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1. Introduction

The study of pseudodifferential operators with symbols in the exotic clagges
has received a lot of attention. These are operators of the form

(TF)(x) = /R ea(x, ) fE) de,
where the symbai (x, &) is aC*>(R" x R™) function satisfying
00%a(x, &) < Cp., L+ g™~ 1FHIYI,

for all 8 andy n-tuples of nonnegative integers. The interest in such operators is
due in part to the role they play in the paradifferential calculus of Bony [1]. The
fact that not all such operators of order zero are boundetfaomplicates their

study. Nevertheless, the exotic pseudodifferential operators do preserve spaces of
smooth functions. See, for example, Meyer [12], Paivarinta [14], Bourdaud [2], as
well as Stein [16] and the references therein.

The continuity results are often obtained by making use of the so-called sin-
gular integral realization of the operators. This involves proving estimates on the
Schwartz kernels of the pseudodifferential operators similar to those of the ker-
nels of Calderén—Zygmund operators. There is, however, an alternative approach
working directly with the symbols of the pseudodifferential operators. This ap-
proach has been pursued by Hormander in [9] and [10]fobased Sobolev
spaces. The ideas in those papers combined with wavelets techniques were later
extended by Torres [17] tb”-based Sobolev spaces and other more general spaces
of smooth functions.

In this note we consider > symbolsa(x, £) in R" x (R"\ {0}) that satisfy the
following conditions: For alk-tuples of nonnegative integessandy there exist
positive constant€'s , such that

880%a(x, &) < Cg,, |6 PV (@)
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for (x, £) e R" x (R"\ {0}). We call such symbolsomogeneousymbols of type
(1, 1) and ordern. The class of all such symbols will be denotedsf .

Our purpose is to show boundedness for pseudodifferential operators with sym-
bols in Si"; on homogeneous function spaces. Our results are motivated by an
observation of Grafakos [8], who proved boundedness of pseudodifferential op-
erators with symbols ||S1.l on homogeneous Lipschitz spaces. The proof in [8]
follows more or less the singular integral approach of Stein [16]. In this paper we
use a wavelet approach, borrowing ideas from [17].

The appropriate setting for our results is in the context of the homogeneous
Triebel-Lizorkin F,"?(R") spaces and Besov—Lipschitz spa&s’(R") (these
spaces will be defined shortly). As with inhomogeneous symbols, it is possible to
show that, forx # y, the Schwartz kernels of the operators of order zero satisfy
estimates of the form

107K (x, Y)| + 107K (x, )| < Cylx — y| " )

and even better estimates far— y| large (see e.qg. [13, p. 294]). It is then pos-

sible to analyze boundedness properties of the operators using versions of the T1

theorem of David and Journé [4]. Moreover, such types of results are applied to

pseudodifferential operators with inhomogeneous symbols in the book by Meyer

[13, p. 329] in the context of Besov spaces with smoothaessO andp, g > 1

(cf. also [11]). The arguments in [13] may be adapted to pseudodifferential opera-

tors with homogeneous symbols and the same range of parameters for the Besov

spaces. Our approach, however, will be based on some very simple calculations

that notoriously work for the full scale of both,"/(R") and B,"/(R") spaces.
LetS(R™) be the space of Schwartz test functions and denote its d&H{BY),

the space of tempered distributions. In this paper the Fourier transform of a func-

tion £ € S(R") is given by £ (&) = [ f(x)e=™¢ dx, andSo(R") is used to denote

the subspace a$(R") consisting of all functions whose Fourier transform van-

ishes to infinite order at zero. The dual spac&gfR") with respect to the topol-

ogy inherited fromS(R") is S’/ P(R"), the set of tempered distributions modulo

polynomials. The Triebel-Lizorkin and Besov—Lipschitz spaces are defined as

follows. Lety be a function inS(R") satisfying supp C {& :1/2 < |§| < 2}

and|¢| > C > 0for 3/5 < |¢| < 5/3. Defineg; (&) = 2/"¢(2/¢). Fora real, 0<

p,q < oo,andf in S’/P(R"), define the Triebel-Lizorkin and Besov-Lipschitz

norms of f by

. Yq
Il o crmy = H( Y@« fl)q)

j=—00

Lr
and
00 ) 1/q
1f | sacrey = ( D 12"y f>||mq) :
Jj=—00

respectively. Note that these definitions are given modulo all polynomials, so
strictly speaking an element of the spadgs?(R") and B,(R") is an equiva-
lent class of distributions. It can be shown that the definition of these spaces is
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independent op. The space&y(R") is dense in all of these spaces. For these and
further properties of these function spaces, we refer to the books [15] and [19].

We have the following results for operators with symbol§fq acting on the
spaces,"(R") and By (R").

THEOREM 1.1. Let0 < p,q < oco. For @ > n(maxd, p~ ¢ — 1), every
pseudodifferential operator

(Tf)(x) = / a(x. &) f®)e™E di (f €So)

with symbola(x, &) in Sl , extends to a bounded operator that maps the space

FSP™IRM) to F(R"). For @ < n(max(l, p~% ¢~ — 1), everyT as above
that SatISerST*xV = 0 forall |y| < n(maxd, p 14 —1) — a extends to a
bounded operator front, " 4(R") to F;*%(R™).

THEOREM 1.2. Let0 < p,q < oo. For o > n(maxd, p~ g1 — 1), every
pseudodifferential operator

(Tf)(x):/ a(x, &) f&e ds (f €So) 3)

with symbola(x, &) in S’" extends to a bounded operator that maps the space

By (R to By q(R”) For a < n(maxl, p~ ¢ — 1), everyT as above
that satisfiesl x” = 0 for all |y| < n(max({, p_l g1 —1) — « extends to a
bounded operator fronB‘“'" 9R™ to B“ ARM),

We end this section with the following observation. Note that i |y | + | 8| <

0 thenaéy fax, &) is singular a&€ = 0 and, for a general functiofiin S, the in-
tegral in (3) is not absolutely convergent. For this reason it is natural initially to
define the operatdf on S.

2. Proofs of the Theorems

As we have just discussed, it is natural to considieinitially defined onS.
Moreover, we have the following lemma.

LeEmMma 2.1. Leta(x, &) be a symbol irﬁffl. Then the pseudodifferential opera-
tor with symbok(x, £) mapsSoto S. In particular, its formal transpos& * maps
S'toS/P.

Proof. Let f be afunction inSp and letA, be the Laplace operator in the variable
&. Because ‘ '
(I = A"V (e™ ) = A+ |xP) e

for any positive integelN, an integration by parts gives

_ N
(TF)(x) =/ vt (I —Ag)
Rn

A3 @ @) ds. @
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Sincef vanishes to infinity order at the origin, the conditions on the symbal )
and an application of Leibniz’s rule give

R, n(f)
T < — 5
(THE = G (5)
whereR,, y iS an appropriate seminorm & A similar computation applies to
the derivative®”(Tf), thus proving the lemma. O

For ann-tuple of integersc and an integerj, denote byQ;: the dyadic cube
{(x1,...,x,) €eR" : k; < 2/x; < k; +1}, by xg, its “lower left corner” 2k,

and byl(ij) its side length 2/. For Q dyadic letpy (x) = |Q]Y2¢;(x —xg). A
functiong as in the definition of the homogeneous spaces can be chosen so that,

for f S/,
f= Z(f, ©0)¥0. (6)

where(f, po) simply denotes the actlon of the distributigron the test function
@o. For fin F°YR") or By “(R"), the convergence in (6) is in the (quasi-)norm
of the spaces; fof in Sy, the convergence is in the topology®f See [6] and [7].

It follows from Lemma 2.1 that the action of a pseudodifferential operator on

Sp can be expressed as
Tf = (f.90)Two. 7
0

The operator given by (7) is the one that is extended to the whole homogeneous
space in our theorems. We now turn to the proofs.

The map
Se(f) ={(f. vo)lo (8)
is called thep-transform (or sequence of nonorthogonal wavelet coefficients). It
is well known by the work in [5; 6] that the homogeneaugransform provides
a characterization of the spacgs ?(R") and B,"Y(R") via the equivalence of
norms

a\Vq
1o~ (22 1004211 00lx0) )

J 1(Q)=2-J

L 1 acrmy ~ (Z

J

and

LP
g9 \14q
10 Y2 £, 9ol xo ) :
1(Q)=27 Ly
wherey, is the characteristic function @.
Fora, p, q as before leV = n/min(l, p. q) and let pr] be the integer part in

«. A smooth molecule for,"/(R™) or By"/(R") associated with a dyadic cube
0 with side length (Q) is a functloan satlsfying:

/xme(x)dsz if lyl<[J—n-—a], 9)
Imo(x)] < |Q1™2A+1(Q) Hx — xp|) MV FESHema) (10)
107 mo(x)] < [QI Y& W@+ 1(Q) Hx —xoD ™75 Iyl <[a] +1 (12)
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The importance of these functions is due to the fact that, if
f= ZSQ’"Q
0

in S’, where{m,} is a family of smooth molecules faF,"/(R") or By “(R"),

then
5 a\1/q
||f||p;~q(Rn)SCH(Z( S joley |sQ|xQ))
JoNiQ)=2- Lr
or
5 q \1/q
IIfIIB;;,q(Rn)gc<Z > 1012 S01x0 ) :
i Viy=2-i Lr

For these results we refer again to [6] and [7].
Now, letT be a linear continuous operator frafg to S’. Assume that

Tpo = C|QI™""my, (12)

where{my}, is a family of smooth molecules fdr;"/(R™) or By “(R™). Then,
using thep-transform, it is easy to see thAtcan be extended as a bounded oper-
ator from £ 9(R™) to F,*%(R") or from By ™™ /(R") to By “(R™).

Suppose thaf is a pseudodifferential operator whose symbal, £) is in S{f’l.
By (12) it will suffice to show that, for a fixed dyadic cul@, Ty, is a scaled
multiple of a molecule. A simple dilation shows that

(Tpg)(x) = / e™fa(x, £)po (&) d& = 27" (Ty ) (2)x — k) (13)

if O = Qjx, where we set

(To f)(x) = f e a(2(x + k), 28) &) dE.

Let us fix a multi-indexy. We have
(@7 Tog)(x) = f ™Y " Cy(i9)°0! a2 (x + k), 26)p(E) dE (14)
RM s<y

for certainC; constants, wheré < y simply means that; < y; for all j =
1...,n.
Now fix N > max(J, J — «a)/2. An integration by parts gives

(0" Top)(x)

e (I =AY . 5 o—j T
— ué—E: 5qy—3
/R” e RN L Cs(i6)°9] °a(27/(x + k), 276) p(&) d&.  (15)

By Leibniz’s rule, there exist constanks, g such that
(I — AN 2 (@(27(x + k), 278) §(§)(iE)°)
= Y Kapdfd!(a@7(x + k), 2)0(GE))")).

lo+pB|=2N
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Using the estimates (1), we conclude that
|353V 5a(2—.i(x + k), 2j§)| < C/g y782j|ﬂ\2—j(\yl—l5l)|2j§|m+(|)/\—\5\)—\ﬁ|
< C2im|g|mH(yI=8D-18I

Summing over all, 8, § as before and using th#t| ~ 1, we conclude that the
integrand in (15) is pointwise bounded By 2/"(1+ |x|?)~" and thus

(0" To@) (D) < €, 2" A+ [x2) 7. (16)
We now dilate and translate (16) to deduce that
107 To@) (x)| < C2M/221W12im(1 4 |20x — k|2)~N
= C|Q|—m/n—1/2—|y\/n(1+ l(Q)_l|x — xQD—maX(J-&-s,J-&-s—a).

We must now check the vanishing moment conditiorifipp. If [/ —n —a] <
0 then this condition is vacuous. I¥[— rn — «] > 0 then this is an easy conse-
guence of the hypothesis“x” = 0, since

/xV(T<pQ)(x) dx = (xV, Teg) = (T*(x"), ¢g) = 0.
Both theorems are now proved. O

We conclude this section with some remarks. )

1. Forp > 1letp’ denotep/(p —1). It can be shown that the spacg§ ‘(R")
can actually be considered as spaces of distributions modulo polynomials of de-
gree lessthanorequalt@ f-n/p] (see [6, p. 154]). Fork p, g < oo, if T maps

Fy ™R to Fy (R™) then, by duality* mapsF, "(R“) to F, e, (R,

It foIIows that for 7* to be even well-defined of,* ”(R ) it must annihilate
polynomials of degree-fo — n/p’]. The condltlons orf* in the second part of
Theorems 1.1 and 1.2 far < 0 then become necessary for—> 1*.

2. For more general operatofswith kernels satisfying estimates (2) and the
usual weak boundedness property assumed in the T1 theorem (which is always
satisfied by pseudodifferential operators of order zero and their transposes), the
results in [13] state that the conditiofigx”) = 0 for all |y| < [«] imply that
T is bounded oy “(R") for« > 0 andp,q > 1 Letnowa < 0. If T is a
pseudodlﬁerentlal operator ﬁ‘fl, thenT* is not necessarily a pseudodifferential
operator. Nevertheless, its kerr€t(x, y) is K(y, x) and hence still satisfies the
estimates (2) by symmetry. The results in [13] state th&t'iannihilates polyno-
mials of degree less than or equal tef] thenT* is bounded orB, *?, and then
by duality” = T** is bounded inB,"?, which agrees with our results. Such dual-
ity arguments are not available for other values of the parameters, but our proof is
still valid.

3. Form # 0 we could have precomposed the operator with an appropriate
power of the Laplacian and reduced our proof to the @ase 0. There are also
versions of the T1 theorem for general operators whose kernels satisfy appropri-
atem-versions of the estimates (2). In principle, such results could be applied to
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operators in'Sff1 and some values of the parameters, andg, but they lead to
weaker results than the ones we have presented here (cf. [18]).

4. Note that our approach does not require the giving of a precise meaning on
the action of an operatdr (satisfying (2)) on polynomials, as is usually required
in versions of the T1theorem. We only need to know ffyaacts on polynomials,
which is automatic by duality.

5. Operators with homogeneous symbols of degrée & satisfying estimates
(1) were studied by Calderén and Zygmund [3]. For this subclass of symbols, a
partial calculus holds but does not extend to the whole dgsgsee [16, p. 268]).

3. Examples and Applications

Symbols inSl”f1 that are independent af exist in abundance. For instance, it is
easy to see that the reciprocal of an elliptic polynomiat efriables that is ho-
mogeneous of degree > 0 isin S; 7"

An example of a homogeneous symbol in the clbi%ISiS the following:

+00

3 ePrip@te,
k=—o00
whereg is a smooth bump supported away from the origin. More generally, sup-
pose that the sequence of smooth functipmg(x)};cz in R" satisfies

[8%mpllo < Co2** a7)

for all « n-tuples of nonnegative integers ahdny integer. Then the symbol

+00
a(x, &) = Y m(x)p27E)
k=—00
isin S,

We now give an application. Lei; be the Littlewood—Paley operators defined
by Zj\g(g) = 2(&)¢p(2778), whereg is a smooth bump (supported away from the
origin) that satisfie_ ; ., #(27/¢) = 1forall £ # 0.

Suppose now thaf is a function orR" that satisfies

D lIAifllse < C(f) < o0. (18)

jeZ
Let F be aC® function onR" with F(0) = 0. Suppose thaff is in some of
the homogeneous function space discussed in the previous section with index of
smoothness > 0. Denote such space by, ?. We claim thatF(f) lies in the
same spacd ,"?. For the proof of this we borrow the ideas of Bony as presented
in [12].

For an integek define
k

fe=Y_ Af (19)

j=—00
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and write f = lim;_, », f%x, with uniform convergence because of (18). The func-
tions f; have Fourier transforms with compact support and they are smooth (actu-
ally, analytic of exponential type). Moreover, by (18), they are uniformly bounded.
Using (18) and Bernstein’s inequality we obtain the following estimates for their
derivatives:

10%filloe < Ca2™| filloe < C(f)Co2%M%. (20)
Write now
N +00
F(fy=lim > F(fi) = F(fico = ), F(f) = F(ficn.  (21)
k=—N k=—00

where convergence is justified from the fact tiais continuousF(0) = 0, and
that fy — f andf_y — O uniformly asN — +oo. Next apply the mean value
theorem to write (21) as

+00

F(f)(x)= Y me(x)(Arf)(x),
k=—00
where L
my = /O Flufi + A= 0) fi dr. (22)

Using (20), the smoothness Bf and the chain rule, we see that the functiens
satisfy (17). We conclude that the symbol

+00
a(x, &)= Y mi(x)p27%)
J=—00
is in Sfl. We have thatF'(f) = T,f. It follows from Theorems 1.1 and 1.2
that the functionF(f) is in X7, providede > 0 andp,q > 1, orif a >
n(maxd, p~% g1 — 1). Observe that, owing to the nonlinearity of the problem,
in the estimate
IFEC)xea < Crll fllxe (23)

the constantC; depends or¥. In fact, both the functions:;, and the symbok
depend ory. If we assume thaF(¢) = ¢? then, after carefully examining the ar-
guments given here and the proofs of the theorems (given in Section 2), we see
thatCy in (23) is controlled by a suitable (large) power of the bodfid) in (18).

Finally, observe that the left-hand side of (18) is ﬂ?&l norm of f. By some
well-known facts about functions of exponential type (see [19]),

1A flloe < C27"PIIA; fp.
From this one obtains the inequality (Sobolev—Besov embedding)
D N8if e < €Y 2P Af .
jeZ jeZ

Then, in particular, the application described can be useicﬁi?(R”) with o =
n/p andqg =1, yielding (23) withC, controlled by a power of f”B;;/nl.
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