Configurations of Linear Subspaces
and Rational Invariants

DMITRI ZAITSEV

1. Introduction

Let Gr, ,(C) denote the Grassmannian of dldimensional linear subspaces in
C", and let GL,(C) x (Gr, 4(C))* — (Gr,.4(C))* be the canonical diagonal
action. Dolgachev [DB] posed the following question:

Is the quotientGr, »(C)%/GL,(C) (e.g., in the sense of Rosenlicht
always rational?

Recall that a Rosenlicht quotient of an algebraic variétgcted on by an al-
gebraic groups is an algebraic variety together with a rational mag — V
whose generic fibers coincide with tiieorbits. Such quotients always exist and
are unique up to birational isomorphisms [R]. In the sequel all quotients will be as-
sumed of this type. An algebraic varigdyis rational if itis birationally equivalent
to P™ with m = dim Q.

We answer the above question in the affirmative by applying the rationality of
the quotien{GL»(C))%/GL,(C), where Gl»(C) acts diagonally by conjugations
(see [P1] and surveys [B; DJ).

THeoreM1.1. Forall positive integera ands, the quotien{Gr, 2(C))*/GL,(C)
is rational. Equivalently, the field of ration&L , (C)-invariants on(Gr,, 2(C))*
is pure transcendental.

The statement of Theorem 1.1 has been recently proved by Megyesi [M] in the
casen = 4 and by Dolgachev and Boden [DB] in the case of add heir proofs
are independent of the present one.

More generally, we show the birational equivalence betwégn, ,(C))*/
GL,(C) and certain quotients of matrix spaces. Let,BC) x (GL,(C))* —
(GL,(C))* be the action defined by, My, ..., M,) — (gM1g™%, ..., gM,g™b).

The first main result of the present paper consists of the following two statements.

THEOREM 1.2.

(1) Lets andd be arbitrary positive integers, and let = rd for some integer
r > 1 Then(Gr, 4(C))¥/GL,(C) is birationally equivalent taGL,(C))*/
GL4(C), where
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k_{(r—l)(s—r—l) if s>r+1
|1 else.

(2) Lets be an arbitrary positive integer. Let = (2r + 1)e andd = 2e for
some integers ande. Then(Gr, 4(C))*/GL,(C) is birationally equivalent
to (GL.(C))*/GL.(C), where

2r =44+ @Gr—-2(s—r—-2 if r>1Ls>r+1
k=14 2(s —4 if r=1 s> 4,
1 else.

If nis eventhen Theorem 1.1 follows from the first part of Theorem 1.2 and from the
rationality of the quotient ofGL,(C))* by GL»(C) (see Procesi [P1]); if is odd

then it follows from the second part of Theorem 1.2. Formanek [F1; F2] proved
the rationality of(GL,(C))%/GL,(C) for n = 3, 4. Using his result together with
Theorem 1.2, we obtain the following.

THEOREM 1.3. FOr every positive integer, we have

(1) (Gr, 3(C))*/GL,(C) is rational forn = 0 (mod 3;
(2) (Gr,.4(C))*/GL,(C) is rational forn = 0 (mod 2;
(3) (Gr,.5(C))*/GL,(C) is rational forn = 3 (mod 6);
(4) (Gr, 8(C))*/GL,(C) is rational forn = 4 (mod 8;

We refer the reader to [BS] for similar equivalences of stable rationalities (an al-
gebraic varietyV is stable rationalif V x P™ is rational for somen). We also
refer to [GP1; GP2] for the classification of quadruples of linear subspaces of
arbitrary dimensions and their invariants. In our situation, however, all rational
invariants of the quadruples (i.e., the case 4) are constant unless= 2 in the

first part of Theorem 1.2.

Our method is based on constructing certain normal forms for our algebraic
group actions. We call an algebraic variety acted upon algebraically by an alge-
braic groupG a G-space. AG-subspace is &-invariant locally closed algebraic
subvariety ofX. We use the standard notatiély := {gs : g € G} andGS =
{gs :g€G, seS}, whereS C X is an arbitrary subset.

DerFiNniTION 1.1, We saythat (S, H) is anormal formfor (X, G) if H C Gisa
subgroup and C X is a H-subspace such that the following hold:

(1) GS is Zariski dense irX;

(2) GsNnS=Hsforallses.

Clearly these conditions guarantee the birational equivalence of the quafjemts
andS/H. In Sections 3 and 4 we construct certain normal forms that are isomor-
phic to the spaces of matrices as in Theorem 1.2. Then, in Section 5, we use
these normal forms for explicit computations of generators of the fields of rational
invariants in each case of Theorem 1.2.

This method also has applications to biholomorphic automorphisms of non-
smooth bounded domains, where the configurations of linear subspaces appear
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naturally as collections of tangent subspaces to the so-called characteristic webs.
We refer the reader to [Z] for further details.

2. Notation

For brevity we write GL, and G¢, , for GL,(C) and(Gr, 4(C))*, respectively.

The actions on the products will be assumed diagonal unless otherwise speci-
fied. ForE and E’ vector spaces with dild < dim E’, denote by Gy(E) the
Grassmannian of afl-dimensional subspaces &f by GL(E) the group of lin-

ear automorphisms @, and by GL(E,, E>) the space of all linear embeddings of

E; into E;. A G-spaceX is homogeneou§esp.almost homogeneous G acts
transitively onX (on a Zariski dense subset &f).

3. The Cased Dividesn

In this section we study the diagonal ¢laction on GJ ; with n = rd for some
integerr. Clearly, the set of alF-tuples(Vy, ..., V,) € Gr; , such thatC" =
Vi®--- @V, is Zariski open and Gj-homogeneous. This can be reformulated
in terms of normal forms as follows.

Lemma 3.1. Suppose that > 2, s > r, and (Ey, . . ., E;) € Gry , is such that
C'"=E,&®---® E,. Define

S1=81(s) ={(V1,..., V) eGr, ,: (V1,...,V,) = (E1, ..., E)}

and the groupH; := GL(E;) x --- x GL(E,) C GL,.. Then(Sy, H;) is a normal
form for (Gr; ,, GL,).

Now fix the splittingC" = E; & - - - @ E, as before. LeV € Gr, 4 be such that its
projection on eaclk; (i =1,...,r) is bijective. In this case we say thgtis in
general positiorwith respect ta Ey, . . ., E,). Clearly the subset of aW, which
are in general position, is Zariski open in,Gt. Thus, forevery =2, ..., r, the
projectionV; of V on E; x E; is a graph of a linear isomorphism: E; — E;.
We claim that this correspondence between elemémt$r, , and(r — 1)-tuples
of linear isomorphisms

(92, 9) € [ [GL(EL, Ep)
i=2

is birational.

LemmMma 3.2. Under the assumptions of Lemma 3.1, define

o: [[GL(Ey, E) — Gro,
i=2

D@2, ..., 0) ={zDp2a() D D9 (2) 1 z€ Er},
and theH;-action on[]'_, GL(E1, E;) by
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(8118, (@2, 9)) > (82002081 ... 8 0P 081 ).
Thend is birational andH;-equivariant. The image ob consists of all subspaces
V € Gr, 4 that are in general position with respecttés, . . ., E,).

Proof. Since® defines a system of standard coordinates gn,Git is birational.
The equivariance and the statement on the image are straightforward. O

Since[['_, GL(E, E;) is Hi-homogeneous, we have the following.

CoroLLARY 3.1. Under the assumptions of Lemma 3.1,9fis) C Si(s) be the
Zariski open subset, whe¥&, ; isin general position with respect{é;, . . ., E,).
ThenH, acts transitively ors; (r + 1).

This proves statement 1 of Theorem 1.2 fox r + 1 Suppose now that >
r +1and thatt, .1 € Gr, 4 is in general position with respect (&, . . ., E,).

LEmmA 3.3. DefineSz = So(s) == {(Vy,..., V) € Si(s) : Vigr = Er+1} and
the groupH, := GL(E;) with the action onS, defined by the homomorphism

Hy; — Hj, g (g8, 92080055 ..., 0, 0800,
where
(§02» ceey (pr) = ®7l(Er+1).

Then(S,, H») is a normal form for(Gr,f’d, GL),).
Proof. By Corollary 3.1,H; S, is Zariski open inS;. By straightforward calcula-

tions, (S2, H») is a normal form for(S;, H;) and hence, by Lemma 3.1, a normal
form for (Gr 4, GL,). O

We now letV € Gr, ; be one more subspace in general position with respect to
(E1, ..., E,). Define(yr, . .., ¥,) := ®-L(V). Clearly the map

[ [GL(EL, Ei) — GL(ED) ™,
iz @
W2y ¥ = (@3 oV, o o )

is one-to-one, wheréyp,, . .., ¢,) = ®X(E, 1) is fixed. Moreover, we obtain
the following lemma.

LemMa 3.4. DefineK:GL(E1) " — Gr, 4 by
K(x2, ... xr) == ®(@20 x2, - - -, 0r © Xr),
and define théd,-action onX, by
(8 (X20- - X)) > (8o x208™ ..., g0 xr 087,

ThenK is birational andH,-equivariant. The image & consists of all subspaces
V € Gr, 4 that are in general position with respect &y, . . ., E,).
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Proof. The mapK is birational as the composition @ and the map (1). The
other statements are straightforward. O

CoroLLARY 3.2. Under the assumptions of Lemma 3.3, define
W Sa(s) > (GL(E) ™4
W(EL ..oy Ery1, Viga, o Vo) 1= (KN Vg2, KTHVY).
ThenV is birational and H,-equivariant.

Finally, using Lemma 3.3, we obtain the following.

CoroLLARY 3.3. Forn = rd, the spaceGr, , is almostGL ,-homogeneous if
andonly ifs < r +1 If s > r + 1, there is a normal form fo(Gr; ,, GL,) that

is isomorphic to(GL([}"l)(S”’l), GL,).

This implies the first part of Theorem 1.2.

4. The Casen=(2r+ 1l)eandd = 2e

We start with anr-tuple (V, .. ., V,) € Gr; ;. Clearly the subset of all-tuples
that form a direct sum is both Zariski open and,@hwomogeneous. Fix antuple
(Ey, ..., E)) inthis subset and suppose that r. A straightforward calculation
yields the following.
LeEmMmA 4.1. Define

S1=81(s) ' ={(V1,..., V) eGr, ,: (V1,...,V,) = (E1, ..., E)}
and the groupH, := {g € GL, : g(E;) = E; foralli = 1,...,r} with the
diagonal action orS;. Then(Sy, Hy) is a normal form for(Gr;, ;, GL,).

Now we wish to parameterize th& dimensional linear subspaces @t with

respect to(Ey, . .., E,). We say thatV is in general positionwith respect to
(Ey, ..., E), ifdmW = e, whereW := VN (E1® --- P E,) and the projec-
tion of W on eachE; (i =1,...,r) is injective. The subset of alf € Gr, 4 that

are in general position is clearly Zariski open.

We first give another description of the subspalées Gr.(E1® - - - ® E,) that
are in general position with respecttfy, . . ., E,). For this, letA; = A;(V) €
Gr,(E;) be the projections oW and lety; = ¢;(V) € GL(A3, E;) be the linear
isomorphisms whose graphs are equal to the projection® oh E1 & E; (i =
2,...,r). Denote byX = X(E4, ..., E,) the space of all tuple&A, ¢, . . ., ¢,),
whereA € Gr.(E1) andg; € GL(A, E;), with the standard structure of a quasipro-
jective variety.

LemMma 4.2. Define
d: X = Gr(E1®--- B E)),
DA, p2,..,0,) ={(ZDP202) D--- D, (7)) iz€AY,
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and theH;-action onX by

(8. (A, 02, ..., 9,) > (g(A), gop2og ....g0p, 08 Y.

Thend is birational andH:-equivariant. The image ob consists of all subspaces
W € X that are in general position with respect¢@y, . . ., E,).

Proof. The proof is straightforward. O

CoroLLARY 4.1. LetS;(s) C Si(s) be the Zariski open subset of altuplesy =
(Vi, ..., Vy) such thatV,; is in general position with respect (&, . . ., E,).
ThenH; acts transitively ors;(r + 1).

Proof. It follows from the general position condition that
W(V) = Vr—t—lm (El® - @D Er) € Gl’e(E1€9 - D Ef)7

in the notation of Lemma 4.2. L&t V' € S;(r + 1) be arbitrary elements. Since
X is H-homogeneous, there exigtse H; such thatg;(W(V)) = W(V’). Then
there existg, € GL, with g2(V,;1) = V), andg2|(E1 @ --- @ E,) = id. By
constructiong, € H; and the proof is finished. OJ

CoroLLARY 4.2. Fors <r+1, Gr, ; is almostGL,-homogeneous.

Lets > r+1andE,; € Gr, 4 be in general position with respect@ds, . . ., E,).
As a direct consequence of Corollary 4.1, we have the following lemma.

LEmMA 4.3. DefineSy :={(Vy,...,Vs) €81 : V,mu=E,;1}andH, = {g¢€
GL,:g(E;)=E; foralli =1,...,r+1}, with the diagonal action o§,. Then
(S2, Hy) is a normal form for(Gr,f’d, GL,).

For the sequel we suppose that the subspages. ., E, ;1 are fixed. Define
(A, @2.....0;) =P NE 1N (E1® - D E,)).

Let V € Gr, 4 be one more subspace that is in general position with respect to
(Ey, ..., E). Clearly, V is not uniquely determined by itsdimensional inter-
sectionZy(V) .= VN(E1® --- @ E,). However, usingk, .1, we can consider
another intersectiof,(V) .=V N(E1®--- @ E,_1® E,,1). Then the map

Z:=(21,22): Gl g = Gr(E1® - ®E) XGI(E1®-- - ®E,_1® E, 1)

is birational with the invers€ —1: (W, W) > W + W’.

Using the construction ok and ® for the tuple(Es, . . ., E,_4, E, ;1) instead
of (Ey, ..., E,), we obtainY ;= X(Eq, ..., E,_1, E, 1) and theH,-equivariant
birational map

VY — Gre(E1® - B E;ﬂ—l@ Er+1)-

Combining®, W, andZ, we obtain the following.
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CorROLLARY 4.3. The compositior2 := Z 1o (®,¥): X x ¥ — Gr, 4 is
birational and H>-invariant.

In the following we treat the cases> 1 andr = 1 separately.

4.1. The case > 1.
ForV € Gr, 4, set

(B.Y2.....9,) =@ (VN(E1@---DE))€X, )
(Co X2y e v s X1 Xrs) =V VN (EL® - B E_1®E)) €Y. (3)
In order to construct a smaller normal form, €iX, ¢5. . . ., ¢.) e X, A”€Gr,(Ey),

andy; ;€ GL(A”, E.;p) suchthatt; = A@A’, A"NA=A"NA"= (0}, E; =
pi(A) @ gj(A)foralli =2,...,r,andC" = E1@ --- ® E, ® x,4(A").

LemMma 4.4. In the notation just described, define

S ={VeGr s:B=A,C=A" Yo=0¢5 .. .Y, =@/, Xr+1= X1 41}-
ThenH,S is Zariski open inGr,, 4.

Proof. For V € Gr, 4 generic,E; = A & B. Hence there exists @ € GL(E1)
with g|A = id andg(B) = A’. Clearly g extends to an isomorphism from the ac-
tion by H,. Without loss of generalityB = A’. Similarly, there exists an isomor-
phismg € H, such thafg|¢;(A) =idandg o ¢; = ¢/ on A’ foralli =2,...,s.
Thus we may assume thigt = ¢;. By Lemma 3.1, we may also assume tat
A”. Again, forV genericC" = E;1® --- ® E, ® x,41(A"), wherey,1(A”) C

E, ;1. Hence there exists an isomorphigne H, such thag|(E1® --- ® E,) =

id andg o x,41 = x,,4. This proves the lemma. O

Leta € GL(A, A’) be the isomorphism whose graphA$ with respect to the
splitting E1 = A ® A’. Define: A — A" by B(z) := z ® a(z). For everyi =
2,...,r, consider

&= (pi xp)) toxiopeGLA, A A"
and its componentg{]; € GL(A) and E;]. € GL(A, A’). Define the rational map
E: 8 — GL(A)2"2,
81V > ([En o to &l (G- @t o [£-4]2),

whereS is defined in Lemma 4.4.

Let ¢ € GL(A) be arbitrary. Using the isomorphismas A — A', ¢;: A —
@i(A) andg: A" — @/(A) fori =2, ....r,andy, 0 B: A — x/ (A7),
we can extend canonically to an isomorphism from the action B. This
extension defines a canonical GU-action onC" and therefore or§ (as de-
fined in Lemma 4.4). We compare this action with the diagonalAtaction on
GL(A)2"=2 py conjugations as follows.
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LEmMA 4.5. The mapE: Gr,, — GL(A)2"~? is birational and GL(A)-
equivariant.
Proof. The inverse ofE is given by
E 0, .. hl1, 82, ..., 80 = Q(x, y),
whereQ: X x Y — Gr, 4 is birational (by Corollary 4.3) and
x = (A gy .0,

yi= (A", (p2 X ) o (ha, a0 82) 0 B7L, ...,
(P (p;/«_l) o(A_,08,_g)0 ,B_ls X;J,-j_)'
The equivariance is straightforward. O

In the following corollary we use the spaSeas defined in Lemma 4.4.

CoroLLARY 4.4. DefineSs(s) := {(V1,...,Vs) €eGr; , 1 V.12 € S} and con-
sider the diagonalGL(A)-action onS3. Then(S3, GL(A)) is a normal form for
(Gr, 4 GL,).

COROLLARY 4.5. Ifd = 2¢ andn = (2r + 1)e, the spacé;r;jlz is almostGL,-
homogeneous if and onlysif= 2.

Now letV € Gr, , be one more subspace. Using the previously fixed data, we as-
sociate withV a tuple of 4 — 2 linear automorphisms of as follows. In the no-
tation following (2) and (3), let; € GL(A, A") andt, € GL(A, A’) be the linear
isomorphisms with the graptsandC, respectively. As above, late GL(A, A')

be the isomorphism whose graph4é. For j = 1, 2, seto; := a 1o 1; € GL(A)
andrj’(z) =z+4+7(@ (A= B, 15 A—> C). Fori=2,...,r,

&= (p; x ¢)) toior eGL(A, A® A);
fori=2,...,r =1,
0= (i x ¢}) Fo xi 0T €GL(A, A® A").

We write [¢;]1, [6:]11 € GL(A) and [;]2, [6:]2 € GL(A, A’) for the corresponding
components with respect to the splittilg = A & A’. Then we obtain the linear
automorphisms oft asx; := [¢]1 andy; ;== a Yo [g]afori =2, ..., r; z; =
[6:] ti :=a to[O]afOri=2...,r —1
In order to deal with the remainder term, 1, we definep, .1 € GL(A, C") by
0r+1(2) =20 920) B -+ D ¢ (2).

It follows from the construction that, 1(A) € Gr.(E, 1) andE, 1 = ¢,41(A) ®
X,+1(A"). Using this splitting we define the remainder isomorphisms

0, = (¢r11 % X;Jrl)_l O Xr410 7:/2 €eGL(A.A® A,)’
7, = [6,]1, andt, := a1 o [0,], € GL(A).
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LEmMA 4.6. Let®: Gr, ;, — GL(A)*~2 be given by
OV = (01,02, X2, ¥2,22, 12, « oy Xpy Yrs Ty 1)

Then® is birational andGL(A)-equivariant.
Proof. In the foregoing notation, the inverge can be calculated as follows:

‘L'j/ ‘=waoo0; + id, B:= ‘L’]/_(A), C .= r/Z(A),
Vi = (@i X ¢])o(x;,0y;)0 (1:1)_l fori=2,...,r,
Xi = (@i x@))o(zi,aot;)o(ty)™ fori=2,....,r -2
Xr1 = (@ri1 X x4 0 @@ ot) o (tp) 7Y
V=QUB,¥2,....¥r), (C, X2, - - -» Xr—1, Xr+1))-
The equivariance is straightforward. O

COROLLARY 4.6. If s > r 4+ 2 then the spacéSsz, GL(A)) is isomorphic to
((3L2r—4-§-(s—r—2)(4r—2)7 GL,).

Proof. The required birational isomorphism is given by

V1, ..., Vo) > (E(Vi42), O(Viga), ..., O(V))), (4)
whereE is birational by Lemma 4.5 an@ is birational by Lemma 4.6. O

This implies the second part of Theorem 1.2 in the ¢asel.

4.2. TheCase =1

In this case we have = 3¢. Recall that we fixedEs, E; € Gr,, 4 in general posi-
tion such that dimA = ¢, whereA := E; N E,. Choose another subspake
Gr, 4 such that dimd; = dim A, = e, whereA; := E; N Esfor j =1, 2. Recall
that we definedi, c GL, to be the stabilizer of both; andE,. Denote byH3; C
H, the stabilizer ofE3. ThenHsz = GL(A) x GL(A1) x GL(A2) with respect to
the splittingC"” = A @ A1 @ A,. The following is straightforward.

LemMma 4.7. Suppose that > 3 and defineSs = S3(s) :={(V1,..., V) €8> :
V3 = E3}. Then(Ss, Hs) is a normal form for(Gr; ,, GL,).

Now we chooseB; € Gr.(E;) such thatB; N A = B; N A; = {0} for j =1, 2.
Then eachB; can be seen as the graph of an isomorphjsra GL(A, A;). On
the other hand, foV € Gr, 4 generic, the subspac€$s := V N E; are graphs of
isomorphisms); e GL(A, A;). Define

g =(d, Y1o91" Y209, € GLA ® A1 ® A).

Theng € Hz andg(B;) = C; fori =1, 2; in particular,V = B; + B». Together
with Lemma 3.3 this proves the following.
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LEmMA 4.8. Suppose that > 4. Define
S4=84(s) :={(V1,...,Vy)€S3: VaNE1= By, V4N E> = By}
and H, := GL(A). Define theH-action onS, via the homomorphism

Hy— Hs, g (g, 91080915 ¢2080¢p,0).

Then(S4, Hy) is a normal form for(Gr,‘l"’d, GL),).
As a special case of Corollary 3.3, we obtain the following.

LEmma 4.9. The spacésry, ,, is almostGLg.-homogeneous if and onlydf <

4. If s > 5then there exists a normal form that is isomorphi¢®.2¢~%, GL,),
whereGL, acts diagonally by conjugations.

This implies the second part of Theorem 1.2 in the ¢asel.

5. Computation of Rational Invariants

5.1. The Case = rd

In order to compute the rational Gj-invariants of Gf, , we represent the ele-
ments of Gf, , by the equivalence classesrafx ds matricesM € C"**¢ where
the equivalence is taken under the right multiplication by, GLhen the diagonal
GL,4-action on Gf, , corresponds to the left multiplication @****. We start
with 2d x 2d matrices. Define

A A

D:GLy; — GL,, D
2d ¢ (A21 Az

) = A]_lAEi'AzzAIzl. (5)
Then D is a rational map that is invariant under the right multiplication by
GL, x GL, and the left multiplication bye} x GL,, wheree € GL, is the unit.
Moreover,D is equivariant with respect to the left multiplication by @k {e}.
More generally, lety € C"***¢ be a rectangular matrix, whereands are ar-
bitrary positive integers. We spli¥f into d x d blocksA;; (i =1,...,r, j =
1,...,5). Then,forevery =2,...,randj =2,...,s, define

Dy: € 5 GL,,  Dy(M) = D<All Aj )
Al Ay
Similarly to D, eachD;; is a rational map that is invariant under the right multi-
plication by GL, and under the left multiplication b} x GL, .

Finally, we construct rational maps that are invariant under the left multiplica-
tion by the larger group Gly. For this, we assume > r + 1; otherwise, the left
GL,,-multiplication is almost homogeneous (see Corollary 3.3) and hence all ra-
tional invariants are constant. Then every matfixc C™**? from a Zariski open
subset can be split into two blocks:

M = (AB), AeGL,;, BeCréxt—nd
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Define
gD(M) .: A—].B eCrdX(S—r)d
and
Gij(M) = Dij(p(M)) fori=2,...,randj=2...,5s—r
In particular, ford = 1, r = 2 ands = 4, we obtain the classical double ratio:
G22< 1 1 1 1> _ D(Zz—Z3 ZZ—Z4>
<1 22 23 <4 71—423 21— 724

_22—7%3 22— 4

21—23 21—24
By the invariance oD;;, everyG;; is invariant under the left multiplication by
GL,, and under the right multiplication ¢} x GL‘j,‘l. Moreover, by construc-
tion, G;; is equivariant with respect to the subgroup Gk {e} C GL,; x Gijl,
where we take the right action d@“>*? and the conjugation on the image space
GL,. We therefore obtain the following rationébL ., x GLS)-invariants:

[aﬁ = Tr(Galﬂl tee Gakﬂk) = Tr((Dalﬁl o (p) tee (Dotkﬂk © (p))v (6)

wherea € {2,...,r}*andg e{2,...,s — r}¥ are arbitrary multi-indices.
Using a result of Procesi [P2], we show that the invariant field is actually gen-
erated by these traces of monomials.

THEOREM 5.1. Letd, r, s be arbitrary positive integers such that- » +1. Then
the field of rational(GL,; x GLY)-invariants ofrd x sd matrices is generated

by the functiond,s, wherea € {2, ...,r}* and B € {2, ..., s — r}* and where
k<29,
Proof. Setn := rd as before. We write the spacgs, ..., E, 41, Viyo, ..., Vs €
Gr,. 4 as in Lemma 3.3 in the form of a x sd matrix withd x d blocks as

E O ... 0OE E - E

0 E --- 0 E Vapp - Vo

m=| . T ™
0 0 --- E E Vo - Vg

whereE denotes the identity matrix of the sidex d.

Let §, c C"*5 be subspace of all matrices of the form (7). Cledkly. . .,
E, ;1 fulfill the assumptions of Lemma 3.3. It then follows from the lemma that
(S2, GL,) is a normal form forC’***¢, GL,,; x GL*,), where GL, acts onS; as
the diagonal subgroup of Gl. x GL} (i.e., eachi x d block is conjugated by the
same matrix).

By the definition of a normal form, it is sufficient to prove that the field of in-
variants of(S, GL,) is generated by restrictions of thgs. Let M be given by
(7). By the obvious calculations,
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E Va2 Vas
pM) =] . : . : (8)
E Vr,r+2 ce Vr,s
and hence
Top(M) =Tt (Voyr 181+ Varr60)- )

By a theorem of Procesi [P 2], the polynomial invariantgof- 1)(s — r — 1)-
tuples(V;;) with respect to the diagonal GEconjugations are generated by the
monomials of the form (9) withk < 2¢. Since all points of(S,, GL,) are
semistable (see [MFK]), the categorical quotidat/GL, exists and is given
by these monomials. Then the rational invariants §n GL,) are pullbacks of
rational functions or$,//GL 4, and the proof is finished. O

5.2. The Case = 3¢ andd = 2¢
In this case the elements of Gr are represented by the equivalence classes of
matricesM e C3*2¢ with 3¢ x 2¢ blocksM;, . . ., M,. As before, we are look-
ing for rational invariants with respect to left multiplications by £land right
multiplications by GL;,. We start with the case of 3-blocks. Define the rational map

. 1 3ex 6e 3ex Be
p.C - C ,

AL Ay A3\ ._( E E’ E’

\B, B, Bs) = \ BiA]' BoA,' BaAj!

E 0 E O E O
=0 E O E 0 E|, (10)

c1 di ¢ dy c3 d3
where A, Ay, A3 € GL, and By, By, By € C*2 and whereE’ € GL,, and

E € GL, denote the identity matrices. We see the corresponding subspaces

Ei, E», E3 € Gr,, 4 as graphs of linear maps given by the matriegg), (c2 d>),

and(cs ds), respectively. Our first goal will be to compute the intersectians-
EiNE;andA; := E; N E3 (j =1, 2). For this, we set

(xl X2 Xs) — (Cl dl)_l (Cs da)_l (Cz dz)_l (E) e Cexde
Y1 Y2 ¥3 c2 do) "\er di) " \c3 ds E
Thenxicy + yi1di = x1c2 + y1d2 = E and hence theé3x e matrix

X1
y1
E
represents the intersecti@di N E,. Similarly the & x e matrices

X2 X3
y2 | and | ys
E E
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represent the intersectios N E; and E; N E3, respectively. Equivalently, the
3-tuple(E3, E2, E3) can be represented by the matrix

X1 X2 X3 X1 X2 X3

Y1 Y2 ¥Y3 Y1 Y2 Y3 |- (k)
E E E E E E

Now take the general matrid = (M, . . ., M,) € C3¢*2¢_Following the con-
struction of Section 4.2, we bring, A;, andA; (i.e., the matrix (11)) to a normal
form. For this, consider the square matrix

X1 X2 X3
HM)=|y1 y2 3
E E FE
and multiply M by H(M)™*:
HM)™ M
E 0O O E O O Cis Dig --- Ciy Dy
=10 E O O E O Cy4 Dys --- Cy Dy |. (12)
O O E O O E Czy D3y --- Cz Dgz
Next we normalize the&x 2¢ blocks:
Cy Dy ‘ N\ E 0
Cyi  Dy; (gl'_ lD)ll.> = 0 E
Csy Ds 2 2 Qpi_1 O
and define
O9i_1 .= agi_lot;l and oy = agiagl fori=5,...,s.

Comparing this construction with Section 4.2, we conclude that the matrices
(j=9,...,2s) represent exactly the(2— 4) matrices in the isomorphic normal
form (GL2¢~%, GL,). Using the theorem of Procesi [P2] and arguments similar
to those used in Section 5.1, we obtain the following.

THEOREM 5.2. Lete ands be arbitrary positive integers such that- 4. Then
the field of rational(GL3, x GL3,)-invariants of 3e x 2es matrices is generated
by the functions

Jo == Tr(Ual o aotk)7

wherea € {9, . . ., 2s}* andk < 2.

5.3. The Case = (2r +1)e andd = 2¢

Here an elemerty, . . ., Vy) € Gr; , is represented by a matrif € C@r+Dex2s
with s blocksM;, . . ., M of the size(2r + 1)e x 2e. Again, the GL,-invariants
on Gr' , correspond taGL, x GLj,)-invariants onC@+hex2 Similarly to
the previous paragraph, we start with a special case(®f & L)e x (2r + 2)e
matrix and compute representatives of the intersectionsN (E1 @ --- ® E,),
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E,  oN(E1®---DE,),andE, .o N(E1®---® E,_1® E,1) as in Section 4.
We start by normalizing the x 2e blocks as in (10):

A o A L E’ E’ _(E - E
"’(Bl Bs>'_<BlA;1 BsAS1>_(C1 C) 13)
In order to compute the first intersectidh, ;N (E1® - -- @ E,), we consider
the corresponding system of linear equations:

X1 X1
(E'...EY| ¢ | =E'X,41, (C1...CH| | =CrarXiqa,
X, X,

where eachX; is a 2 x e block. Solving from the first equatioX,,; =
X1+ --- + X, and substituting this into the second, we obtain

X3
(C1=Cryp) ... (C, = Cry))| ¢ | =0
X,
This is a system of2r + 1)e x e equations with 2¢ x e variables. Hence, for
Ci, ..., C,1ingeneral position, this system has a solution that can be represented

by rational Z x e block functions
XZ=X,(M) (l=1,,r)

Comparing this with the construction of Section 4, we see that the blocks

E’ .
<Ci>(Xi) i=1...,r),

representthe subspacesp,(A), . . ., ¢, (A). Forour normalization (Lemma4.4)

we also need the subspacEsp,(A”), . . ., ¢, (A") andy;_,, whichcome from the

other intersections. For them we can also solve the corresponding linear systems
and obtain rational 2 x e block functions

YI(M) (i=1,...,r), Zr+1(M)
such that the blocks

(?)WM)) (=L1....n, (E )(ZrH(M))

Cr+l
represent’, p5(A’), ..., ¢,(A") andy, ,, respectively. As before, we put these
blocks together in an x n matrix:
H(M)
X Yy -« 0 O
E ... E’ . . . . E’
<C1 Cr) : : . : . (C,.H)(ZHl(M))

O 0 --- X, VY

Then x e columns ofH (M) are exactly the representatives of
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Aa A/v w(A)a (p/(A/)s LR (pr(A)v @;(A/), X;+1(A”)’

in this order. IfM is in general position, the#/ (M) is invertible. As before,
consider the matrix (M )M, which equals

E 0 - 0 O 0 a bl,r+2 C1r42 ce bl,s Cls
o £ - 0 0 O az b i2 C1r42 ce by Cis
0 0 --- E O O ax1 b2 cCo-1r42 - bo1s coay
0 O O E O azr b2r,r+2 Corr+2 ot b2r,s C2r,s
0 o .- 0 0 E azr+1 b2r+1,r+2 Cor+lr+2 " b2r+ZLS Corils

Moreover, the propernty, ;1 = ®(A, g2, ..., ¢,) + x,,1(A”) implies
az=a4="---=az =az.1=0.

Using the property?’ := ®(A’, 5, ..., ¢,) € E, 12, we may assume thar’
is represented by the block
b1ri2

bori1r+2
and hence

biry2=">b3ri2="-=Dbyy1,42=0.

Furthermore, the matrix components of the map (4) can be calculated directly as
zmy = (D[ L+2) p bari2 C2rt2 L
asz €342 bary2 Cary2
D< ap cLriz D( b 2 C2,r42 (14)
az -3 C2r-3r42 bor—2,42 C2r—2,42
and

oMy = (p( @ D), p(barz c2i) [ p(a b,
as ¢z barv2  cai az_1 b _1;

bori2 C2r42 -1 -1
D d o’ , (¢ b ), (¢ c i 15
(bZr,r+2 Corra2 ( 2r+1r+2 2r+lz) ( 2r4+1r+2 2r+],z) ( )

fori =r+ 3 ...,s, whereD is the generalized double ratio defined by (5).
Comparing this with the proof of Corollary 4.6 and applying the theorem of
Procesi [P2] yields the following.

THEOREM 5.3. Lete, r, s be arbitrary positive integers such that- r + 2. Then
the field of rational(GL (2,43 x GL%,-invariants of (2r + 1)e x 2es matrices is
generated by the functions

Tr(o1---oy),

where eacly; is either a component of the mapin (14) or of one of the maps
O,43,...,0,1in (15)andk < 2¢.
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