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1. Introduction

Let Grn,d(C) denote the Grassmannian of alld-dimensional linear subspaces in
Cn, and let GLn(C) × (Grn,d(C))s → (Grn,d(C))s be the canonical diagonal
action. Dolgachev [DB] posed the following question:

Is the quotientGrn,2(C)s/GLn(C) (e.g., in the sense of Rosenlicht)
always rational?

Recall that a Rosenlicht quotient of an algebraic varietyX acted on by an al-
gebraic groupG is an algebraic varietyV together with a rational mapX → V

whose generic fibers coincide with theG-orbits. Such quotients always exist and
are unique up to birational isomorphisms [R]. In the sequel all quotients will be as-
sumed of this type. An algebraic varietyQ is rational if it is birationally equivalent
to Pm with m = dimQ.

We answer the above question in the affirmative by applying the rationality of
the quotient(GL2(C))2/GL2(C),where GL2(C) acts diagonally by conjugations
(see [P1] and surveys [B; D]).

Theorem1.1. For all positive integersnands, the quotient(Grn,2(C))s/GLn(C)
is rational. Equivalently, the field of rationalGLn(C)-invariants on(Grn,2(C))s
is pure transcendental.

The statement of Theorem 1.1 has been recently proved by Megyesi [M] in the
casen = 4 and by Dolgachev and Boden [DB] in the case of oddn. Their proofs
are independent of the present one.

More generally, we show the birational equivalence between(Grn,d(C))s/
GLn(C) and certain quotients of matrix spaces. Let GLn(C) × (GLn(C))s →
(GLn(C))s be the action defined by(g,M1, . . . ,Ms) 7→ (gM1g

−1, . . . , gMsg
−1).

The first main result of the present paper consists of the following two statements.

Theorem 1.2.
(1) Let s and d be arbitrary positive integers, and letn = rd for some integer

r > 1. Then(Grn,d(C))s/GLn(C) is birationally equivalent to(GLd(C))k/
GLd(C), where
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k =
{
(r −1)(s − r −1) if s > r +1,

1 else.

(2) Let s be an arbitrary positive integer. Letn = (2r + 1)e and d = 2e for
some integersr ande. Then(Grn,d(C))s/GLn(C) is birationally equivalent
to (GLe(C))k/GLe(C), where

k =


2r − 4+ (4r − 2)(s − r − 2) if r > 1, s > r +1,

2(s − 4) if r = 1, s > 4,

1 else.

If n is even then Theorem1.1follows from the first part of Theorem1.2 and from the
rationality of the quotient of(GL2(C))s by GL2(C) (see Procesi [P1]); ifn is odd
then it follows from the second part of Theorem 1.2. Formanek [F1; F2] proved
the rationality of(GLn(C))s/GLn(C) for n = 3,4. Using his result together with
Theorem 1.2, we obtain the following.

Theorem 1.3. For every positive integers, we have:

(1) (Grn,3(C))s/GLn(C) is rational forn = 0 (mod 3);
(2) (Grn,4(C))s/GLn(C) is rational forn = 0 (mod 2);
(3) (Grn,5(C))s/GLn(C) is rational forn = 3 (mod 6);
(4) (Grn,8(C))s/GLn(C) is rational forn = 4 (mod 8);
We refer the reader to [BS] for similar equivalences of stable rationalities (an al-
gebraic varietyV is stable rationalif V × Pm is rational for somem). We also
refer to [GP1; GP2] for the classification of quadruples of linear subspaces of
arbitrary dimensions and their invariants. In our situation, however, all rational
invariants of the quadruples (i.e., the cases = 4) are constant unlessr = 2 in the
first part of Theorem 1.2.

Our method is based on constructing certain normal forms for our algebraic
group actions. We call an algebraic variety acted upon algebraically by an alge-
braic groupG aG-space. AG-subspace is aG-invariant locally closed algebraic
subvariety ofX. We use the standard notationGs := { gs : g ∈ G } andGS :=
{ gs : g ∈G, s ∈ S }, whereS ⊂ X is an arbitrary subset.

Definition 1.1. We saythat(S,H ) is anormal formfor (X,G) if H ⊂ G is a
subgroup andS ⊂ X is aH -subspace such that the following hold:

(1) GS is Zariski dense inX;
(2) Gs ∩ S = Hs for all s ∈ S.
Clearly these conditions guarantee the birational equivalence of the quotientsX/G

andS/H. In Sections 3 and 4 we construct certain normal forms that are isomor-
phic to the spaces of matrices as in Theorem 1.2. Then, in Section 5, we use
these normal forms for explicit computations of generators of the fields of rational
invariants in each case of Theorem 1.2.

This method also has applications to biholomorphic automorphisms of non-
smooth bounded domains, where the configurations of linear subspaces appear
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naturally as collections of tangent subspaces to the so-called characteristic webs.
We refer the reader to [Z] for further details.

2. Notation

For brevity we write GLn and Grsn,d for GLn(C) and(Grn,d(C))s, respectively.
The actions on the products will be assumed diagonal unless otherwise speci-
fied. ForE andE ′ vector spaces with dimE ≤ dimE ′, denote by Grd(E) the
Grassmannian of alld-dimensional subspaces ofE, by GL(E) the group of lin-
ear automorphisms ofE, and by GL(E1, E2) the space of all linear embeddings of
E1 intoE2. A G-spaceX is homogeneous(resp.almost homogeneous) if G acts
transitively onX (on a Zariski dense subset ofX).

3. The Cased Dividesn

In this section we study the diagonal GLn-action on Grsn,d with n = rd for some
integerr. Clearly, the set of allr-tuples(V1, . . . , Vr) ∈ Grrn,d such thatCn =
V1 ⊕ · · · ⊕ Vr is Zariski open and GLn-homogeneous. This can be reformulated
in terms of normal forms as follows.

Lemma 3.1. Suppose thatr ≥ 2, s ≥ r, and (E1, . . . , Er) ∈ Grrn,d is such that
Cn = E1⊕ · · · ⊕ Er. Define

S1= S1(s) := { (V1, . . . , Vs)∈Grsn,d : (V1, . . . , Vr) = (E1, . . . , Er) }
and the groupH1 := GL(E1)× · · · ×GL(Er) ⊂ GLn. Then(S1, H1) is a normal
form for (Grsn,d ,GLn).

Now fix the splittingCn = E1⊕· · ·⊕Er as before. LetV ∈Grn,d be such that its
projection on eachEi (i = 1, . . . , r) is bijective. In this case we say thatV is in
general positionwith respect to(E1, . . . , Er). Clearly the subset of allV, which
are in general position, is Zariski open in Grn,d . Thus, for everyi = 2, . . . , r, the
projectionVi of V onE1 × Ei is a graph of a linear isomorphismϕi : E1→ Ei.

We claim that this correspondence between elementsV ∈Grn,d and(r−1)-tuples
of linear isomorphisms

(ϕ2, . . . , ϕr)∈
r∏
i=2

GL(E1, Ei)

is birational.

Lemma 3.2. Under the assumptions of Lemma 3.1, define

8 :
r∏
i=2

GL(E1, Ei)→ Grn,d ,

8(ϕ2, . . . , ϕr) := { (z⊕ ϕ2(z)⊕ · · · ⊕ ϕr(z)) : z∈E1 },
and theH1-action on

∏r
i=2 GL(E1, Ei) by
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((g1, . . . , gr), (ϕ2, . . . , ϕr)) 7→ (g2 B ϕ2 B g−1
1 , . . . , gr B ϕr B g−1

1 ).

Then8 is birational andH1-equivariant. The image of8 consists of all subspaces
V ∈Grn,d that are in general position with respect to(E1, . . . , Er).

Proof. Since8 defines a system of standard coordinates on Grn,d , it is birational.
The equivariance and the statement on the image are straightforward.

Since
∏r

i=2 GL(E1, Ei) isH1-homogeneous, we have the following.

Corollary 3.1. Under the assumptions of Lemma 3.1, letS ′1(s) ⊂ S1(s) be the
Zariski open subset, whereVr+1 is in general position with respect to(E1, . . . , Er).

ThenH1 acts transitively onS ′1(r +1).

This proves statement 1 of Theorem 1.2 fors ≤ r + 1. Suppose now thats >
r +1 and thatEr+1∈Grn,d is in general position with respect to(E1, . . . , Er).

Lemma 3.3. DefineS2 = S2(s) := { (V1, . . . , Vs) ∈ S1(s) : Vr+1 = Er+1 } and
the groupH2 := GL(E1) with the action onS2 defined by the homomorphism

H2→ H1, g 7→ (g, ϕ2 B g B ϕ−1
2 , . . . , ϕr B g B ϕ−1

r ),

where
(ϕ2, . . . , ϕr) := 8−1(Er+1).

Then(S2, H2) is a normal form for(Grsn,d ,GLn).

Proof. By Corollary 3.1,H1S2 is Zariski open inS1. By straightforward calcula-
tions,(S2, H2) is a normal form for(S1, H1) and hence, by Lemma 3.1, a normal
form for (Grsn,d ,GLn).

We now letV ∈ Grn,d be one more subspace in general position with respect to
(E1, . . . , Er). Define(ψ2, . . . , ψr) := 8−1(V ). Clearly the map

r∏
i=2

GL(E1, Ei)→ GL(E1)
r−1,

(ψ2, . . . , ψr) 7→ (ϕ−1
2 B ψ2, . . . , ϕ

−1
r B ψr)

(1)

is one-to-one, where(ϕ2, . . . , ϕr) = 8−1(Er+1) is fixed. Moreover, we obtain
the following lemma.

Lemma 3.4. DefineK: GL(E1)
r−1→ Grn,d by

K(χ2, . . . , χr) := 8(ϕ2 B χ2, . . . , ϕr B χr),
and define theH2-action onX2 by

(g, (χ2, . . . , χr)) 7→ (g B χ2 B g−1, . . . , g B χr B g−1).

ThenK is birational andH2-equivariant. The image ofK consists of all subspaces
V ∈Grn,d that are in general position with respect to(E1, . . . , Er).
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Proof. The mapK is birational as the composition of8 and the map (1). The
other statements are straightforward.

Corollary 3.2. Under the assumptions of Lemma 3.3, define

9 : S2(s)→ (GL(E1)
r−1)s−r−1,

9(E1, . . . , Er+1, Vr+2, . . . , Vs) := (K−1(Vr+2), . . . , K
−1(Vs)).

Then9 is birational andH2-equivariant.

Finally, using Lemma 3.3, we obtain the following.

Corollary 3.3. For n = rd, the spaceGrsn,d is almostGLn-homogeneous if
and only ifs ≤ r + 1. If s > r + 1, there is a normal form for(Grsn,d ,GLn) that

is isomorphic to(GL(r−1)(s−r−1)
d ,GLd).

This implies the first part of Theorem 1.2.

4. The Casen=== (2r +++ 1)eand d=== 2e

We start with anr-tuple (V1, . . . , Vr) ∈ Grrn,d . Clearly the subset of allr-tuples
that form a direct sum is both Zariski open and GLn-homogeneous. Fix anr-tuple
(E1, . . . , Er) in this subset and suppose thats > r. A straightforward calculation
yields the following.

Lemma 4.1. Define

S1= S1(s) := { (V1, . . . , Vs)∈Grsn,d : (V1, . . . , Vr) = (E1, . . . , Er) }
and the groupH1 := { g ∈ GLn : g(Ei) = Ei for all i = 1, . . . , r } with the
diagonal action onS1. Then(S1, H1) is a normal form for(Grsn,d ,GLn).

Now we wish to parameterize thed-dimensional linear subspaces inCn with
respect to(E1, . . . , Er). We say thatV is in general positionwith respect to
(E1, . . . , Er), if dim W = e, whereW := V ∩ (E1⊕ · · · ⊕ Er) and the projec-
tion ofW on eachEi (i = 1, . . . , r) is injective. The subset of allV ∈Grn,d that
are in general position is clearly Zariski open.

We first give another description of the subspacesW ∈Gre(E1⊕ · · · ⊕Er) that
are in general position with respect to(E1, . . . , Er). For this, letAi = Ai(V ) ∈
Gre(Ei) be the projections ofW and letϕi = ϕi(V ) ∈ GL(A1, Ei) be the linear
isomorphisms whose graphs are equal to the projections ofW onE1 ⊕ Ei (i =
2, . . . , r). Denote byX = X(E1, . . . , Er) the space of all tuples(A, ϕ2, . . . , ϕr),

whereA∈Gre(E1) andϕi ∈GL(A,Ei),with the standard structure of a quasipro-
jective variety.

Lemma 4.2. Define

8 : X→ Gre(E1⊕ · · · ⊕ Er),
8(A, ϕ2, . . . , ϕr) := { (z⊕ ϕ2(z)⊕ · · · ⊕ ϕr(z)) : z∈A },
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and theH1-action onX by

(g, (A, ϕ2, . . . , ϕr)) 7→ (g(A), g B ϕ2 B g−1, . . . , g B ϕr B g−1).

Then8 is birational andH1-equivariant. The image of8 consists of all subspaces
W ∈X that are in general position with respect to(E1, . . . , Er).

Proof. The proof is straightforward.

Corollary 4.1. LetS ′1(s) ⊂ S1(s) be the Zariski open subset of alls-tuplesV =
(V1, . . . , Vs) such thatVr+1 is in general position with respect to(E1, . . . , Er).

ThenH1 acts transitively onS ′1(r +1).

Proof. It follows from the general position condition that

W(V ) := Vr+1∩ (E1⊕ · · · ⊕ Er)∈Gre(E1⊕ · · · ⊕ Er),
in the notation of Lemma 4.2. LetV,V ′ ∈ S ′1(r + 1) be arbitrary elements. Since
X isH1-homogeneous, there existsg1∈H1 such thatg1(W(V )) = W(V ′). Then
there existsg2 ∈ GLn with g2(Vr+1) = V ′r+1 andg2|(E1⊕ · · · ⊕ Er) = id. By
construction,g2 ∈H1 and the proof is finished.

Corollary 4.2. For s ≤ r +1, Grsn,d is almostGLn-homogeneous.

Let s > r+1andEr+1∈Grn,d be in general position with respect to(E1, . . . , Er).

As a direct consequence of Corollary 4.1, we have the following lemma.

Lemma 4.3. DefineS2 := { (V1, . . . , Vs) ∈ S1 : Vr+1 = Er+1 } andH2 := { g ∈
GLn : g(Ei) = Ei for all i = 1, . . . , r+1},with the diagonal action onS2. Then
(S2, H2) is a normal form for(Grsn,d ,GLn).

For the sequel we suppose that the subspacesE1, . . . , Er+1 are fixed. Define

(A, ϕ2, . . . , ϕr) := 8−1(Er+1∩ (E1⊕ · · · ⊕ Er)).
Let V ∈ Grn,d be one more subspace that is in general position with respect to
(E1, . . . , Er). Clearly,V is not uniquely determined by itse-dimensional inter-
sectionZ1(V ) := V ∩ (E1⊕ · · · ⊕ Er). However, usingEr+1, we can consider
another intersectionZ2(V ) := V ∩ (E1⊕ · · · ⊕ Er−1⊕ Er+1). Then the map

Z := (Z1, Z2) : Grn,d → Gre(E1⊕ · · · ⊕ Er)×Gre(E1⊕ · · · ⊕ Er−1⊕ Er+1)

is birational with the inverseZ−1: (W,W ′) 7→ W +W ′.
Using the construction ofX and8 for the tuple(E1, . . . , Er−1, Er+1) instead

of (E1, . . . , Er), we obtainY := X(E1, . . . , Er−1, Er+1) and theH2-equivariant
birational map

9 : Y → Gre(E1⊕ · · · ⊕ Er−1⊕ Er+1).

Combining8, 9, andZ, we obtain the following.
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Corollary 4.3. The composition� := Z−1 B (8,9) : X × Y → Grn,d is
birational andH2-invariant.

In the following we treat the casesr > 1 andr = 1 separately.

4.1. The caser > 1.

ForV ∈Grn,d , set

(B,ψ2, . . . , ψr) := 8−1(V ∩ (E1⊕ · · · ⊕ Er))∈X, (2)

(C, χ2, . . . , χr−1, χr+1) := 9−1(V ∩ (E1⊕ · · · ⊕ Er−1⊕ Er+1))∈ Y. (3)

In order to construct a smaller normal form, fix(A′, ϕ ′2, . . . , ϕ
′
r )∈X,A′′∈Gre(E1),

andχ ′r+1∈GL(A′′, Er+1) such thatE1= A⊕A′, A′′ ∩A = A′′ ∩A′ = {0}, Ei =
ϕi(A)⊕ ϕ ′i(A′) for all i = 2, . . . , r, andCn = E1⊕ · · · ⊕ Er ⊕ χ ′r+1(A

′′).

Lemma 4.4. In the notation just described, define

S := {V ∈Grn,d : B = A′, C = A′′, ψ2 = ϕ ′2, . . . , ψr = ϕ ′r , χr+1= χ ′r+1 }.
ThenH2S is Zariski open inGrn,d .

Proof. For V ∈ Grn,d generic,E1 = A ⊕ B. Hence there exists ag ∈ GL(E1)

with g|A = id andg(B) = A′. Clearlyg extends to an isomorphism from the ac-
tion byH2. Without loss of generality,B = A′. Similarly, there exists an isomor-
phismg ∈H2 such thatg|ϕi(A) = id andg B ψi = ϕ ′i onA′ for all i = 2, . . . , s.
Thus we may assume thatψi = ϕ ′i . By Lemma 3.1, we may also assume thatC =
A′′. Again, forV generic,Cn = E1⊕ · · · ⊕ Er ⊕ χr+1(A

′′), whereχr+1(A
′′) ⊂

Er+1. Hence there exists an isomorphismg ∈H2 such thatg|(E1⊕ · · · ⊕ Er) =
id andg B χr+1= χ ′r+1. This proves the lemma.

Let α ∈ GL(A,A′) be the isomorphism whose graph isA′′ with respect to the
splittingE1 = A⊕ A′. Defineβ : A→ A′′ by β(z) := z ⊕ α(z). For everyi =
2, . . . , r, consider

ξi := (ϕi × ϕ ′i )−1 B χi B β ∈GL(A,A⊕ A′)
and its components [ξi ]1 ∈GL(A) and [ξi ]2 ∈GL(A,A′). Define the rational map

4 : S → GL(A)2(r−2),

4:V 7→ ([ξ2]1, α
−1 B [ξ2]2, . . . , [ξr−1]1, α

−1 B [ξr−1]2),

whereS is defined in Lemma 4.4.
Let g ∈ GL(A) be arbitrary. Using the isomorphismsα : A → A′, ϕi : A →

ϕi(A) andϕ ′i :A
′ → ϕ ′i(A

′) for i = 2, . . . , r, andχ ′r+1 B β : A → χ ′r+1(A
′′),

we can extendg canonically to an isomorphism from the action byH2. This
extension defines a canonical GL(A)-action onCn and therefore onS (as de-
fined in Lemma 4.4). We compare this action with the diagonal GL(A)-action on
GL(A)2(r−2) by conjugations as follows.
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Lemma 4.5. The map4 : Grn,d → GL(A)2(r−2) is birational and GL(A)-
equivariant.

Proof. The inverse of4 is given by

4−1(λ2, . . . , λr−1, δ2, . . . , δr−1) = �(x, y),
where� : X × Y → Grn,d is birational (by Corollary 4.3) and

x := (A′, ϕ ′2, . . . , ϕ ′r ),
y := (A′′, (ϕ2 × ϕ ′2) B (λ2, α B δ2) B β−1, . . . ,

(ϕr−1× ϕ ′r−1) B (λr−1, α B δr−1) B β−1, χ ′r+1).

The equivariance is straightforward.

In the following corollary we use the spaceS as defined in Lemma 4.4.

Corollary 4.4. DefineS3(s) := { (V1, . . . , Vs) ∈ Grsn,d : Vr+2 ∈ S } and con-
sider the diagonalGL(A)-action onS3. Then(S3,GL(A)) is a normal form for
(Grsn,d ,GLn).

Corollary 4.5. If d = 2e andn = (2r +1)e, the spaceGrr+2
n,d is almostGLn-

homogeneous if and only ifr = 2.

Now letV ∈Grn,d be one more subspace. Using the previously fixed data, we as-
sociate withV a tuple of 4r − 2 linear automorphisms ofA as follows. In the no-
tation following (2) and (3), letτ1∈GL(A,A′) andτ2 ∈GL(A,A′) be the linear
isomorphisms with the graphsB andC, respectively. As above, letα ∈GL(A,A′)
be the isomorphism whose graph isA′′. For j = 1,2, setσj := α−1 B τj ∈GL(A)
andτ ′j(z) := z+ τj(z) (τ ′1:A→ B, τ ′2:A→ C). For i = 2, . . . , r,

ζi := (ϕi × ϕ ′i )−1 B ψi B τ ′1 ∈GL(A,A⊕ A′);
for i = 2, . . . , r −1,

θi := (ϕi × ϕ ′i )−1 B χi B τ ′2 ∈GL(A,A⊕ A′).
We write [ζi ]1, [θi ]1∈GL(A) and [ζi ]2, [θi ]2 ∈GL(A,A′) for the corresponding
components with respect to the splittingE1= A⊕ A′. Then we obtain the linear
automorphisms ofA asxi := [ζi ]1 andyi := α−1 B [ζi ]2 for i = 2, . . . , r; zi :=
[θi ]1, ti := α−1 B [θi ]2 for i = 2, . . . , r −1.

In order to deal with the remainder termχr+1, we defineϕr+1∈GL(A,Cn) by

ϕr+1(z) := z⊕ ϕ2(z)⊕ · · · ⊕ ϕr(z).
It follows from the construction thatϕr+1(A)∈Gre(Er+1) andEr+1= ϕr+1(A)⊕
χ ′r+1(A

′′). Using this splitting we define the remainder isomorphisms

θr := (ϕr+1× χ ′r+1)
−1 B χr+1 B τ ′2 ∈GL(A,A⊕ A′),

zr := [θr ]1, andtr := α−1 B [θr ]2∈GL(A).
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Lemma 4.6. Let2 : Grn,d → GL(A)4r−2 be given by

2:V 7→ (σ1, σ2, x2, y2, z2, t2, . . . , xr , yr , zr , tr ).

Then2 is birational andGL(A)-equivariant.

Proof. In the foregoing notation, the inverse2−1 can be calculated as follows:

τ ′j := α B σj + id, B := τ ′1(A), C := τ ′2(A),
ψi = (ϕi × ϕ ′i ) B (xi, α B yi) B (τ ′1)−1 for i = 2, . . . , r,

χi = (ϕi × ϕ ′i ) B (zi, α B ti) B (τ ′2)−1 for i = 2, . . . , r − 2,

χr+1= (ϕr+1× χ ′r+1) B (zr , α B tr ) B (τ ′2)−1,

V = �((B,ψ2, . . . , ψr), (C, χ2, . . . , χr−1, χr+1)).

The equivariance is straightforward.

Corollary 4.6. If s ≥ r + 2 then the space(S3,GL(A)) is isomorphic to

(GL2r−4+(s−r−2)(4r−2)
e ,GLe).

Proof. The required birational isomorphism is given by

(V1, . . . , Vs) 7→ (4(Vr+2),2(Vr+3), . . . , 2(Vs)), (4)

where4 is birational by Lemma 4.5 and2 is birational by Lemma 4.6.

This implies the second part of Theorem 1.2 in the caser > 1.

4.2. The Caser = 1

In this case we haven = 3e. Recall that we fixedE1, E2 ∈Grn,d in general posi-
tion such that dimA = e, whereA := E1 ∩ E2. Choose another subspaceE3 ∈
Grn,d such that dimA1= dimA2 = e, whereAj := Ej ∩E3 for j = 1,2. Recall
that we definedH2 ⊂ GLn to be the stabilizer of bothE1 andE2. Denote byH3 ⊂
H2 the stabilizer ofE3. ThenH3 = GL(A)×GL(A1)×GL(A2) with respect to
the splittingCn = A⊕ A1⊕ A2. The following is straightforward.

Lemma 4.7. Suppose thats ≥ 3 and defineS3 = S3(s) := { (V1, . . . , Vs) ∈ S2 :
V3 = E3 }. Then(S3, H3) is a normal form for(Grsn,d ,GLn).

Now we chooseBj ∈ Gre(Ej ) such thatBj ∩ A = Bj ∩ Aj = {0} for j = 1,2.
Then eachBj can be seen as the graph of an isomorphismϕj ∈ GL(A,Aj ). On
the other hand, forV ∈Grn,d generic, the subspacesCj := V ∩ Ej are graphs of
isomorphismsψj ∈GL(A,Aj ). Define

g = (id, ψ1 B ϕ−1
1 , ψ2 B ϕ−1

2 )∈GL(A⊕ A1⊕ A2).

Theng ∈H3 andg(Bj ) = Cj for i = 1,2; in particular,V = B1+ B2. Together
with Lemma 3.3 this proves the following.
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Lemma 4.8. Suppose thats ≥ 4. Define

S4 = S4(s) := { (V1, . . . , Vs)∈ S3 : V4 ∩ E1= B1, V4 ∩ E2 = B2 }
andH4 := GL(A). Define theH4-action onS4 via the homomorphism

H4→ H3, g 7→ (g, ϕ1 B g B ϕ−1
1 , ϕ2 B g B ϕ−1

2 ).

Then(S4, H4) is a normal form for(Grsn,d ,GLn).

As a special case of Corollary 3.3, we obtain the following.

Lemma 4.9. The spaceGrs3e,2e is almostGL3e-homogeneous if and only ifs ≤
4. If s ≥ 5 then there exists a normal form that is isomorphic to(GL2(s−4)

e ,GLe),
whereGLe acts diagonally by conjugations.

This implies the second part of Theorem 1.2 in the caser = 1.

5. Computation of Rational Invariants

5.1. The Casen = rd
In order to compute the rational GLrd -invariants of Grsrd,d we represent the ele-
ments of Grsrd,d by the equivalence classes ofrd×ds matricesM ∈Crd×sd ,where
the equivalence is taken under the right multiplication by GLs

d . Then the diagonal
GLrd -action on Grsrd,d corresponds to the left multiplication onCrd×sd . We start
with 2d × 2d matrices. Define

D : GL2d → GLd , D

(
A11 A12

A21 A22

)
:= A11A

−1
21A22A

−1
12. (5)

ThenD is a rational map that is invariant under the right multiplication by
GLd ×GLd and the left multiplication by{e} ×GLd , wheree ∈GLd is the unit.
Moreover,D is equivariant with respect to the left multiplication by GLd × {e}.

More generally, letM ∈ Crd×sd be a rectangular matrix, wherer ands are ar-
bitrary positive integers. We splitM into d × d blocksAij (i = 1, . . . , r, j =
1, . . . , s). Then, for everyi = 2, . . . , r andj = 2, . . . , s, define

Dij : Crd×sd → GLd , Dij(M) := D
(
A11 A1j

Ai1 Aij

)
.

Similarly toD, eachDij is a rational map that is invariant under the right multi-
plication by GLsd and under the left multiplication by{e} ×GLr−1

d .

Finally, we construct rational maps that are invariant under the left multiplica-
tion by the larger group GLrd . For this, we assumes > r + 1; otherwise, the left
GLrd -multiplication is almost homogeneous (see Corollary 3.3) and hence all ra-
tional invariants are constant. Then every matrixM ∈Crd×sd from a Zariski open
subset can be split into two blocks:

M = (AB), A∈GLrd , B ∈Crd×(s−r)d .
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Define
ϕ(M) := A−1B ∈Crd×(s−r)d

and

Gij(M) := Dij(ϕ(M)) for i = 2, . . . , r and j = 2, . . . , s − r.
In particular, ford = 1, r = 2 ands = 4, we obtain the classical double ratio:

G22

(
1 1 1 1
z1 z2 z3 z4

)
= D

(
z2 − z3 z2 − z4

z1− z3 z1− z4

)
= z2 − z3

z1− z3
:
z2 − z4

z1− z4
.

By the invariance ofDij, everyGij is invariant under the left multiplication by
GLrd and under the right multiplication by{e} ×GLs−1

d . Moreover, by construc-
tion,Gij is equivariant with respect to the subgroup GLd × {e} ⊂ GLd ×GLs−1

d ,

where we take the right action onCrd×sd and the conjugation on the image space
GLd . We therefore obtain the following rational(GLrd ×GLsd)-invariants:

Iαβ := Tr(Gα1β1 · · ·Gαkβk ) = Tr((Dα1β1 B ϕ) · · · (Dαkβk B ϕ)), (6)

whereα ∈ {2, . . . , r}k andβ ∈ {2, . . . , s − r}k are arbitrary multi-indices.
Using a result of Procesi [P2], we show that the invariant field is actually gen-

erated by these traces of monomials.

Theorem 5.1. Letd, r, s be arbitrary positive integers such thats > r+1. Then
the field of rational(GLrd × GLsd)-invariants ofrd × sd matrices is generated
by the functionsIαβ, whereα ∈ {2, . . . , r}k and β ∈ {2, . . . , s − r}k and where
k < 2d .

Proof. Setn := rd as before. We write the spacesE1, . . . , Er+1, Vr+2, . . . , Vs ∈
Grn,d as in Lemma 3.3 in the form of anrd × sd matrix withd × d blocks as

M :=


E 0 · · · 0 E E · · · E

0 E · · · 0 E V2,r+2 · · · V2,s
...

...
. . .

...
...

...
. . .

...

0 0 · · · E E Vr,r+2 · · · Vr,s

, (7)

whereE denotes the identity matrix of the sized × d.
Let S̃2 ⊂ Crd×sd be subspace of all matrices of the form (7). ClearlyE1, . . . ,

Er+1 fulfill the assumptions of Lemma 3.3. It then follows from the lemma that
(S̃2,GLd) is a normal form for(Crd×sd ,GLrd ×GLsd), where GLd acts onS̃2 as
the diagonal subgroup of GLrd ×GLsd (i.e., eachd × d block is conjugated by the
same matrix).

By the definition of a normal form, it is sufficient to prove that the field of in-
variants of(S̃2,GLd) is generated by restrictions of theIαβ. LetM be given by
(7). By the obvious calculations,
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ϕ(M) =


E E · · · E

E V2,r+2 · · · V2,s
...

...
. . .

...

E Vr,r+2 · · · Vr,s

 (8)

and hence
Iαβ(M) = Tr(Vα1,r+β1 · · ·Vαk,r+βk ). (9)

By a theorem of Procesi [P2], the polynomial invariants of(r −1)(s − r −1)-
tuples(Vij ) with respect to the diagonal GLd -conjugations are generated by the
monomials of the form (9) withk < 2d . Since all points of(S̃2,GLd) are
semistable (see [MFK]), the categorical quotientS̃2//GLd exists and is given
by these monomials. Then the rational invariants on(S̃2,GLd) are pullbacks of
rational functions oñS2//GLd , and the proof is finished.

5.2. The Casen = 3e andd = 2e
In this case the elements of Grs

n,d are represented by the equivalence classes of
matricesM ∈C3e×2se with 3e × 2e blocksM1, . . . ,Ms. As before, we are look-
ing for rational invariants with respect to left multiplications by GL3e and right
multiplications by GLsd . We start with the case of 3-blocks. Define the rational map

ϕ:C3e×6e → C3e×6e,

ϕ

(
A1 A2 A3

B1 B2 B3

)
:=
(

E ′ E ′ E ′

B1A
−1
1 B2A

−1
2 B3A

−1
3

)

=
E 0 E 0 E 0

0 E 0 E 0 E

c1 d1 c2 d2 c3 d3

, (10)

whereA1, A2, A3 ∈ GLd andB1, B2, B3 ∈ Ce×2e and whereE ′ ∈ GL2e and
E ∈ GLe denote the identity matrices. We see the corresponding subspaces
E1, E2, E3 ∈Grn,d as graphs of linear maps given by the matrices(c1d1), (c2 d2),

and(c3 d3), respectively. Our first goal will be to compute the intersectionsA :=
E1∩ E2 andAj := Ej ∩ E3 (j = 1,2). For this, we set(
x1 x2 x3

y1 y2 y3

)
:=
((
c1 d1

c2 d2

)−1

,

(
c3 d3

c1 d1

)−1

,

(
c2 d2

c3 d3

)−1
)(

E

E

)
∈Ce×3e.

Thenx1c1+ y1d1= x1c2 + y1d2 = E and hence the 3e × e matrix x1

y1

E


represents the intersectionE1∩ E2. Similarly the 3e × e matrices x2

y2

E

 and

 x3

y3

E


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represent the intersectionsE3 ∩ E1 andE2 ∩ E3, respectively. Equivalently, the
3-tuple(E1, E2, E3) can be represented by the matrix x1 x2 x3 x1 x2 x3

y1 y2 y3 y1 y2 y3

E E E E E E

. (11)

Now take the general matrixM = (M1, . . . ,Ms)∈C3e×2es . Following the con-
struction of Section 4.2, we bringA, A1, andA2 (i.e., the matrix (11)) to a normal
form. For this, consider the square matrix

H(M) :=
 x1 x2 x3

y1 y2 y3

E E E


and multiplyM byH(M)−1 :

H(M)−1M

:=
E 0 0 E 0 0 C14 D14 · · · C1s D1s

0 E 0 0 E 0 C24 D24 · · · C2s D2s

0 0 E 0 0 E C34 D34 · · · C3s D3s

. (12)

Next we normalize the 3e × 2e blocks: C1i D1i

C2i D2i

C3i D3i

( C1i D1i

C2i D2i

)−1

=
 E 0

0 E

α2i−1 α2i


and define

σ2i−1 := α2i−1α
−1
7 and σ2i := α2iα

−1
8 for i = 5, . . . , s.

Comparing this construction with Section 4.2, we conclude that the matricesσj
(j = 9, . . . ,2s) represent exactly the 2(s−4)matrices in the isomorphic normal
form (GL2(s−4)

e ,GLe). Using the theorem of Procesi [P2] and arguments similar
to those used in Section 5.1, we obtain the following.

Theorem 5.2. Let e ands be arbitrary positive integers such thats > 4. Then
the field of rational(GL3e ×GLs2e)-invariants of 3e× 2es matrices is generated
by the functions

Jα := Tr(σα1 · · · σαk ),
whereα ∈ {9, . . . ,2s}k andk < 2e.

5.3. The Casen = (2r +1)e andd = 2e

Here an element(V1, . . . , Vs)∈Grsn,d is represented by a matrixM ∈C(2r+1)e×2se

with s blocksM1, . . . ,Ms of the size(2r + 1)e × 2e. Again, the GLn-invariants
on Grsn,d correspond to(GLn × GLs2e)-invariants onC(2r+1)e×2se. Similarly to
the previous paragraph, we start with a special case of a(2r + 1)e × (2r + 2)e
matrix and compute representatives of the intersectionsEr+1∩ (E1⊕ · · · ⊕ Er),



200 Dm i tr i Z ai tsev

Er+2 ∩ (E1⊕ · · · ⊕ Er), andEr+2 ∩ (E1⊕ · · · ⊕ Er−1⊕ Er+1) as in Section 4.
We start by normalizing then× 2e blocks as in (10):

ϕ

(
A1 · · · As
B1 · · · Bs

)
:=
(

E ′ · · · E ′

B1A
−1
1 · · · BsA

−1
s

)
=
(
E ′ · · · E ′

C1 · · · Cs

)
. (13)

In order to compute the first intersectionEr+1∩ (E1⊕ · · · ⊕ Er), we consider
the corresponding system of linear equations:

(E ′ . . . E ′)

X1
...

Xr

 = E ′Xr+1, (C1 . . . Cr)

X1
...

Xr

 = Cr+1Xr+1,

where eachXi is a 2e × e block. Solving from the first equationXr+1 =
X1+ · · · +Xr and substituting this into the second, we obtain

((C1− Cr+1) . . . (Cr − Cr+1))

X1
...

Xr

 = 0.

This is a system of(2r + 1)e × e equations with 2re × e variables. Hence, for
C1, . . . , Cr+1 in general position, this system has a solution that can be represented
by rational 2e × e block functions

Xi = Xi(M) (i = 1, . . . , r).

Comparing this with the construction of Section 4, we see that the blocks(
E ′

Ci

)
(Xi) (i = 1, . . . , r),

represent the subspacesA, ϕ2(A), . . . , ϕr(A). For our normalization (Lemma 4.4)
we also need the subspacesA′, ϕ ′2(A

′), . . . , ϕ ′r (A
′)andχ ′r+1,which come from the

other intersections. For them we can also solve the corresponding linear systems
and obtain rational 2e × e block functions

Yi(M) (i = 1, . . . , r), Zr+1(M)

such that the blocks(
E ′

Ci

)
(Yi(M)) (i = 1, . . . , r),

(
E ′

Cr+1

)
(Zr+1(M))

representA′, ϕ ′2(A
′), . . . , ϕ ′r (A

′) andχ ′r+1, respectively. As before, we put these
blocks together in ann× n matrix:

H(M)

:=
(E ′ · · · E ′

C1 · · · Cr

)X1 Y1 · · · 0 0
...

...
. . .

...
...

0 0 · · · Xr Yr

, ( E ′

Cr+1

)
(Zr+1(M))

.
Then× e columns ofH(M) are exactly the representatives of



Configurations of Linear Subspaces and Rational Invariants 201

A, A′, ϕ(A), ϕ ′(A′), . . . , ϕr(A), ϕ ′r (A
′), χ ′r+1(A

′′),

in this order. IfM is in general position, thenH(M) is invertible. As before,
consider the matrixH(M)−1M, which equals

E 0 · · · 0 0 0 a1 b1,r+2 c1,r+2 · · · b1,s c1,s

0 E · · · 0 0 0 a2 b2,r+2 c1,r+2 · · · b1,s c1,s

...
...

. . .
...

...
...

...
...

...
. . .

...
...

0 0 · · · E 0 0 a2r−1 b2r−1,r+2 c2r−1,r+2 · · · b2r−1,s c2r−1,s

0 0 · · · 0 E 0 a2r b2r,r+2 c2r,r+2 · · · b2r,s c2r,s

0 0 · · · 0 0 E a2r+1 b2r+1,r+2 c2r+1,r+2 · · · b2r+1,s c2r+1,s

.

Moreover, the propertyEr+1= 8(A, ϕ2, . . . , ϕr)+ χ ′r+1(A
′′) implies

a2 = a4 = · · · = a2r = a2r+1= 0.

Using the propertyW ′ := 8(A′, ϕ ′2, . . . , ϕ ′r )∈Er+2, we may assume thatW ′

is represented by the block  b1,r+2
...

b2r+1,r+2


and hence

b1,r+2 = b3,r+2 = · · · = b2r+1,r+2 = 0.

Furthermore, the matrix components of the map (4) can be calculated directly as

Z(M) =
(
D

(
a1 c1,r+2

a3 c3,r+2

)
, D

(
b2,r+2 c2,r+2

b4,r+2 c4,r+2

)
, . . . ,

D

(
a1 c1,r+2

a2r−3 c2r−3,r+2

)
, D

(
b2,r+2 c2,r+2

b2r−2,r+2 c2r−2,r+2

))
(14)

and

2i(M) =
(
D

(
a1 b1,i

a3 c3,i

)
, D

(
b2,r+2 c2,i

b4,r+2 c4,i

)
, . . . , D

(
a1 b1,i

a2r−1 b2r−1,i

)
,

D

(
b2,r+2 c2,r+2

b2r,r+2 c2r,r+2

)
, (c−1

2r+1,r+2b2r+1,i ), (c
−1
2r+1,r+2c2r+1,i )

)
(15)

for i = r + 3, . . . , s, whereD is the generalized double ratio defined by (5).
Comparing this with the proof of Corollary 4.6 and applying the theorem of

Procesi [P2] yields the following.

Theorem 5.3. Lete, r, s be arbitrary positive integers such thats ≥ r+2. Then
the field of rational(GL(2r+1)e ×GLs2e-invariants of (2r +1)e× 2es matrices is
generated by the functions

Tr(σ1 · · · σk),
where eachσl is either a component of the mapZ in (14) or of one of the maps
2r+3, . . . , 2s in (15)andk < 2e.
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