuous with respect to and Z at

every point where these branches are finite (see e.g. [6, Thm. 12.2.1]). Denoting
by T the unit circle, we have

|ECp)I =/ Q(Z, w)ldw|, where Q(Z, w)=Z|61(Z, w)l;
T
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the summation is over all values of the multivalued functorfo show that this
integral is a continuous function of the parametemve will verify that the family
of functionsw — ) |¢(Z, w)|, T — R has a uniform integrability property.

Let K be an arc of the unit circle of length< 7/6. Then this arc is contained
in a discD(w, r) of radiusr = §/2, centered at the middle point of the arckK.
By Lemma 3 applied tp — w, the full preimagep—D(w, r) can be covered by
discs the sum of whose radii is at mogt-®¢. So the sum of the vertical and hor-
izontal projections op~'D(w, r) is at most 814, Finally, by the corollary after
Lemma 2, the length of the part @&¢(p) that is mapped t&X is at mosts =
16der¥? = 16de(5/2)Y. Thus

[ ez wiaul <. @
K
wheres — 0 ass — 0 uniformly with respect t&.

Suppose now that, € C?. Consider the points, . . ., w; on the unit circle

T such thatQ(Zo, w;) = co. Thenk < d — 1, because a polynomial of de-
greed can have no more thah— 1 critical points. Given that > 0, we choose
open arcsK; such thatw; € K; C T (1 < j < k) and that (2) is satisfied with
K= Uj K; whenevelZ e C?. Now we haveQ(Z, w) — Q(Zo, w) asZ — Zg
uniformly with respect taw in T\ K, so that

< 3

/Q(Z, W)Idwl—f Q(Zo, w)ldw|
T T

whenZ in C¢ is close enough t& .

We have proved thaZ ~ |E(p)| is a continuous function ii€¢ and that
|[E(pz)| — 0asZ — oo. It follows that a maximum of E(p)| exists. To show
that|E(p)| is a continuous function of the coefficients, we again refer to the well-
known fact [6, Thm. 12.2.1] that the zeros of a monic polynomial are continuous
functions of its coefficients. O

In what follows we will callextremalany polynomialp that maximizes$E(p)| in
the set of all monic polynomials of degrée

LeEMMA 5. There exists an extremal polynompakuch that all critical points of
p are contained inE(p).

REMARKS. From this lemma it follows that the polynomigl + 1 is extremal for
d = 2. The level sef 7 : |z2 + 1] = 1} is known as Bernoulli’s lemniscate (it is
also one of Cassini's ovals), and its length is expressed by the elliptic integral

1
4/ ———dx ~ 7.4163
0 v/1— x4

This curve, as well as the integral played an important role in the history of math-
ematics (see e.g. [11]).

Proof of Lemma 5Let p be a polynomial and a critical value ofp such that
does not lie on the unit circl&. Let U be an open disc centeredasuch that
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U does not contain other critical values. L&t C — C be a smooth function
whose support is contained th and such tha® (a) = 1. If » € C andx satisfies
[A| < & := (maxy|grad®|)~% then the map,: C — C, ¢y(z) = z + AP (2), is

a smooth quasiconformal homeomorphisnCofHence we have a family of qua-
siconformal homeomorphisms depending analyticallpdor |1| < &.

The compositiony;, := ¢, o p is a family of quasiregular maps of the plane into

itself. We denote by, the Beltrami coefficient of a quasiregular mg@pthat is,
wr = fz/f., wheref, := 9f/dz and f; := 9f/dz. By the chain rule (see e.g.

(1, p. 9D, ,
Hg, = (%) He, oD, (3

so thatu,, depends analytically onfor |A| < e. According to the existence and
analytic dependence on parameter theorems for the Beltrami equation (see e.qg.
[3, Chap. I, Thms. 7.4 and 7.6]), there exists a family of quasiconformal homeo-
morphismsy;, : C — C, that (a) satisfies the Beltrami equations

My, = Ky

(b) is normalized by, = z 4+ 0o(1), z — oo, and (c) depends analytically an
for |A| < & for every fixedz.

It follows that

= goYt=dropoy;t

are entire functions. Since they are &lto-1, they are polynomials of degrée
and the normalization af implies that these polynomials are monic. These poly-
nomials p; may be considered as obtained frgnby shifting one critical value
froma to a + X, while all other critical values remain unchanged. The functions
A = py(z) are continuous (in fact, analytic) for every Thus the coefficients of
p,. are continuous functions af. It follows by Lemma 4 thatE(p,)| is a contin-
uous function of..

Now we assume that is an extremal polynomial and that a critical valuef p
does not belong to the unit circle Then we can choose the digcin the preced-
ing construction such thdf does not intersect the unit circle. &g is conformal
outsideU, we conclude from (3) thag; and thusy, are conformal away from
p~X(U). This implies thaty; is conformal in the neighborhood &f( p), and we
have

ay,.

Bl =) = [T
E(p)| dZ

Since ¢;, depends analytically oa, so doesdv; /dz; thus, for every fixed,
|dyry /dz| is a subharmonic function of for |A| < e. It follows that|E(p,)| is
subharmonic fotA| < ¢. Because we assumed thatis extremal, this subhar-
monic function has a maximum at the pointd® it is constant.

Now we consider all critical values, . . ., a, of p that do not belong to the unit
circleT, and we connect eaeh with T by a curvey; such that all these curves are
disjoint and do not interse@texcept at one endpoint. Performing the deformation
described previously, we move all critical valugsone at a time, along; to the

|dz].




414 ALEXANDRE EREMENKO & WALTER HAYMAN

unit circle; as a result, we obtain a monic polynomiélof degreed all of whose
critical values belong t@. This is equivalent to the property that all critical points
of p* belong toE(p*). We havg E(p*)| = |E(p)|, becauseéE( p)| remains con-
stant as a critical value; is moved along/;. Thusp* is also extremal. O

LemMma 6. There exists an extremal polynompafor which the sef(p) is con-
nected.

Proof. PutD = {ze€C : |P(z)] > 1} andA = {z e C : |z| > 1}. Let p be an
extremal polynomial constructed as in Lemma 5. ThenD — A is a ramified
covering of degred having exactly one critical point of indek— 1, namely, the
point co. By the Riemann—Hurwitz formulal is simply connected, sf(p) is
connected. O

REMARKS. By moving those critical values whose moduli are greater than 1 to-
ward infinity rather than to the unit circle, and using the arguments from the proof
of Lemma 4, one can show that an extremal polynomial cannot have critical values
with absolute value greater than 1. In fact, it follows that, for all extremal poly-
nomials p, the level setsE(p) are connected. We will not use this additional
information in the proof of Theorem 1.

LemMma 7 (Pommerenke [8, Satz 5]).Let E be a connected compact set of loga-
rithmic capacityl. Then the perimeter of the convex hulliis at most

7(v/10— 3v2 + 4) < 9173
(

Proof of Theorem 1Let p be an extremal polynomial with connected &&ip).
Such ap exists by Lemma 6. Applying Lemma 7, we conclude that the perimeter
of the convex hull ofE is at most A73

Now the integral-geometric formula [12] for the length of a curve gives

1 T o0
|E| = —/ / Ng (6, x) dx db,
2 0 —00

whereNEg (0, x) is the number of intersections @f with the line
{z:N(ze ™) =x).

A connected compact sét intersects exactly those lines that the boundary of its
convex hullintersects. But the boundary of the convex hull intersects almost every
line either O or 2 times, while a séX p) intersects each line at most 2 degmes.
Thus|E| < 9.173d. This proves our assertion. O

Proof of Theorem 2Following Borwein, we use the Poincaré integral-geometric
formula [12]. Assuming that the great circles have length ®e denote by(E)

the spherical length of., by dx the spherical area element, andd£, x) the
number of intersections d with the great circle, one of whose centers isThe
Poincaré formula is

I(E) = %/U(E,x)dx.
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Now, if E(f) is the preimage of a circle under a rational functjpf degreed,
then by Lemma 1 we have th&({ f) intersects every great circle at mogtmes,
so that the spherical lengthE(f)) is at most 2id. O

We are very grateful to Christian Pommerenke for helpful discussion and refer-
ences. We also thank the referee, whose suggestions improved our original esti-
mate in Theorem 1.
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