Singular Factors are Rare
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Let ¢ be an analytic function in the Hardy space H? on the open unit disc A =
{z:1z| < 1} for 0 < p < oo. It is classical that ¢ has a factorization ¢ = BSF,
where B is a Blaschke product, S is a singular function, and F is an outer function.
Specifically, these factors are
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where m is the order of the zero of ¢ at the origin and zy, 77, ... are the zeros of
¢ in A\ {O};
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where v is a nonnegative measure singular with respect to Lebesgue measure; and

1 27 eit 4z i
F(z) = AeXP{Zn fo prra— log|¢ (e)] dt},
where X is a unimodular constant. See [2] for a full description of these functions
and their properties.

It is a well-known theorem of Frostman that if ¢ is an inner function, then
[w — ¢ (2)]/[1 — weg(z)] is a Blaschke product for all w € A with the exception
at most of a set of capacity zero.

Caughran and Shields [1] raised this question: How big is the set of complex
numbers w such that ¢ (z) — w has a nontrivial singular function as a factor? They
showed that if ¢’ is in the Hardy space H! then the set of such w is countable.
Fisher [3] showed, with no assumption on ¢’, that the set of w for which the
singular function has an atom in its associated measure is countable.

A theorem due to Rudin [8, Thm. 4] can be used to give an answer to the above
question. The theorem deals with functions of n complex variables, but we will
use the restriction to n = 1. The class N, is defined (in [8]) to be the set of all ana-
lytic functions f on the unit disc such that the functions log™| f,| have uniformly
absolutely continuous integrals. (Here f, is defined by f,(z) = f(rz), z € A, and
r € (0, 1).) What this means explicitly is that for each ¢ > 0 there should exist a
3 > 0 such that
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/ log*| frw)|dm(w) < &
A

for all A C T (the unit circle) with m(A) < 8, and for all r € (0, 1). The class N
is the usual Nevanlinna class, which can be viewed as the space of all functions on
the unit disc that are quotients of bounded analytic functions. N7 is the class of
all functions on the unit disc that can be written as the quotient of a bounded ana-
lytic function with an outer function. See [2] for details about these classes. It is
left as an exercise for the reader to see that N, C N, and, in fact, N, = N*. The
following is then a corollary to Rudin’s theorem.

THEOREM 1. Let ¢ € N,. Then the set of points w for which ¢ (z) — w has a non-
trivial singular inner factor has logarithmic capacity zero. Conversely, given any
(compact) set E of logarithmic capacity zero, there is a bounded analytic function
¢ such that ¢ (z) — w has a nontrivial singular inner factor if and only if w € E.

The converse statement is well known; see [3]. Let E be a compact set of capac-
ity zero in A. The covering map F of the domain A \ E is an inner function since
E has capacity zero. For each w € E, [F(z) — w]/[1 — wF(z)] is a nonvanish-
ing inner function and so is singular. Thus, since 1 — wF(z) is an outer function,
F(z) — w is a function with nontrivial singular inner factor for all w in E.

Sarason produced a different sort of extension of Frostman’s result, which ap-
pears in a paper by Mortini [7] as part of a constructive proof of the Beurling—
Rudin theorem. He proved that, for mutually prime inner functions # and v (by
which we mean that # and v have no zero in common and that there is no singular
inner function S with # = Su; and v = Swv; for inner functions u; and v;) and for
p > 0, the function u(z) 4+ pe* v(z) has a trivial singular inner factor for almost
all (with respect to Lebesgue measure) real ¢.

Here we provide a generalization to the theorems of Frostman, Rudin, and Sara-
son that will further answer the general question of when singular inner factors
disappear.

THEOREM 2. Let f,g € HP, 0 < p < 0o, have mutually prime singular inner
factors. Then the set of points w for which f(z) — wg(z) has a nontrivial singular
inner factor has logarithmic capacity zero.

REMARK. In our Theorem 2, if g is an outer function, then we see that the lack
of a singular factor in f(z) — wg(z) is equivalent to the lack of a singular factor
in the decomposition of the function f(z)/g(z) — w (in N,), and is thus covered
in Theorem 1.

Proof. We write
(@) — wg(z) = Fy(2) By (2) Sw(2), (1)

where the product on the right-hand side of (1) is of the outer, Blaschke product
and of singular inner factors, respectively. We first comment on the dependence
of the factors on w. Since
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1 . , .
|Fy(2)| = exp{z—n— ] P,(e") log| (") — wg(e’e)lde},

where P, is the Poisson kernel for z € A, it follows that |Fy,(z)| is a continu-
ous function of w on A. That is, if w, — ¢ and we write f(z) — w,g(x) =
F,(2) B,(2) S, (z) and f(z) — ¢g(z) = F(2) B(2) S(2), then | F,| — | F| uniformly
on compact subsets of A. Hence, |B,S,| — [BS| uniformly on compact subsets
of A.

Suppose now that E is a compact set of positive capacity. By adjusting by a
scale factor, we may assume that maxg|w| < % There is a positive measure ¢ on
E with integral 1 such that

v(@) = fE loglw — z] du(w) @

is continuous in the whole plane [6, Thm. 1.8 and Sec. 1.3]. Since x has compact
support, v(z) is also bounded below.
The function u defined by

u(z) = fE log] Bu (2) Su (2)] die ()

is nonpositive in A. Moreover,

1@ = [ logl£(2) ~ wg @] dua(w) - [ peiFu@iduc). @
E E
Let do be the normalized Lebesgue measure on the unit circle 7. We shall show
that
lim [ u(re'®)do(0) =0. 4)
r—1 T

This will give us the first equation in the following:

0 = lim / f log| B, (re®) S, (re®)| du(w) do(8)
TJE

r—>1

= lim {]logIBw(reie)Sw(reiQ)lda(@)] du(w)
elJr

r—>1

< f {limsup / 1og|Bw(re"9)Sw(re"9)|da(e)} du(w).
E T

r—1

This last inequality holds by Fatou’s lemma, since the term inside the bracket is
nonpositive. Hence

fim log| B, (re'?) S, (re’®)| do(0) =0 ae. [u],
r—>1Jr

and thus B, (z) S, (z) is a Blaschke product [5, p. 75, Prob. 6]. Thus, S, (2) is
constant for w outside a set of y-measure zero.
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We proceed to prove (4) by considering two terms:
I(r) = / f log| f(re®) — wg(re'®)| du(w) do(®) and

1I(r) = / f log| Fy (re'®)| diu(w) do ().

We wish to show that, for

G(2) =fE10ng(z)—wg(z)ldu(w),

we have
lin% I(r) = lim f G@re'®)do(9) = f G(®)do(6)
= f f log| f(e®) — wg(e’®)| du(w) do (8). 5)
Note here that
_ f(@)
G@) = [ loglg@)|du(w)+ [ log|— — w|du(w)
E E g(2)

= log|g(z)| + v(i(—z—))
g(2)

and that ;& was chosen so that v(z) is continuous; hence we easily see that, for
almost every 9,

lim G(re'®) = G(e").

r—1

Equation (5) will then be true by a variant of the dominated convergence theo-
rem, provided there is a family of nonnegative integrable functions V, (@) and an
integrable function V such that V,.(8) — V(0),

liir}er(G) da(@):/V(B)dcr,

and
|G (re'®)| < V,(9).

To demonstrate the existence of such a family V,(8), we will show separately
that G(re'®) has such an upper bound and a lower bound. We will need to use
the factorization of f and g into outer and inner factors: f(z) = O(z)If(z) and
g(z) = 0,(2)1,(2).

To find the upper bound, note that for every w € E,

| f(re®®) — wgre'®)| < |05 (re™)| + |0, (re™)|. ©)
This leads us to choose
V,(0) = logt|Of (re”®)| + log™ |0, (re’®)| + 1 and (7

V(©) = logt10;(e")| + log™ |0, (e®)| + 1.
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We can easily see, by combining (6) and (7) (and using the inequality log(a+b) <
log"™ a +log* b+ 1 for all real a, b > 0), that

G(ret?) = / log| £(re'®) — wg(re'®)] dpu(w)
E
< 10g(10; ()| + |05 (re™®)])
_<_ Vr(g)a

and it is clear that V,(8) — V(9) pointwise. Since Oy and Oy are outer functions,
we obtain [ V,(0)do — [ V(0)do [2, Thm. 2.10].
To find the lower bound, we need the following lemma.

LEMMA 1. There is a constant K such that, for all z € A,
G(z) = log(max{| f(2)1, Ig(2)I}) + K. )

For the proof of the lemma, we break the unit disc up into two pieces, A and B,
where A consists of those points z where |g(z)] > |f(z)|, and B those points
where |g(2)| < | f(z)]. We will prove the lemma separately for points in A and

points in B.
If z € A, then log(max{| f(2)[, |g(2)|}) = log|g(z)|. Recall that
G(2) = loglg ()] + v(-f—@)
g(@)

and that v(z), defined in equation (2), is bounded below, so the term on the right
above can be written as in (8).
If z € B, then we note that | f(z) — wg(2)| > 1| f ()|, so

1
G(z)=[Elog|f(z)—wg(z)ldu(w) >10g(5|f(z)|)-

Also, for z € B, log(max{| f(z)|, |g(2)|}) = log| f(z)|, and again (8) can be sat-
isfied. This completes the proof of the lemma.
Now we will find the family V,(0) just as before. We note that

log(max{| f(re"*)|, |g(re™®)[}) = log™|0;(re™®)| + log™ |0, (re™)]

+ log(max{|I; (re”®)|, |I,(re'HD.  (9)
Take

V,(0) = log™ |05 (re™®)| +log™ O (re®)|

+ log(max{| I (re’®)|, | I (re'*)1}) (10)
and . .
V(9) = log™|05(e")| + log™ |05 ().

Putting together (8), (9), and (10) gives us
G(re'’) > V,(6) + K.

The sum of the first two terms in the definition of V,.(8) in (10) clearly approaches
V(0) pointwise, and the third term approaches zero pointwise. Furthermore,
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f V,(6)do = f log™ |Of(re'®)| +log™ |0, (re'®)| do(6)
T T

+ fT log(max{|Z; (re®)], |1, (re™®)1}) dor(@),

and the first term on the right approaches [ V(8) da (), just as in the upper-bound
case. The second term approaches zero, which we can see from the following
lemma, due to Sarason.

LeEMMA 2. If u, and u, are inner functions without a common factor, then
lim f log(max{|ui(re'®)|, lu2(re’®)|}) do(®) = 0.
r—>1 T

Sarason’s proof of this lemma can be found in [7], but we include it here, with
his permission, for completeness. The limit on the left side is the value at
the origin of the least harmonic majorant in A of the subharmonic function
max{log|u|, logl|uz|}. It thus remains to show that this least harmonic majorant is
the constant function 0. Let 2 denote this least harmonic majorant. Then log|u;]| <
h < 0. This implies that # has radial limits O almost everywhere on T'. So, if 4 is
not identically zero, then 4 is the Poisson integral of a negative singular measure
on T. Hence ¢ = e"*" is a singular inner function (here h denotes the harmonic
conjugate of  in A). Since |u;| < |e"***|, the inner function ¢ divides u;. But
luz| < |e"+| implies that ¢ also divides u,, contradicting our assumption about
u1 and u,. Thus h = 0. This completes the proof of the lemma.

Our conditions for convergence of the integrals in (5) are satisfied, so we have

lim I(r) = f f log| f(e") — wg(e'®)| do(9) du(w). (11)
Next,

1) = / f log|F,, (re’®)| du(w) do(6)
= f f / log|f(e'"") — wg(e™)| P (6 — t) do(t) do(0) du(w)

=/ log| f(e") — wg(e™)| do () du(w). (12)

We have f u(re’®)do(0) = I(r) — II(r). When (11) and (12) are used in this, we
find lim,_,1 [ u(re®) do(0) = 0. As explained earlier, this finishes the proof that
the set of w for which f(z) — wg(z) has a nontrivial singular factor has capacity
ZEro. O
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