
Residual Amenability and the
Approximation ofL2-Invariants

Bryan Clair

Introduction

In 1994, Wolfgang Lück [15] proved the beautiful theorem that, ifX is a finite
simplicial complex with residually finite fundamental group, then theL2-Betti
numbers of the universal covering ofX can be approximated by the ordinary Betti
numbers of a sequence of finite coverings ofX. In fact, the question of approxi-
mation dates back to Kazhdan [12] (see also [10, p. 231]), but only an inequality
was known. Dodziuk and Mathai [8] show a result analogous to Lück’s theorem
in the situation where the covering transformation group is amenable. Specifi-
cally, they show that theL2-Betti numbers of an amenable coveringX̃ of X can
be approximated by the ordinary Betti numbers of a sequence of Følner subsets
of X̃. This paper generalizes Lück’s theorem to the case where the cover ofX has
residually amenable transformation group, a large class of groups that includes the
residually finite groups of Lück’s theorem and the amenable groups of Dodziuk
and Mathai.

In this paper we also considerL2-torsion. At first,L2-torsion was defined forL2-
acyclic covering spaces. TheL2-analytic torsion was first studied in [18] and [14],
andL2-Reidemeister–Franz torsion was first studied in [6] (see also [16]). Equal-
ity of the combinatorial and analyticL2-torsions was proven in 1996 [4].

In order to define theseL2-torsions, one needs to establish decay near zero of
the spectral density function for theL2-Laplacian. In the case of a residually finite
covering, Lück [15] derives an elegant estimate on the spectral density functions
for the finite covers that in the limit gives the necessary decay for the combinato-
rialL2-Laplacian. Lück also proves the homotopy invariance ofL2-combinatorial
torsion in this case.

In [5], the combinatorial and analytic torsion invariants are defined more gener-
ally as volume forms onL2-cohomology, with the decay condition on the spectrum
now replaced by a similar condition known as determinant class. The results of
[4] extend to show the equality of these more general combinatorial and analytic
L2-torsions.

Dodziuk and Mathai [8] show that coverings with amenable covering group are
of determinant class. Mathai and Rothenberg [19] recently extended Lück’s results
to prove the homotopy invariance ofL2-torsion in that case. Although an error in
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their proof has been pointed out, the error can easily be fixed and is corrected in
Section 4 of this paper.

A main result of this paper is that coverings with residually amenable covering
group are of determinant class, and thatL2-torsion of such spaces is a homotopy
invariant.

On a different note, Farber [9] has generalized Lück’s theorem in a new direc-
tion, viewing it as a statement about flat bundles rather than finite coverings. In
particular, he gives precise conditions for the convergence ofL2-Betti numbers of
finite nonregular covers. A reasonable direction for future work would be to try
and extend the results of this paper using his techniques.

We now formulate the main results of this paper. LetY be a connected simplicial
complex. Suppose that a finitely generated groupπ acts freely and simplicially
onY so thatX = Y/π is a finite simplicial complex.

Suppose there is a nested sequence of normal subgroupsπ = 01 ⊃ 02 ⊃ · · ·
such that

⋂∞
n=10n = {e}. FormYn = Y/0n so thatY1, Y2, . . . are a tower of cov-

ering spaces ofX.
Say thatπ is residually finite if there exist0n as before, so that the quotients

π/0n are all finite. Then eachYn is a finite complex, and Lück’s theorem [15]
states that

b
(2)
j (Y : π) = lim

n→∞
1

|0n|bj(Yn),

whereb(2)j (Y : π) is thej th L2-Betti number ofY andbj(Yn) is the ordinaryj th
Betti number ofYn.

We generalize Lück’s theorem to the situation whereπ is residually amenable,
meaning there exist0n as before so that the quotientsπ/0n are all amenable. The
first main result of this paper is as follows.

Theorem 0.1 (Approximation Theorem). SupposeY is a simplicial complex,π
acts freely and simplicially onY, andX = Y/π is a finite simplicial complex. If
π is residually amenable, then

b
(2)
j (Y : π) = lim

n→∞ b
(2)
j (Yn : π/0n).

The next result gives more evidence for the determinant class conjecture, which
states that any regular covering space of a finite simplicial complex is of determi-
nant class. Forπ residually finite this follows from [15], and in [8] it was shown
for π amenable.

Theorem 0.2 (Determinant Class Theorem).SupposeY is a simplicial complex,
π acts freely and simplicially onY, andX = Y/π is a finite simplicial complex.
If π is residually amenable, thenY is of determinant class.

Now we turn to the problem of homotopy invariance ofL2-torsion. LetM and
N be compact cell complexes, with̃M and Ñ regularπ-covering spaces. As
in [19], a homotopy equivalencef : M → N induces a canonical isomorphism
f̃ ∗∗ : detH̄ ∗(2)(Ñ )→ detH̄ ∗(2)(M̃ ) of determinant lines ofL2-cohomology.

Let φM̃ ∈ detH̄ ∗(2)(M̃ ) denote the combinatorialL2-torsion ofM.
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Theorem 0.3 (Homotopy Invariance ofL2-Torsion). Supposef : M → N is a
homotopy equivalence of compact cell complexes, and letM̃ and Ñ be regular
covering spaces with residually amenable covering group. Then, via the foregoing
identification of determinant lines ofL2-cohomology, it follows that

φM̃ = φÑ ∈ detH̄ ∗(2)(M̃ ).

This provides more evidence for the conjecture in [19] (see also [15]) thatL2-
torsion is always a homotopy invariant when the covering spaces in question are
of determinant class.

This paper is organized as follows. The first section covers preliminaries on
residually amenable groups, and exhibits interesting examples. The second sec-
tion proves the main technical theorem, which essentially states that theL2-spectra
of Laplacians on theYn approximate theL2-spectrum of Laplacian onY. Finally,
the third section proves the three main theorems.

The results of this paper first appeared in the author’s thesis [7]; T. Schick has
independently arrived at similar results. Thanks to Mel Rothenberg for suggest-
ing this direction of research, and also to Kevin Whyte and Shmuel Weinberger
for helpful discussions.

1. Preliminaries

1.1. Residual Properties

Definition 1.1. LetC be a nonempty class of groups (though possibly contain-
ing only one group). A groupπ is residuallyC if, for any elementg ∈π with g 6=
e, there exists a quotient groupπ ′(g) belonging toC such thatg 7→ g ′ ∈ π ′(g)
with g ′ 6= e.
This paper will use a condition equivalent to residuality that holds for certain
classes—for example, anyC that is closed under products and subgroups. For
such a class, a countable groupπ is residuallyC if and only if there is a nested
sequence of normal subgroupsπ = 01 ⊃ 02 ⊃ · · · such thatπ/0n belongs toC
and

⋂∞
n=10n = {e}. For other basic theorems concerning residual properties of

groups, we refer to [17].
WhenC = {finite groups} we say thatπ is aresidually finitegroup.

1.2. Amenability
Let π be a finitely generated discrete group with word metricd. We use the fol-
lowing characterization of amenability, due to Følner.

Definition 1.2. The groupπ is amenableif there is a sequence of finite subsets
{3k}∞k=1 such that, for any fixedδ > 0,

lim
k→∞

#{∂δ3k}
#{3k} = 0,

where∂δ3k = { γ ∈π : d(γ,3k) < δ andd(γ, π−3k) < δ } is aδ-neighborhood
of the boundary of3k.
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Examples of amenable groups include finite groups, abelian groups, nilpotent
groups and solvable groups, and groups of subexponential growth. Amenability
for discrete groups is preserved by the following five processes [21, Prop. 0.16]:

(1) taking subgroups;
(2) forming quotient groups;
(3) forming group extensions by amenable groups;
(4) forming upward directed unions of amenable groups;
(5) forming a direct limit of amenable groups.

Free groups with two or more generators, as well as fundamental groups of
closed negatively curved manifolds, arenot amenable.

1.3. Residual Amenability

Definition 1.3. Ifπ is residuallyC,whereC = {amenable groups},we say that
π is residually amenable.

Recall that the derived subgroupsπ(i) of a groupπ are defined byπ(0) = π and
π(i+1) = [π(i), π(i)]. Say thatπ is solvableif π(i) = {e} for somei. Therank of
π is then defined to be the smallesti for whichπ(i) = {e}.

Contained in the class of residually amenable groups is the class of residually
solvable groups. Residually solvable groups are naturally characterized in Propo-
sition 1.1. Free products of residually solvable groups are themselves residually
solvable. This follows from the fact that solvability is a root property, as discussed
in [17].

Proposition 1.1. A groupπ is residually solvable if and only if
⋂∞

i=1π
(i) = {e}.

Proof. Sinceπ/π(i) is solvable, if
⋂∞

i=1π
(i) = {e} thenπ is residually solvable.

Now supposeπ is residually solvable, and letg ∈⋂∞i=1π
(i). For any mapf : π →

S with S solvable of rankk,we havef(g)∈ f(π(i)) ⊆ S(i) = {e} for i > k. Since
the image ofg is trivial in any solvable quotient ofπ, we must haveg = e.
Proposition 1.2. If 0 is residually solvable,S is solvable, andπ is an extension

1→ 0
ι→ π

κ→ S → 1,

thenπ is residually solvable.

Proof. SupposeS has rankk. Thenκ(π(k)) ⊆ S(k) = {e}, soπ(k) ⊆ 0 and there-
foreπ(k+i) ⊆ 0(i) for all i ≥ 0. Then

⋂∞
i=1π

(i) ⊆⋂∞i=10
(i) = {e}.

Example 1.1. Fornonzero integersp andq, define theBaumslag–Solitargroup
BS(p, q) by

BS(p, q) = 〈a, b | a−1bpa = bq〉.
The family of groups BS(p, q) was first defined in [1]. It is shown in [20] that
BS(p, q) is residually finite if and only if|p| = 1 or |q| = 1 or |p| = |q|.
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Kropholler shows in [13] that the second derived subgroupπ(2) is free when
π = BS(p, q) for anyp, q. Whenp andq are not both±1, π(2) is free on two or
more generators and thereforeπ is not amenable. However,π is residually solv-
able because it is an extension

1→ π(2)→ π → π/π(2)→ 1,

with π(2) residually solvable andπ/π(2) solvable (of rank 2).
More generally, letπ be any noncyclic group that is the fundamental group of

a graph of infinite cyclic groups. Then (from [13])π(2) is free, and the preceding
argument shows thatπ is residually solvable.

Example 1.2. A different generalization of the Baumslag–Solitar groups is
treated in [22], where it is shown that any HNN-extension of a finitely gener-
ated abelian group is residually solvable.

Example 1.3. We show that the amalgamated free product of two abelian groups
is residually solvable. Slightly more generally, suppose we have two solvable
groupsA andB and two monomorphismsα, β from an abelian groupH into the
centers ofA andB, given byα : H → Z(A) andβ : H → Z(B). Then the free
product with amalgamationA ∗H B is residually solvable.

To see this, letN = { (α(h), β(h)−1) | h ∈H } ⊂ A × B. SinceH is abelian,
N is a subgroup ofA × B; N is normal becauseH includes into the centers of
bothA andB. Note that ifH is known only to be normal inA andB, thenN is
unlikely to be normal inA× B.

Let K be the kernel of the natural mapA ∗H B → (A × B)/N. In A ∗H B,
K has trivial intersection with all conjugates ofA andB. HenceK is free by a
well-known theorem of group actions on trees (see e.g. [2, p. 54]). ThenA ∗H B
is an extension of the solvable group(A×B)/N by the residually solvable group
K, and soA ∗H B is residually solvable.

Example 1.4. R. J. Thompson, G. Higman, K. Brown, and E. A. Scott have all
produced various classes of finitely presented infinite simple groups. The example
of Scott [23] contains a free subgroup on two generators and is therefore neither
amenable nor residually amenable.

2. Main Technical Theorems

As in the introduction, supposeY is a simplicial complex,π acts freely and sim-
plicially on Y, andX = Y/π is a finite simplicial complex. Suppose we have a
nested sequence of normal subgroupsπ = 01 ⊃ 02 ⊃ · · · such that

⋂∞
n=10n =

{e}. DefineYn = Y/0n.
SupposeX hasaj cells in dimensionj, and choose a lift toY of eachj -cell ofX.

These choices give a basis overl2(π) of the spaceCj(2)(Y ) of j -dimensionall2-
cochains onY. The lifts also descend to give bases ofC

j

(2)(Yn) overl2(π/0n).
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Denote by1 and1n the Laplacian onCj(2)(Y ) andCj(2)(Yn), respectively. All
arguments to follow will apply to a specific value ofj, but this dependence will
not be indicated.

Let{E(λ) : λ∈ [0,∞) }and{En(λ) : λ∈ [0,∞) }denote the (right continuous)
family of spectral projections of1 and1n, respectively. Since1 isπ-equivariant,
so areE(λ) = χ[0,λ](1) for λ ∈ [0,∞). Similarly, En(λ) areπ/0n-equivariant.
Let F,Fn : [0,∞)→ [0,∞) denote the spectral density functions

F(λ) = Trπ E(λ) and Fn(λ) = Trπ/0n En(λ).

We now set

F̄(λ) = lim supn→∞ Fn(λ), F(λ) = lim inf n→∞ Fn(λ);
F̄ +(λ) = lim δ→0+ F̄(λ+ δ), F +(λ) = lim δ→0+ F(λ+ δ).

With this notation, we may state the main technical results of this paper.

Theorem 2.1. For all λ∈ [0,∞),
F(λ) = F̄ +(λ) = F +(λ).

Theorem 2.2. Suppose there is some right continuous functions : [0, ε) →
[0,∞) with s(0) = 0 and such that, for alln and for all λ∈ [0, ε), we have

Fn(λ)− Fn(0) ≤ s(λ).
Then

(1) F̄(λ) andF(λ) are right continuous at zero, and

F̄(0) = F̄ +(0) = F(0) = F(0) = F +(0);
(2) for all λ∈ [0, ε),

F(λ)− F(0) ≤ s(λ).
These theorems and their proofs are similar to Lück [15, Thm. 2.3], but here they
are stated so as to require no conditions on the quotient groupsπ/0n. The resid-
ual finiteness condition in Lück’s theorem or the residual amenability condition
of this paper are required to provides, the uniform decay at zero of the spectral
density functions for the coversYn.

In order to show the two technical theorems, we first prove a number of prelim-
inary lemmas.

Lemma 2.1. There exists a numberK > 1such that the operator norms of1 and
1n are smaller thanK for all n.

Proof. Choosing lifts of cells ofX, we have identified the space ofl2-cochains
on Y with

⊕a
i=1 l

2(π). The combinatorial Laplacian1 is then described by an
a × a matrixB with entries inZ[π], acting by right multiplication. The Laplac-
ian1n is described by the same matrixB, now acting by right multiplication on⊕a

i=1 l
2(π/0n).
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Foru =∑g∈π λg · g ∈C[π], define|u|1=
∑

g∈π |λg|. ChooseK > 1 so that

K ≥ a ·
b∑
j=1

max{|Bij |1; i = 1, . . . , a}.

The proof then proceeds exactly as in [15, Lemma 2.5].

Lemma 2.2. Let p(µ) be a polynomial. There is a numbern0 depending only
on the system of groupsπ = 01⊃ 02 ⊃ · · · such that, for alln ≥ n0,

Trπ p(1) = Trπ/0n p(1n).

Proof. We identify1 with ana × a matrixB with entries inZ[π], as in the pre-
vious lemma.

Fix elementsg0, g1, . . . , gr ∈ π andλ0, λ1, . . . , λr ∈R such thatg0 = e, gi 6=
e, andλi 6= 0 for 1≤ i ≤ r, so that

a∑
j=1

(p(B))j,j =
r∑
i=0

λigi .

Then
Trπ p(1) = λ0.

The Laplacian1n on Yn is also described by the matrixB, now acting on⊕a
i=1 l

2(π/0n) by right multiplication. Then

Trπ/0n p(1n) =
r∑
i=1

λi Trπ/0n R(gi)

whereR(gi) : l2(π/0n)→ l2(π/0n) is right multiplication withgi.
Since the intersection of the0i is trivial, there is a numbern0 such that, forn ≥

n0, none of the elementsgi for 1≤ i ≤ r lies in0n. Since0n is normal, we con-
clude forn ≥ n0 andi 6= 0 that

Trπ/0n R(gi) = 0.

Then, forn ≥ n0,

Trπ p(1) = λ(0) = Trπ/0n p(1n).

Lemma 2.3. LetK be as in Lemma 2.1. Let{pk(µ)}∞k=1 be a sequence of poly-
nomials, uniformly bounded on[0,K], such that, for the characteristic function
χ[0,λ](µ) of the interval[0, λ],

lim
k→∞

pk(µ) = χ[0,λ](µ)

holds for eachµ∈ [0,K]. Then

lim
k→∞

Trπ pk(1) = F(λ).

Proof. This lemma and its proof are identical to [15, Lemma 2.7].
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Proof of Theorem 2.1.Fix λ ≥ 0. Define fork ≥ 1 a continuous functionfk :
R→ R by

fk(µ) =


1+ 1

k
if µ ≤ λ,

1+ 1
k
− k(µ− λ) if λ ≤ µ ≤ λ+ 1

k
,

1
k

if λ+ 1
k
≤ µ.

Clearly,χ[0,λ](µ) < fk+1(µ) < fk(µ) andfk(µ) converges toχ[0,λ](µ) for all
µ ∈ [0,∞). For eachk, choose a polynomialpk such thatχ[0,λ](µ) < pk(µ) <

fk(µ) holds for allµ∈ [0,K], whereK is as in Lemma 2.1. The polynomialspk
satisfy the conditions of Lemma 2.3.

Becauseχ[0,λ](µ) ≤ pk(µ) for all µ∈ [0, ‖1n‖], we have

Fn(λ) = Trπ/0n(χ[0,λ](1n)) ≤ Trπ/0n(pk(1n)). (2.0)

On the other hand, we havepk(µ) ≤ 1+ 1/k for µ ∈ [0, λ + 1/k] andpk(µ) ≤
1/k for µ∈ [λ+1/k,K]. So

Trπ/0n(pk(1n)) ≤ Trπ/0n
((

1+ 1
k

)
χ[0,λ+1/k](1n)

)+ Trπ/0n
((

1
k

)
χ[λ+1/k,K](1n)

)
= (1+ 1

k

)
Fn
(
λ+ 1

k

)+ 1
k

(
Fn(K)− Fn

(
λ+ 1

k

))
= Fn

(
λ+ 1

k

)+ 1
k
Fn(K). (2.1)

Now noticeFn(K) = Trπ/0n(χ[0,K](1n)). But χ[0,K](1n) is the identity on the
spaceCj(2)(Yn), which is identified with

⊕aj
i=1 l

2(π/0n). Thus,

Fn(K) = aj . (2.2)

By Lemma 2.2, there is a numbern0(k) for each polynomialpk such that, for
n ≥ n0(k),

Trπ pk(1) = Trπ/0n(pk(1n)).

Then forn ≥ n0(k), the equations (2.0), (2.1), and (2.2) give

Fn(λ) ≤ Trπ pk(1) ≤ Fn
(
λ+ 1

k

)+ 1
k
aj .

Taking limits asn→∞,
F̄(λ) ≤ Trπ pk(1) ≤ F

(
λ+ 1

k

)+ 1
k
aj .

Taking limits ask→∞ and using Lemma 2.3,

F̄(λ) ≤ F(λ) ≤ F +(λ).
For all ε > 0 we have

F(λ) ≤ F +(λ) ≤ F(λ+ ε) ≤ F̄(λ+ ε) ≤ F(λ+ ε),
and since limε→0+ F(λ+ ε) = F(λ) we obtain

F(λ) = F̄ +(λ) = F +(λ).
This finishes the proof of Theorem 2.1.
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Proof of Theorem 2.2.We suppose there is some right continuous functions:
[0, ε)→ [0,∞) with s(0) = 0 and such that, for alln and for allλ∈ [0, ε),

Fn(λ)− Fn(0) ≤ s(λ).
Taking the limit inferior and limit superior forn→∞ gives

F(λ) ≤ F(0)+ s(λ) and F̄(λ) ≤ F̄(0)+ s(λ).
Taking the limit forλ→ 0 gives

F +(0) ≤ F(0) and F̄ +(0) ≤ F̄(0).
And finally, sinceF andF̄ are increasing, we have

F +(0) = F(0) and F̄ +(0) = F̄(0).
We already knowF̄ +(0) = F(0) = F +(0) from Theorem 2.1, and this proves

Theorem 2.2(1). Sinces is right continuous, we conclude that

F̄ +(λ) ≤ F(0)+ s(λ),
whence Theorem 2.2(2) follows via Theorem 2.1. This finishes the proof of
Theorem 2.2.

The following pair of lemmas are proved in [15, Lemma 3.3]. We will need them
for the proof (in Section 3.3) of Theorem 0.2.

Lemma 2.4. Supposelim n→∞ Fn(0) = F(0) (which follows from Theorem 2.2
when the decay hypothesis is satisfied). Then∫ K

0+

F(λ)− F(0)
λ

dλ ≤ lim inf
n→∞

∫ K

0+

Fn(λ)− Fn(0)
λ

dλ.

Lemma 2.5. Suppose theFn have a uniform spectral gap; that is, suppose there
is someε > 0 such thatFn(λ) = Fn(0) for all n and for all λ ≤ ε. Then∫ K

0+

F(λ)− F(0)
λ

dλ ≥ lim sup
n→∞

∫ K

0+

Fn(λ)− Fn(0)
λ

dλ.

Therefore, using Lemma 2.4,∫ K

0+

F(λ)− F(0)
λ

dλ = lim
n→∞

∫ K

0+

Fn(λ)− Fn(0)
λ

dλ.

Remark. In Lemma 2.5, Lück gives a sharper condition than simply demanding
a spectral gap, but it will not be needed here.

3. Proofs of the Main Theorems

In this section, we prove the approximation theorem, the determinant class theo-
rem, and the homotopy invariance ofL2-torsion for residually amenable groups.
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3.1. The Approximation Theorem

Proof of Theorem 0.1(Approximation Theorem). Observe that thej th L2-Betti
numbers ofY andYn are given by

b
j

(2)(Y : π) = F(0), b
j

(2)(Yn : π/0n) = Fn(0).
Therefore, Theorem 0.1 will follow directly from Theorem 2.2(1) if we can estab-
lish a uniform decay ofFn near zero.

Sinceπ/0n is amenable, [8, Thm. 2.1.3] applies, and we have a constantK > 1
such that

Fn(λ)− Fn(0) ≤ aj logK

−logλ
= s(λ) (3.1)

for all 0 < λ < 1. The constantK can be any number larger than max(‖1n‖,1)
and can therefore be chosen independently ofn, by Lemma 2.1.

Remark. In the case of Lück’s theorem, the groupsπ/0n are finite, so the La-
placian onYn is a finite and self-adjoint matrix. Lück then proves, for any self-
adjoint matrix, an elegant estimate on the number of eigenvalues that are less than
a fixedλ. The estimate is weakened if the product of the nonzero eigenvalues is
small, but this product must be at least 1 since the Laplacian has integer entries.

Dodziuk and Mathai make use of the same fundamental estimate when proving
the approximation theorem for amenable groups.

3.2 Results for Manifolds

SupposeM is a compact Riemannian manifold, and letM̃ be a regular covering
space forM with residually amenable transformation groupπ. Let1̃ = d ∗d+dd ∗
denote the Laplacian onL2 j -forms onM̃. The Laplacian1̃ isπ-equivariant and
essentially self-adjoint, so it has a spectral family ofπ-equivariant projections
{ Ẽj(λ) | λ ∈ [0,∞) }. EachEj(λ) has Schwartz kernel, and one can then form
the analytic spectral density functioñFj(λ) = Trπ Ẽj(λ).

Following arguments in [8], one can investigate the analytic spectral density
function F̃(λ) of 1̃. To relate this analytic Laplacian to the combinatorial situa-
tion in the previous sections, letX be a triangulation ofM and then lift to obtain
a triangulationY of M̃.

The spectrum of̃1 is said to have agap at zeroif the spectral projectioñE(λ) =
Ẽ(0) for someλ > 0. Because the von Neumann dimension is faithful,1̃ has a
spectral gap at zero if and only if̃F(λ) = F̃(0) for someλ > 0.

Theorem 3.1 (Gap Criterion). The spectrum of̃1 has a gap at zero if and only
if there is aλ > 0 such that

lim
n→∞Fn(λ)− Fn(0) = 0.
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Proof. SinceF̃ andF are dilation equivalent [11],̃1 will have a spectral gap if
and only if1 does. By Theorem 2.1,F(λ) = F(0) if and only if

lim
n→∞Fn(λ)− Fn(0) = 0.

Theorem 3.2 (Spectral Density Estimate).There are constantsC > 0 andε >
0 that are independent ofλ and such that, for allλ∈ (0, ε),

F̃(λ)− F̃(0) ≤ C

−logλ
.

Proof. This follows directly from dilation equivalence and the estimate (3.1).

The spectral density estimate is interesting because it provides evidence support-
ing the well-known conjecture that the Novikov–Shubin invariants of a closed
manifold are positive.

3.3. The Determinant Class Theorem

Recall that a covering spaceY of a finite simplicial complexX is of determinant
class if, for eachj,

−∞ <

∫ 1

0+
logλ dFj(λ),

whereFj(λ) denotes the von Neumann spectral density function of the combina-
torial Laplacian1j onL2 j -cochains.

We will prove that every residually amenable covering of a finite simplicial
complex is of determinant class. The appendix of [3] contains a proof that every
residually finite covering of a compact manifold is of determinant class. Their
proof is based on Lück’s approximation of von Neumann spectral density func-
tions. Since an analogous approximation holds in the setting of this paper, we can
apply the argument of [3] to prove Theorem 0.2. The fact that our coverings are
infinite necessitates some modifications.

Proof of Theorem 0.2(Determinant Class Theorem). As with the rest of this
paper, this proof will proceed for a fixedj, which will be suppressed in the
notation.

Denote by Detπ/0n 1
′
n the Fuglede–Kadison determinant of1n restricted to

the orthogonal complement of its kernel. It is given by the following Lebesgue–
Stieltjes integral,

log Detπ/0n 1
′
n =

∫ ∞
0+

logλ dFn(λ) =
∫ K

0+
logλ dFn(λ),

with K as in Lemma 2.1. That is,‖1n‖ ≤ K.
SinceYn is an amenable cover ofX, we are in the situation of Dodziuk and

Mathai [8]. Their proof of the determinant class theorem for amenable coverings
[8, Thm. 0.2] shows that
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log Detπ/0n 1
′
n ≥ 0,

which is stronger than simply determinant class—the key point being that the
bound is uniform inn. It is worth remarking that their proof and the corresponding
proof in [3] require a similar statement for the Laplacians on finite approxima-
tions. In the finite case, the Laplacian is an integer matrix, so the product of its
nonzero eigenvalues is a positive integer and is therefore at least 1.

By Lemma 3.1 (to follow shortly),

0 ≤ log Detπ/0n 1
′
n = (logK)(Fn(K)− Fn(0))−

∫ K

0+

Fn(λ)− Fn(0)
λ

dλ,

which gives ∫ K

0+

Fn(λ)− Fn(0)
λ

dλ ≤ (logK)(Fn(K)− Fn(0)).

Now, from Lemma 2.4,∫ K

0+

F(λ)− F(0)
λ

dλ ≤ lim inf
n→∞

∫ K

0+

Fn(λ)− Fn(0)
λ

dλ

≤ lim inf
n→∞ (logK)(Fn(K)− Fn(0)). (3.2)

Since we have uniform decay (3.1) of theFn near 0, Theorem 2.2(1) applies and
so limn→∞ Fn(0) = F(0). SinceK ≥ ‖1n‖, for all n andK ≥ ‖1‖ we have

Fn(K) = F(K) = aj
for all n, so (3.2) becomes∫ K

0+

F(λ)− F(0)
λ

dλ ≤ (logK)(F(K)− F(0)). (3.3)

This shows in particular that the left-hand integral exists, and again applying
Lemma 3.1 yields

log Detπ 1
′ = (logK)(F(K)− F(0))−

∫ K

0+

F(λ)− F(0)
λ

dλ ≥ 0.

Since this is true for allj, it follows thatY is of determinant class.

Lemma 3.1. LetF : [0,∞)→ [0,∞) be any nondecreasing function satisfying
limλ→0F(λ) = 0. Then, for anyK > 0,∫ K

0+
logλ dF(λ) = (logK)(F(K))−

∫ K

0+

F(λ)

λ
dλ,

where the left-hand integral exists if and only if the right-hand integral exists.

Proof. Fixing 1> ε > 0, integration by parts yields∫ K

ε

logλ dF(λ) = (logK)(F(K))− (logε)(F(ε))−
∫ K

ε

F(λ)

λ
dλ. (3.4)
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Now−(logε)(F(ε)) is nonnegative, and
∫ K
ε

logλ dF(λ) is decreasing asε→ 0.

Thus, if
∫ K

0+ F(λ)/λ dλ exists then so does
∫ K

0+ logλ dF(λ).

On the other hand, if
∫ K

0+ logλ dF(λ) exists then

0 ≤ −(logε)(F(ε)) = −(logε)
∫ ε

0+
dF(λ) ≤ −

∫ ε

0+
logλ dF(λ),

which goes to zero asε → 0. This shows limε→0−(logε)(F(ε)) = 0, and the
lemma follows.

3.4. Homotopy Invariance ofL2-Torsion

The Fuglede–Kadison determinant Detπ induces a homomorphism from the
Whitehead group ofπ,

8π : Wh(π)→ R+,

which was defined in [16] and [15]. Given a homotopy equivalencef : M → N of
compact cell complexes, we choosef to be a cellular homotopy equivalence and
letMf be the cellular mapping cone. Puttingπ = π1(M), the cochain complex
C∗(Mf) is an acyclic complex over the group ringZ[π] and defines the Whitehead
torsionT(f )∈Wh(π). Then8π(T (f ))∈R+.

Now supposeπ is residually amenable, so thatM andN are of determinant
class. LetφM̃ andφÑ denote theL2-torsion ofM andN. The homotopy equiva-
lencef canonically identifies the determinant lines ofL2-cohomology ofM̃ and
Ñ, so thatφM̃ ⊗ φ−1

Ñ
∈R+. Then from [19, Prop. 2.1], one has

φM̃ ⊗ φ−1
Ñ
= 8π(T (f ))∈R+.

Therefore, Theorem 0.3 is reduced to the following.

Theorem 3.3. Suppose thatπ is a finitely presented residually amenable group.
Then the homomorphism

8π : Wh(π)→ R+

is trivial.

Proof. We can represent an arbitrary element of Wh(π) as the Whitehead torsion
of a homotopy equivalencef : L → K of finite cell complexes, which (without
loss of generality) is an inclusion. LetL̃ andK̃ denote the corresponding regular
π covering complexes. The relative cochain complexC∗(K̃, L̃) is acyclic, so we
can choose aZ[π]-morphism

h : C∗(K̃, L̃)→ C∗+1(K̃, L̃)

with δh + hδ = 1 (andh2 = 0). Thenδ + h : C even(K̃, L̃) → C odd(K̃, L̃) is in-
vertible. Form the Laplacian onC even

(2) (K̃, L̃),

1K̃,L̃ = (δ + h)∗(δ + h),
so that

8π(T (f )) = Detπ(1
K̃,L̃) > 0.
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Although this is not the same Laplacian as in earlier sections of this paper, the
approximation arguments work equally well for it.

Now form the covering spaces̃Ln andK̃n with covering groupπ/0n, and let
1K̃n,L̃n denote(δ+ h)∗(δ+ h) acting onC even

(2) (K̃n, L̃n). Sinceπ/0n is amenable,
the work of Mathai and Rothenberg [19] applies to the pair(K̃n, L̃n), so for alln
we have

Detπ/0n 1
K̃n,L̃n = 1.

(One should note that the proof of this fact in [19] has an error that is corrected
here in the appendix that follows.)

Since1K̃,L̃ is invertible, we can choose a common boundK on ‖1K̃,L̃‖ and
‖(1K̃,L̃)−1‖,as in Lemma 2.1. ThisK will also bound‖1K̃n,L̃n‖and‖(1K̃n,L̃n )−1‖,
so1K̃n,L̃n has a spectral gap at zero of size at leastK−1. Now, by Lemma 2.5,

Detπ 1
K̃,L̃ = lim

n→∞Detπ/0n 1
K̃n,L̃n = 1.

This finishes the proof of Theorem 0.3.

4. Appendix

Section 3.4 of this paper makes use of a similar argument in [19] showing thatL2-
torsion is a homotopy invariant of complexes with amenable fundamental group.
The method in [19] contains a gap, and in this appendix that gap will be corrected.
The key idea for this correction is due to M. Rothenberg. The gap was first pointed
out by T. Schick, who has an independent proof of this point.

Consider complexesX = Y/π as in this paper, but withπ an amenable group.
Choose a Følner exhaustion{3n}∞n=1 of π, and choose a subcomplexF of Y that is
a fundamental domain for the action ofπ. ThenYn is defined to be the finite sub-
complex ofY consisting of all translatesg.F for g ∈3n, and1n is the Laplacian
on the complexYn. Dodziuk and Mathai [8] show that renormalized spectra of1n

approximate theL2-spectrum of1 onY.
Now define mapsPn andιn to be (respectively) the orthogonal projection and

the inclusion map betweenC(2)(Y ) and the finite-dimensional subspaceC(Yn).
Set

1̂n = Pn B1 B ιn : C(Yn)→ C(Yn).

As the first step toward fixing the problem in [19], notice that the approximation
arguments in [8] work equally well witĥ1n. The two key points to notice are that
(i) 1̂n is still a matrix with integer entries and (ii)̂1n still agrees with1 away
from the boundary ofYn.

Let 1′n denote the projection of1n off of its kernel. The error in [19] is the
claim that a bound away from zero of the spectrum of1 implies a bound away
from zero for the spectrum of1′n that is uniform inn. In general this is not the
case, although it may be possible to make the original argument work by restrict-
ing the choice of fundamental domainF .

However, we have the following.
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Lemma. For all n, inf σ(1̂n) ≥ inf σ(1).

Proof. In what follows,〈·, ·〉 and〈·, ·〉n will denote the inner products onC(2)(Y )
andC(Yn). We have

inf σ(1̂n) = inf
c∈C(Yn);‖c‖=1

〈1̂nc, c〉n
= inf

c∈C(Yn);‖c‖=1
〈Pn1ιnc, c〉n

= inf
c∈C(Yn);‖c‖=1

〈1ιnc, ιnc〉

≥ inf
c∈C(2)(Y );‖c‖=1

〈1c, c〉

= inf σ(1).

Next consider the situation of [19], whereX, Y, andYn are replaced by relative
complexes(K,L), (K̃, L̃), and(K̃n, L̃n). We choose a contracting maph and con-
sider the Laplacian1 = (δ+ h)∗(δ+ h) as in Section 3.4. Denote by1n and1̂n

the corresponding operators in this relative situation.
Replacing1′n by 1̂n throughout the argument of [19], we see that Detπ 1 ≥ 1.

As we could just as well have worked with1−1= (δ + h)(δ + h)∗, we must have

Detπ 1 = 1.
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