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Introduction

In 1994, Wolfgang Luck [15] proved the beautiful theorem thatXifs a finite
simplicial complex with residually finite fundamental group, then fifeBetti
numbers of the universal covering Bfcan be approximated by the ordinary Betti
numbers of a sequence of finite coverings¥ofin fact, the question of approxi-
mation dates back to Kazhdan [12] (see also [10, p. 231]), but only an inequality
was known. Dodziuk and Mathai [8] show a result analogous to Liick’s theorem
in the situation where the covering transformation group is amenable. Specifi-
cally, they show that thé 2-Betti numbers of an amenable coverifigof X can

be approximated by the ordinary Betti numbers of a sequence of Faglner subsets
of X. This paper generalizes Liick’s theorem to the case where the co¥enas
residually amenable transformation group, a large class of groups that includes the
residually finite groups of Luck’s theorem and the amenable groups of Dodziuk
and Mathai.

Inthis paper we also considef-torsion. Atfirst,L2-torsion was defined fat2-
acyclic covering spaces. THe-analytic torsion was first studied in [18] and [14],
andL?-Reidemeister—Franz torsion was first studied in [6] (see also [16]). Equal-
ity of the combinatorial and analytit?-torsions was proven in 1996 [4].

In order to define thesk?-torsions, one needs to establish decay near zero of
the spectral density function for ti&-Laplacian. In the case of a residually finite
covering, Luck [15] derives an elegant estimate on the spectral density functions
for the finite covers that in the limit gives the necessary decay for the combinato-
rial L2-Laplacian. Liick also proves the homotopy invariancgéetombinatorial
torsion in this case.

In [5], the combinatorial and analytic torsion invariants are defined more gener-
ally as volume forms o#i.2-cohomology, with the decay condition on the spectrum
now replaced by a similar condition known as determinant class. The results of
[4] extend to show the equality of these more general combinatorial and analytic
L?-torsions.

Dodziuk and Mathai [8] show that coverings with amenable covering group are
of determinant class. Mathai and Rothenberg [19] recently extended Liick’s results
to prove the homotopy invariance bf-torsion in that case. Although an error in
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their proof has been pointed out, the error can easily be fixed and is corrected in
Section 4 of this paper.

A main result of this paper is that coverings with residually amenable covering
group are of determinant class, and thattorsion of such spaces is a homotopy
invariant.

On a different note, Farber [9] has generalized Lick’s theorem in a new direc-
tion, viewing it as a statement about flat bundles rather than finite coverings. In
particular, he gives precise conditions for the convergend&-@etti numbers of
finite nonregular covers. A reasonable direction for future work would be to try
and extend the results of this paper using his techniques.

We now formulate the main results of this paper. Y.éte a connected simplicial
complex. Suppose that a finitely generated graugcts freely and simplicially
onY so thatX = Y/x is a finite simplicial complex.

Suppose there is a nested sequence of normal subgroepsy, D I, O ---
such tha{_, T, = {e}. FormY, = Y/T;, so thatYy, Y>, . . . are a tower of cov-
ering spaces oXk.

Say thatr is residually finite if there exisE, as before, so that the quotients
/T, are all finite. Then eacly, is a finite complex, and Lick’s theorem [15]
states that

bA(Y 1m) = lim_ b Y,),
oo ||
wherebjz)(Y . 7) is the jth L2-Betti number ofy andb;(Y,,) is the ordinaryjth
Betti number ofY,,.
We generalize Luck’s theorem to the situation wheris residually amenable,
meaning there exidt, as before so that the quotientsl’, are all amenable. The
first main result of this paper is as follows.

THEOREM 0.1 (Approximation Theorem). Suppose’ is a simplicial complexyg
acts freely and simplicially oiir, and X = Y/ is a finite simplicial complex. If
7 is residually amenable, then

b2 1) = lim b2 (¥, : 7/T,).
J n—0oQ J

The next result gives more evidence for the determinant class conjecture, which
states that any regular covering space of a finite simplicial complex is of determi-
nant class. For residually finite this follows from [15], and in [8] it was shown

for 7 amenable.

TueoreM 0.2 (Determinant Class Theorem)Supposé is a simplicial complex,
7 acts freely and simplicially ofr, and X = Y/x is a finite simplicial complex.
If 7 is residually amenable, then is of determinant class.

Now we turn to the problem of homotopy invarianceldi-torsion. LetM and
N be compact cell complexes, wit and N regularz-covering spaces. As
in [19], a homotopy equivalencgé: M — N induces a canonical isomorphism
f detHZ)(N) — detH, 2)(M) of determinant lines of.2-cohomology.

Leto,; € detHz)(M) denote the combinatoridl®-torsion of M.
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TueoREM 0.3 (Homotopy Invariance af2-Torsion). Supposef: M — N is a
homotopy equivalence of compact cell complexes, ans/lend N be regular
covering spaces with residually amenable covering group. Then, via the foregoing
identification of determinant lines @f?-cohomology, it follows that

b = dy €detHS (M),

This provides more evidence for the conjecture in [19] (see also [15])that
torsion is always a homotopy invariant when the covering spaces in question are
of determinant class.

This paper is organized as follows. The first section covers preliminaries on
residually amenable groups, and exhibits interesting examples. The second sec-
tion proves the main technical theorem, which essentially states thattgectra
of Laplacians on th&, approximate the.2-spectrum of Laplacian ol Finally,
the third section proves the three main theorems.

The results of this paper first appeared in the author’s thesis [7]; T. Schick has
independently arrived at similar results. Thanks to Mel Rothenberg for suggest-
ing this direction of research, and also to Kevin Whyte and Shmuel Weinberger
for helpful discussions.

1. Preliminaries

1.1. Residual Properties

DerniTION 1.1.  LetC be a nonempty class of groups (though possibly contain-
ing only one group). A group is residuallyC if, for any elemeng € & with g #

e, there exists a quotient groug(g) belonging toC such thatg — g’ € 7'(g)

with g’ # e.

This paper will use a condition equivalent to residuality that holds for certain
classes—for example, ary/that is closed under products and subgroups. For
such a class, a countable growms residuallyC if and only if there is a nested
sequence of normal subgroups= I'1 D I'> D --- such thatr/T, belongs taC
and(>_, I, = {e}. For other basic theorems concerning residual properties of
groups, we refer to [17].

When(C = {finite group$ we say thatr is aresidually finitegroup.

1.2. Amenability

Let = be a finitely generated discrete group with word mefridVe use the fol-
lowing characterization of amenability, due to Fglner.

DEerINITION 1.2.  The groupr is amenablef there is a sequence of finite subsets
{Ar}32, such that, for any fixed > O,

#Hos Ar}

k>oo H#{Ar}

whereds Ay = {y em 1 d(y, Ay) < dandd(y, m—A;) < 8 }isas-neighborhood
of the boundary of\;.

E]
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Examples of amenable groups include finite groups, abelian groups, nilpotent
groups and solvable groups, and groups of subexponential growth. Amenability
for discrete groups is preserved by the following five processes [21, Prop. 0.16]:
(1) taking subgroups;

(2) forming quotient groups;

(3) forming group extensions by amenable groups;

(4) forming upward directed unions of amenable groups;

(5) forming a direct limit of amenable groups.

Free groups with two or more generators, as well as fundamental groups of
closed negatively curved manifolds, aret amenable.

1.3. Residual Amenability

DerFiNITION 1.3, If 7 is residuallyC, whereC = {amenable groupswe say that
7 is residually amenable.

Recall that the derived subgroup$’ of a groupr are defined byr @ = 7 and
7D = [#® 7], Say thatr is solvableif 7@ = {¢} for somei. Therank of
7 is then defined to be the smallédbr whichz® = {e}.

Contained in the class of residually amenable groups is the class of residually
solvable groups. Residually solvable groups are naturally characterized in Propo-
sition 1.1. Free products of residually solvable groups are themselves residually
solvable. This follows from the fact that solvability is a root property, as discussed
in [17].

ProposiTion 1.1. A groupr is residually solvable if and only {52, 7@ = {e}.

Proof. Sincerr/x is solvable, if 52, 7 = {e} thenx is residually solvable.
Now supposer is residually solvable, and lgte (52, 7. Forany mapf: = —
S with S solvable of rank, we havef(g) € f(7®) € §® = {e}fori > k. Since
the image ofg is trivial in any solvable quotient of, we musthavg =e. O

ProrosiTiON 1.2. If T"is residually solvable§ is solvable, andr is an extension
1-TS5S75 85— 1

thenx is residually solvable.

Proof. Supposes has rankk. Thenk (7)) € §® = {¢}, sor® C I' and there-
forex *+0) c 7@ foralli > 0. Then;2, 7@ € M2, TP = {e}. O

ExampLE 1.1. Fornonzero integerp andg, define theBaumslag—Solitagroup

BS(p, q) by
BS(p.q) = (a,b | a*b’a = b¥).

The family of groups B&p, ¢) was first defined in [1]. It is shown in [20] that
BS(p, q) is residually finite if and only if p| =1 or|g| =1 or|p| = |g|.
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Kropholler shows in [13] that the second derived subgra(® is free when
7w = BS(p, ¢) for any p, g. Whenp andq are not botht1, 7@ is free on two or
more generators and thereforas not amenable. Howevert, is residually solv-
able because it is an extension

2)

1579 57 > a/7@ -1,

with 7@ residually solvable and/z? solvable (of rank 2).

More generally, letr be any noncyclic group that is the fundamental group of
a graph of infinite cyclic groups. Then (from [13}J? is free, and the preceding
argument shows that is residually solvable.

ExampLE 1.2. A different generalization of the Baumslag—Solitar groups is
treated in [22], where it is shown that any HNN-extension of a finitely gener-
ated abelian group is residually solvable.

ExampLE 1.3. We show that the amalgamated free product of two abelian groups
is residually solvable. Slightly more generally, suppose we have two solvable
groupsA and B and two monomorphisms, g from an abelian group! into the
centers ofA andB, given bya: H — Z(A) andg: H — Z(B). Then the free
product with amalgamatioA =y B is residually solvable.

To see this, lelV = { («(h), B(h)™Y) | he H} C A x B. SinceH is abelian,
N is a subgroup ofA x B; N is normal becausél includes into the centers of
both A and B. Note that if H is known only to be normal id and B, thenN is
unlikely to be normal ilA x B.

Let K be the kernel of the natural mapxy B — (A x B)/N. In A x5 B,
K has trivial intersection with all conjugates afand B. HenceKk is free by a
well-known theorem of group actions on trees (see e.g. [2, p. 54]). AhepB
is an extension of the solvable growp x B)/N by the residually solvable group
K, and soA =y B is residually solvable.

ExampLE 1.4. R.J. Thompson, G. Higman, K. Brown, and E. A. Scott have all
produced various classes of finitely presented infinite simple groups. The example
of Scott [23] contains a free subgroup on two generators and is therefore neither
amenable nor residually amenable.

2. Main Technical Theorems

As in the introduction, supposéis a simplicial complexg acts freely and sim-
plicially on ¥, and X = Y/x is a finite simplicial complex. Suppose we have a
nested sequence of normal subgroaps I't D I'; D -+ such thaﬂfle r, =
{e}. DefineY, = Y/T,.

SupposeX hasg; cells in dimensiory, and choose a lift t& of eachj-cell of X.
These choices give a basis ové¢r) of the space?{z)(Y) of j-dimensional?-
cochains or¥. The lifts also descend to give basesﬂg)(Yn) overl?(n/T,).
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Denote byA and A, the Laplacian orC(Jz)(Y) andC(fz)(Yn), respectively. All
arguments to follow will apply to a specific value gf but this dependence will
not be indicated.

Let{ E(.) : A €[0, 00) }and{ E,(») : A € [0, oco) } denote the (right continuous)
family of spectral projections ak andA,, respectively. Sinca is-equivariant,
S0 areE(A) = x[o,»)(A) for A € [0, oo). Similarly, E,()) arer/T,-equivariant.
Let F, F,: [0, c0) — [0, c0) denote the spectral density functions

F(A) =Trp EQ) and F,(A) = Tryr, E,(}).
We now set
F(») =limsup, . F,(A), F()) = liminf,_ o F,(A);
FT(W) =limsoor FO+38),  FT() =lims_o+ F(L+8).
With this notation, we may state the main technical results of this paper.

THEOREM 2.1. For all 1 € [0, 00),
FO)=F"()=F*().

THEOREM 2.2. Suppose there is some right continuous funckiorfO, &) —
[0, c0) with s(0) = 0 and such that, for alk and for all » € [0, ¢), we have

F,(A) — F,(0) < s(3).
Then
(1) F(») and F() are right continuous at zero, and

F(0) = F*(0) = F(0) = F(0) = F*(0);

(2) forall »€]0, ¢),
F() — F0) < s()).

These theorems and their proofs are similar to Luick [15, Thm. 2.3], but here they
are stated so as to require no conditions on the quotient grodps The resid-
ual finiteness condition in Lick’s theorem or the residual amenability condition
of this paper are required to providethe uniform decay at zero of the spectral
density functions for the covets,.

In order to show the two technical theorems, we first prove a number of prelim-
inary lemmas.

LemMma 2.1. There exists a numbéf > 1such that the operator norms afand
A, are smaller thark for all n.

Proof. Choosing lifts of cells off, we have identified the space Bt cochains

on Y with @;_,/2(w). The combinatorial Laplacian is then described by an
a x a matrix B with entries inZ[ ], acting by right multiplication. The Laplac-
ian A, is described by the same matiix now acting by right multiplication on

@?:112(77/Fn)-
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Foru=>", .4, g€C[xn], definelul1 =), |1A,|. ChooseK > 1so that

geT gem

b
K >a- ma)({lBij|1;i=1,...,a}.
Jj=1

The proof then proceeds exactly as in [15, Lemma 2.5]. O

LEmMA 2.2. Let p(u) be a polynomial. There is a numbeg depending only
on the system of groups=T'; D I'; O - - - such that, for alls > ny,

Trz p(A) = Trayr, p(Ay).

Proof. We identify A with ana x a matrix B with entries inZ[ ], as in the pre-
vious lemma.

Fix elementso, g1, . . ., g € andip, A1, ..., A, e Rsuchthalgy = e, g #
e,andi; #0forl<i <r, sothat

Y (pBY;j =) higi-
i=0

j=1
Then
Try p(A) = Ao.

The LaplacianA, on Y, is also described by the matri®, now acting on
@;_,?(/T,) by right multiplication. Then

.
Tror, p(An) = Y A Trayr, R(g))
i1

whereR(g;): [(/T,) — [%(7/T,) is right multiplication withg; .

Since the intersection of tHg is trivial, there is a numberg such that, fon >
ng, none of the elementg for1 <i < r liesinT,. Sincerl’, is normal, we con-
clude forn > ng andi # 0 that

Tryr, R(g) =0.

Then, forn > no,
Trz p(A) = A(0) = Tryr, p(Ay). O

LemMa 2.3. LetK be asin Lemma 2.1. Lépi(n)}72, be a sequence of poly-
nomials, uniformly bounded do, K], such that, for the characteristic function
X041 (w) of the interval[0, A],

k'Lmoo Pr(i) = X0, (1)
holds for eachu € [0, K]. Then

lim Tr, pr(A) = F()).
k— 00

Proof. This lemma and its proof are identical to [15, Lemma 2.7]. O
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Proof of Theorem 2.1Fix » > 0. Define fork > 1 a continuous functiorf; :
R — R by

1+ it 1<,
fiw =4 1+ —k(u—-2) frsp<r+i

1 . 1

% if A+ <nu.

Clearly, xjo,, (1) < fira(n) < fi(w) and fi () converges tgqo,; (1) for all
w € [0, oo). For eachk, choose a polynomigh, such thatyo ;) (1) < pr(pn) <
Sfx(w) holds for ally € [0, K], whereK is as in Lemma 2.1. The polynomigig
satisfy the conditions of Lemma 2.3.

Because(o ;) (1) < pr(w) forall i €[0, [|A,]l], we have
Fu(A) = Tryr, (X0, (An) < Trayr,(pe(An)). (2.0)

On the other hand, we hayg (u) < 1+ 1/k for u € [0, A + 1/k] and py () <
1/k for p e [ + 1/k, K]. So

Tror, (P(An) < Troyn, (L4 ) x40 (An) + Tram, ((3) xpye, k1 (AR))
=1+ )F(A+ 1) + 2(Fu(K) — Fu(A+ 7))
= Fy(h + ) + tFu(K). (2.)

Now noticeF,(K) = Tryr, (X0, x1(A»)). But xpo,x1(A,) is the identity on the
spaceC(fz)(Y,,), which is identified withEBi“’ llz(n/l“,,). Thus,

By Lemma 2.2, there is a numbeg(k) for each polynomiap, such that, for
n > no(k),

Trz pi(A) = Trryr, (pe(An)).
Then forn > ng(k), the equations (2.0), (2.1), and (2.2) give
Fu() < Tt pi(A) < F(h + 7) + 1.
Taking limits asn — oo,
FOO < Tra pi(d) < F(u+ ) + fay.
Taking limits ask — oo and using Lemma 2.3,
F() < FO) < FT (.
For alle > 0 we have
FO) <F*(A) <F(A+¢&) <F(L+¢8) < F(A+e),
and since lim_qy F(A + &) = F(A) we obtain
F() = F*0)=F* (.
This finishes the proof of Theorem 2.1. O
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Proof of Theorem 2.2We suppose there is some right continuous function
[0, &) — [0, oo) with s(0) = 0 and such that, for all and for allx € [0, ¢),
Fy(2) — Fy(0) = s(Q).
Taking the limit inferior and limit superior fat — oo gives
F() < FO) +s(G) and F() < FO) +s@).

Taking the limit forn — 0O gives

F*0) < F(0) and F*(0) < F(0).
And finally, sinceF andF are increasing, we have

F*(0)=F(0) and F*(0) = F(0).

We already knows*(0) = F(0) = F*+(0) from Theorem 2.1, and this proves
Theorem 2.2(1). Sinceis right continuous, we conclude that

F*() < F(O) + (),
whence Theorem 2.2(2) follows via Theorem 2.1. This finishes the proof of
Theorem 2.2. O

The following pair of lemmas are proved in [15, Lemma 3.3]. We will need them
for the proof (in Section 3.3) of Theorem 0.2.

LEMMA 2.4. Supposéim,_.., F,(0) = F(0) (which follows from Theorem 2.2
when the decay hypothesis is satisfiethen

K _ K _
/ FO) - FO dx < liminf £ 0) = F,O dh.
0

+ n—oo  Jo+ A

LemmMma 2.5. Suppose thé;,, have a uniform spectral gaphat is, suppose there
is somes > 0 such thatF,(A) = F,(0) forall n and for allA < ¢. Then

/K F) — F(0) A3 > lim sup K F.() — Fa(0) i
N S " —d

+ n—00 o+ A

Therefore, using Lemma 2.4,

/K F) — F(0) D — lim /K F,(A) — F,(0) J
0 0

+ A n—o00 [+ A

REMARK. InLemma 2.5, Lick gives a sharper condition than simply demanding
a spectral gap, but it will not be needed here.
3. Proofs of the Main Theorems

In this section, we prove the approximation theorem, the determinant class theo-
rem, and the homotopy invariance bf-torsion for residually amenable groups.



340 BrYAN CLAIR

3.1. The Approximation Theorem

Proof of Theorem 0.{Approximation Theorejn Observe that thgth L?-Betti
numbers ofY andY,, are given by

bly(Y 1) = FO),  bly(¥, i 7/T,) = Fu(0).

Therefore, Theorem 0.1 will follow directly from Theorem 2.2(1) if we can estab-
lish a uniform decay of), near zero.
Sincer/T, is amenable, [8, Thm. 2.1.3] applies, and we have a conktantl
such that
log K

F,(A) — F,(0) = q; “logh s(2) 3.1

forall 0 < A < 1 The constank can be any number larger than ni ||, 1)
and can therefore be chosen independently, &y Lemma 2.1. O

ReEMARK. In the case of Liick’s theorem, the group4d’, are finite, so the La-
placian onY, is a finite and self-adjoint matrix. Lick then proves, for any self-
adjoint matrix, an elegant estimate on the number of eigenvalues that are less than
a fixedA. The estimate is weakened if the product of the nonzero eigenvalues is
small, but this product must be at least 1 since the Laplacian has integer entries.

Dodziuk and Mathai make use of the same fundamental estimate when proving
the approximation theorem for amenable groups.

3.2 Results for Manifolds

SupposeM is a compact Riemannian manifold, and Mtbe a regular covering
space for with residually amenable transformation groug_et A = d*d +dd*
denote the Laplacian ab? j-forms onM. The Laplaciam is 7-equivariant and
essentially self-adjoint, so it has a spectral familyrmetquivariant projections
{E“j(/\) | 2 €[0,00)}. EachE;(A) has Schwartz kernel, and one can then form
the analytic spectral density functign(r) = Tr, E;(1).

Following arguments in [8], one can investigate the analytic spectral density
function F(1) of A. To relate this analytic Laplacian to the combinatorial situa-
tion in the previous sections, l&t be a triangulation o and then lift to obtain
a triangulationy’ of M.

The spectrum oA\ is said to have gap at zerdf the spectral projectiok (1) =
E(0) for somex > 0. Because the von Neumann dimension is faithfulhas a
spectral gap at zero if and only (1) = F(0) for somex > 0.

TueoreM 3.1 (Gap Criterion). The spectrum ol has a gap at zero if and only
if there is ar > O such that

lim F,(A) — F,(0) = 0.
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Proof. SinceF and F are dilation equivalent [11]A will have a spectral gap if
and only if A does. By Theorem 2. (1) = F(0) if and only if

lim F,(x) — F,(0) = 0. O

THEOREM 3.2 (Spectral Density Estimate) There are constant§ > 0 ande >
0 that are independent of and such that, for alkh € (0, &),

F(.) — F(0) <

—loga’
Proof. This follows directly from dilation equivalence and the estimate (3.0).

The spectral density estimate is interesting because it provides evidence support-
ing the well-known conjecture that the Novikov—Shubin invariants of a closed
manifold are positive.

3.3. The Determinant Class Theorem

Recall that a covering spadeof a finite simplicial complexX is of determinant

class if, for eacly,
1

—00 < log A dF;(3),
o+
whereF;(1) denotes the von Neumann spectral density function of the combina-
torial LaplacianA; on L? j-cochains.

We will prove that every residually amenable covering of a finite simplicial
complex is of determinant class. The appendix of [3] contains a proof that every
residually finite covering of a compact manifold is of determinant class. Their
proof is based on Lick’s approximation of von Neumann spectral density func-
tions. Since an analogous approximation holds in the setting of this paper, we can
apply the argument of [3] to prove Theorem 0.2. The fact that our coverings are
infinite necessitates some modifications.

Proof of Theorem 0.ZDeterminant Class TheorémAs with the rest of this
paper, this proof will proceed for a fixed which will be suppressed in the
notation.

Denote by Detr, A, the Fuglede—Kadison determinant &f, restricted to
the orthogonal complement of its kernel. It is given by the following Lebesgue—
Stieltjes integral,

o] K
log Detyr, A, = / logrdF,()) = / logA dF,()),
0+ o+

with K asinLemma 2.1. ThatigA,| < K.

SinceY, is an amenable cover of, we are in the situation of Dodziuk and
Mathai [8]. Their proof of the determinant class theorem for amenable coverings
[8, Thm. 0.2] shows that
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|Og Detn/r” A/n >0,

which is stronger than simply determinant class—the key point being that the
bound is uniform im. Itis worth remarking that their proof and the corresponding
proof in [3] require a similar statement for the Laplacians on finite approxima-
tions. In the finite case, the Laplacian is an integer matrix, so the product of its
nonzero eigenvalues is a positive integer and is therefore at least 1.

By Lemma 3.1 (to follow shortly),

K —
0 < log Det,r, A, = (I0g K)(Fy(K) — Fy(0)) — / M dx,
0+

which gives

K F,(\) — F,(0)
,/0+ A

Now, from Lemma 2.4,
KFQ)—F K F.(\)—F,
/ () (V)] n(A) () Ji
0

d = (log K)(Fu(K) — F,(0)).

d) < liminf
+ A n—oo  [or A

<lim iorgf (log K)(F,(K) — F,(0)). (3.2)

Since we have uniform decay (3.1) of tlig near 0, Theorem 2.2(1) applies and

so lim,_, o, F,(0) = F(0). SinceK > ||A,|l, foralln andK > ||A| we have
F,(K) = F(K) = q

for all n, so (3.2) becomes

K —
f wdk < (log K)(F(K) — F(0)). (3:3)
o+

This shows in particular that the left-hand integral exists, and again applying
Lemma 3.1yields

K —
logDet, A' = (log K)(F(K) — F(0)) — / w dr > 0.
0+

Since this is true for alj, it follows thatY is of determinant class. O

LemMA 3.1. LetF: [0, c0) — [0, o0) be any nondecreasing function satisfying
lim,_o F(A) = 0. Then, for anyk > 0,

K K F(n
/ logrdF()) = (logK)(F(K)) — / Qdk,
o+ o+ A
where the left-hand integral exists if and only if the right-hand integral exists.

Proof. Fixing 1> ¢ > 0, integration by parts yields

K K F()\)
/ IogAdF(A)=(IogK)(F(K))—(Iogs)(F(s))—/ ——dh. (34)
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Now —(loge)(F(¢)) is nonnegative, angjf logA dF()) is decreasing as — O.
Thus, iffoli F(\)/) d) exists then so doeJ%K+ logrdF(}).
On the other hand, ifoﬁ log A dF()) exists then

0 < —(loge)(F(s)) = —(loge) / ARG < — / “logrdF (),
o+ 0+

which goes to zero as — 0. This shows lim_,o —(loge)(F(e)) = 0, and the
lemma follows. O

3.4. Homotopy Invariance df?-Torsion
The Fuglede—Kadison determinant Deinduces a homomorphism from the

Whitehead group of,
&, : Wh(x) - RT,

which was defined in [16] and [15]. Given a homotopy equivalehca/ — N of
compact cell complexes, we choogéeo be a cellular homotopy equivalence and
let M, be the cellular mapping cone. Putting= 71(M), the cochain complex
C*(M;) is an acyclic complex over the group riffr] and defines the Whitehead
torsionT(f) € Wh(rr). Then®,(T(f)) e RT.

Now supposer is residually amenable, so thaf and N are of determinant
class. Let,; and¢y denote the.2-torsion of M and N. The homotopy equiva-
lence f canonically identifies the determinant linesIgf-cohomology ofM and
N, so thatp; ® ¢t € R*. Then from [19, Prop. 2.1], one has

by ® ¢t = P (T(f) eRT.
Therefore, Theorem 0.3 is reduced to the following.

THEOREM 3.3. Suppose that is a finitely presented residually amenable group.
Then the homomorphism
&, : Wh(r) - RT

is trivial.

Proof. We can represent an arbitrary element of(#has the Whitehead torsion
of a homotopy equivalencg: L — K of finite cell complexes, which (without
loss of generality) is an inclusion. LétandK denote the corresponding regular
7 covering complexes. The relative cochain complexk, L) is acyclic, so we
can choose @[ x]-morphism

h: C*K,L) - C**YK, L)
with 8 + hs = 1 (andh? = 0). Thens + h: C®®*\K, L) — C°*K, L) is in-
vertible. Form the Laplacian oﬁ(ez‘;e”(K, L),
ARE = 8+ h)*(5 + b,

so that .
@, (T(f)) = Det,(A%") > 0.
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Although this is not the same Laplacian as in earlier sections of this paper, the
approximation arguments work equally well for it.

Now form the covering spacds, and K, with covering groupr/T,, and let
AKn-Lu denote(s + h)*(8 + h) acting onC(ez‘;e”(K,,, L,). Sincer/ T, is amenable,
the work of Mathai and Rothenberg [19] applies to the p&ir, L,), so for alln
we have

Detn/[‘n AIE"’Z" =1

(One should note that the proof of this fact in [19] has an error that is corrected
here in the appendix that follows.)

Since AKL is invertible, we can choose a common boukicbn ||AK L|| and
||(AK L) 1|, asin Lemma2.1. Thig will also bound| A+ L || and||(AK#Ln) =L,
soAKnLi has a spectral gap at zero of size at lgast. Now, by Lemma 2.5,

Det, AKL = Jim Detr, ARnLn — 1

n—oo

This finishes the proof of Theorem 0.3. O

4. Appendix

Section 3.4 of this paper makes use of a similar argument in [19] showing that
torsion is a homotopy invariant of complexes with amenable fundamental group.
The method in [19] contains a gap, and in this appendix that gap will be corrected.
The key idea for this correction is due to M. Rothenberg. The gap was first pointed
out by T. Schick, who has an independent proof of this point.

Consider complexeX = Y/x as in this paper, but withr an amenable group.
Choose a Fglner exhaustiofh,, }°° ; of 7, and choose a subcompléxof Y that is
a fundamental domain for the actionef ThenY,, is defined to be the finite sub-
complex ofY consisting of all translateg F for g € A,,, andA,, is the Laplacian
on the compley,,. Dodziuk and Mathai [8] show that renormalized spectra pf
approximate the.?-spectrum ofA on Y.

Now define maps, and, to be (respectively) the orthogonal projection and
the inclusion map betweefi»(Y) and the finite-dimensional subspaCey,).
Set

Ap=PooAou,: CY,) — C(Y,).

As the first step toward fixing the problem in [19], notice that the approximation
arguments in [8] work equally well with,. The two key points to notice are that
(i) A, is still a matrix with integer entries and (i), still agrees withA away
from the boundary o¥,,.

Let A, denote the projection ok, off of its kernel. The error in [19] is the
claim that a bound away from zero of the spectrumhaimplies a bound away
from zero for the spectrum aof’, that is uniform inn. In general this is not the
case, although it may be possible to make the original argument work by restrict-
ing the choice of fundamental domaf

However, we have the following.
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Lemma. Forall n, inf o(A,) > inf o(A).

Proof. In what follows, (-, -) and{-, -), will denote the inner products afi(Y)
andC(Y,). We have

infa(A,) = inf  (A,c, c),
ceC(¥y)illel=1
= inf P,Au,c,
cecm);||c||=1< nAlnC:
= inf (At,c, t,c)
ceC(¥y);illel=1
> inf (Ac, ¢)
ceC)(Y):lell=1
= inf o(A). O

Next consider the situation of [19], whebg Y, andY, are replaced by relative
complexesK, L), (K, L), and(K,, L,). We choose a contracting magnd con-
sider the Laplaciarh = (§ + h)*(§ + k) as in Section 3.4. Denote hy, andA,
the corresponding operators in this relative situation.

Replacingd’, by A, throughout the argument of [19], we see that,Dat> 1.
As we could just as well have worked witki! = (8 + h)(8 + h)*, we must have

Det, A =1
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