Singular Factors are Rare

STEPHEN D. FISHER & JONATHAN E. SHAPIRO

Let ϕ be an analytic function in the Hardy space H^p on the open unit disc $\Delta = \{z: |z| < 1\}$ for $0 . It is classical that <math>\phi$ has a factorization $\phi = BSF$, where B is a Blaschke product, S is a singular function, and F is an outer function. Specifically, these factors are

$$B(z) = z^m \prod \mu_k \frac{z_k - z}{1 - z\bar{z}_k}, \quad \mu_k = \frac{|z_k|}{z_k},$$

where m is the order of the zero of ϕ at the origin and z_1, z_2, \ldots are the zeros of ϕ in $\Delta \setminus \{0\}$;

$$S(z) = \exp\left\{-\int_0^{2\pi} \frac{e^{it} + z}{e^{it} - z} d\nu(t)\right\},\,$$

where ν is a nonnegative measure singular with respect to Lebesgue measure; and

$$F(z) = \lambda \exp \left\{ \frac{1}{2\pi} \int_0^{2\pi} \frac{e^{it} + z}{e^{it} - z} \log |\phi(e^{it})| \, dt \right\},\,$$

where λ is a unimodular constant. See [2] for a full description of these functions and their properties.

It is a well-known theorem of Frostman that if ϕ is an inner function, then $[w - \phi(z)]/[1 - \bar{w}\phi(z)]$ is a Blaschke product for all $w \in \Delta$ with the exception at most of a set of capacity zero.

Caughran and Shields [1] raised this question: How big is the set of complex numbers w such that $\phi(z) - w$ has a nontrivial singular function as a factor? They showed that if ϕ' is in the Hardy space H^1 then the set of such w is countable. Fisher [3] showed, with no assumption on ϕ' , that the set of w for which the singular function has an atom in its associated measure is countable.

A theorem due to Rudin [8, Thm. 4] can be used to give an answer to the above question. The theorem deals with functions of n complex variables, but we will use the restriction to n = 1. The class N_* is defined (in [8]) to be the set of all analytic functions f on the unit disc such that the functions $\log^+|f_r|$ have uniformly absolutely continuous integrals. (Here f_r is defined by $f_r(z) = f(rz)$, $z \in \Delta$, and $r \in (0, 1)$.) What this means explicitly is that for each $\varepsilon > 0$ there should exist a $\delta > 0$ such that

Received January 3, 1996. Revision received November 20, 1996. Michigan Math. J. 44 (1997).

$$\int_{A} \log^{+} |f(rw)| \, dm(w) < \varepsilon$$

for all $A \subset T$ (the unit circle) with $m(A) < \delta$, and for all $r \in (0, 1)$. The class N is the usual Nevanlinna class, which can be viewed as the space of all functions on the unit disc that are quotients of bounded analytic functions. N^+ is the class of all functions on the unit disc that can be written as the quotient of a bounded analytic function with an outer function. See [2] for details about these classes. It is left as an exercise for the reader to see that $N_* \subset N$, and, in fact, $N_* = N^+$. The following is then a corollary to Rudin's theorem.

THEOREM 1. Let $\phi \in N_*$. Then the set of points w for which $\phi(z) - w$ has a non-trivial singular inner factor has logarithmic capacity zero. Conversely, given any (compact) set E of logarithmic capacity zero, there is a bounded analytic function ϕ such that $\phi(z) - w$ has a nontrivial singular inner factor if and only if $w \in E$.

The converse statement is well known; see [3]. Let E be a compact set of capacity zero in Δ . The covering map F of the domain $\Delta \setminus E$ is an inner function since E has capacity zero. For each $w \in E$, $[F(z) - w]/[1 - \bar{w}F(z)]$ is a nonvanishing inner function and so is singular. Thus, since $1 - \bar{w}F(z)$ is an outer function, F(z) - w is a function with nontrivial singular inner factor for all w in E.

Sarason produced a different sort of extension of Frostman's result, which appears in a paper by Mortini [7] as part of a constructive proof of the Beurling-Rudin theorem. He proved that, for mutually prime inner functions u and v (by which we mean that u and v have no zero in common and that there is no singular inner function S with $u = Su_1$ and $v = Sv_1$ for inner functions u_1 and v_2 and for v > 0, the function $v = v_2$ has a trivial singular inner factor for almost all (with respect to Lebesgue measure) real $v = v_2$.

Here we provide a generalization to the theorems of Frostman, Rudin, and Sarason that will further answer the general question of when singular inner factors disappear.

THEOREM 2. Let $f, g \in H^p$, 0 , have mutually prime singular inner factors. Then the set of points <math>w for which f(z) - wg(z) has a nontrivial singular inner factor has logarithmic capacity zero.

REMARK. In our Theorem 2, if g is an outer function, then we see that the lack of a singular factor in f(z) - wg(z) is equivalent to the lack of a singular factor in the decomposition of the function f(z)/g(z) - w (in N_*), and is thus covered in Theorem 1.

Proof. We write

$$f(z) - wg(z) = F_w(z) B_w(z) S_w(z),$$
 (1)

where the product on the right-hand side of (1) is of the outer, Blaschke product and of singular inner factors, respectively. We first comment on the dependence of the factors on w. Since

$$|F_w(z)| = \exp\left\{\frac{1}{2\pi} \int P_z(e^{i\theta}) \log|f(e^{i\theta}) - wg(e^{i\theta})| d\theta\right\},\,$$

where P_z is the Poisson kernel for $z \in \Delta$, it follows that $|F_w(z)|$ is a continuous function of w on Δ . That is, if $w_n \to \zeta$ and we write $f(z) - w_n g(z) = F_n(z) B_n(z) S_n(z)$ and $f(z) - \zeta g(z) = F(z) B(z) S(z)$, then $|F_n| \to |F|$ uniformly on compact subsets of Δ . Hence, $|B_n S_n| \to |BS|$ uniformly on compact subsets of Δ .

Suppose now that E is a compact set of positive capacity. By adjusting by a scale factor, we may assume that $\max_{E} |w| < \frac{1}{2}$. There is a positive measure μ on E with integral 1 such that

$$v(z) = \int_{E} \log|w - z| \, d\mu(w) \tag{2}$$

is continuous in the whole plane [6, Thm. 1.8 and Sec. I.3]. Since μ has compact support, v(z) is also bounded below.

The function u defined by

$$u(z) = \int_{E} \log|B_{w}(z)S_{w}(z)| d\mu(w)$$

is nonpositive in Δ . Moreover,

$$u(z) = \int_{E} \log|f(z) - wg(z)| \, d\mu(w) - \int_{E} \log|F_{w}(z)| \, d\mu(w). \tag{3}$$

Let $d\sigma$ be the normalized Lebesgue measure on the unit circle T. We shall show that

$$\lim_{r \to 1} \int_{T} u(re^{i\theta}) \, d\sigma(\theta) = 0. \tag{4}$$

This will give us the first equation in the following:

$$0 = \lim_{r \to 1} \int_{T} \int_{E} \log|B_{w}(re^{i\theta}) S_{w}(re^{i\theta})| d\mu(w) d\sigma(\theta)$$

$$= \lim_{r \to 1} \int_{E} \left\{ \int_{T} \log|B_{w}(re^{i\theta}) S_{w}(re^{i\theta})| d\sigma(\theta) \right\} d\mu(w)$$

$$\leq \int_{E} \left\{ \limsup_{r \to 1} \int_{T} \log|B_{w}(re^{i\theta}) S_{w}(re^{i\theta})| d\sigma(\theta) \right\} d\mu(w).$$

This last inequality holds by Fatou's lemma, since the term inside the bracket is nonpositive. Hence

$$\lim_{r\to 1} \int_T \log |B_w(re^{i\theta}) S_w(re^{i\theta})| \, d\sigma(\theta) = 0 \quad \text{a.e. } [\mu],$$

and thus $B_w(z)S_w(z)$ is a Blaschke product [5, p. 75, Prob. 6]. Thus, $S_w(z)$ is constant for w outside a set of μ -measure zero.

We proceed to prove (4) by considering two terms:

$$I(r) = \int \int \log |f(re^{i\theta}) - wg(re^{i\theta})| d\mu(w) d\sigma(\theta)$$
 and
$$II(r) = \int \int \log |F_w(re^{i\theta})| d\mu(w) d\sigma(\theta).$$

We wish to show that, for

$$G(z) = \int_{E} \log|f(z) - wg(z)| d\mu(w),$$

we have

$$\lim_{r \to 1} I(r) = \lim_{r \to 1} \int G(re^{i\theta}) \, d\sigma(\theta) = \int G(e^{i\theta}) \, d\sigma(\theta)$$

$$= \iint \log|f(e^{i\theta}) - wg(e^{i\theta})| \, d\mu(w) \, d\sigma(\theta). \tag{5}$$

Note here that

$$G(z) = \int_{E} \log|g(z)| \, d\mu(w) + \int_{E} \log\left|\frac{f(z)}{g(z)} - w\right| d\mu(w)$$
$$= \log|g(z)| + v\left(\frac{f(z)}{g(z)}\right)$$

and that μ was chosen so that v(z) is continuous; hence we easily see that, for almost every θ ,

$$\lim_{r\to 1} G(re^{i\theta}) = G(e^{i\theta}).$$

Equation (5) will then be true by a variant of the dominated convergence theorem, provided there is a family of nonnegative integrable functions $V_r(\theta)$ and an integrable function V such that $V_r(\theta) \to V(\theta)$,

$$\lim_{r\to 1}\int V_r(\theta)\,d\sigma(\theta)=\int V(\theta)\,d\sigma,$$

and

$$|G(re^{i\theta})| \leq V_r(\theta).$$

To demonstrate the existence of such a family $V_r(\theta)$, we will show separately that $G(re^{i\theta})$ has such an upper bound and a lower bound. We will need to use the factorization of f and g into outer and inner factors: $f(z) = O_f(z)I_f(z)$ and $g(z) = O_g(z)I_g(z)$.

To find the upper bound, note that for every $w \in E$,

$$|f(re^{i\theta}) - wg(re^{i\theta})| \le |O_f(re^{i\theta})| + |O_g(re^{i\theta})|. \tag{6}$$

This leads us to choose

$$V_r(\theta) = \log^+ |O_f(re^{i\theta})| + \log^+ |O_g(re^{i\theta})| + 1 \quad \text{and}$$

$$V(\theta) = \log^+ |O_f(e^{i\theta})| + \log^+ |O_g(e^{i\theta})| + 1.$$
(7)

We can easily see, by combining (6) and (7) (and using the inequality $\log(a+b) \le \log^+ a + \log^+ b + 1$ for all real a, b > 0), that

$$G(re^{i\theta}) = \int_{E} \log|f(re^{i\theta}) - wg(re^{i\theta})| d\mu(w)$$

 $\leq \log(|O_f(re^{i\theta})| + |O_g(re^{i\theta})|)$
 $\leq V_r(\theta),$

and it is clear that $V_r(\theta) \to V(\theta)$ pointwise. Since O_f and O_g are outer functions, we obtain $\int V_r(\theta) d\sigma \to \int V(\theta) d\sigma$ [2, Thm. 2.10].

To find the lower bound, we need the following lemma.

LEMMA 1. There is a constant K such that, for all $z \in \Delta$,

$$G(z) \ge \log(\max\{|f(z)|, |g(z)|\}) + K.$$
 (8)

For the proof of the lemma, we break the unit disc up into two pieces, A and B, where A consists of those points z where $|g(z)| \ge |f(z)|$, and B those points where |g(z)| < |f(z)|. We will prove the lemma separately for points in A and points in B.

If $z \in A$, then $\log(\max\{|f(z)|, |g(z)|\}) = \log|g(z)|$. Recall that

$$G(z) = \log|g(z)| + v\left(\frac{f(z)}{g(z)}\right)$$

and that v(z), defined in equation (2), is bounded below, so the term on the right above can be written as in (8).

If $z \in B$, then we note that $|f(z) - wg(z)| > \frac{1}{2}|f(z)|$, so

$$G(z) = \int_{E} \log|f(z) - wg(z)| d\mu(w) > \log\left(\frac{1}{2}|f(z)|\right).$$

Also, for $z \in B$, $\log(\max\{|f(z)|, |g(z)|\}) = \log|f(z)|$, and again (8) can be satisfied. This completes the proof of the lemma.

Now we will find the family $V_r(\theta)$ just as before. We note that

$$\log(\max\{|f(re^{i\theta})|, |g(re^{i\theta})|\}) \ge \log^{-}|O_{f}(re^{i\theta})| + \log^{-}|O_{g}(re^{i\theta})| + \log(\max\{|I_{f}(re^{i\theta})|, |I_{g}(re^{i\theta})|\}).$$
(9)

Take

$$V_r(\theta) = \log^-|O_f(re^{i\theta})| + \log^-|O_g(re^{i\theta})| + \log(\max\{|I_f(re^{i\theta})|, |I_g(re^{i\theta})|\})$$
(10)

and

$$V(\theta) = \log^{-}|O_f(e^{i\theta})| + \log^{-}|O_g(e^{i\theta})|.$$

Putting together (8), (9), and (10) gives us

$$G(re^{i\theta}) \geq V_r(\theta) + K.$$

The sum of the first two terms in the definition of $V_r(\theta)$ in (10) clearly approaches $V(\theta)$ pointwise, and the third term approaches zero pointwise. Furthermore,

$$\begin{split} \int_{T} V_{r}(\theta) \, d\sigma &= \int_{T} \log^{-}|O_{f}(re^{i\theta})| + \log^{-}|O_{g}(re^{i\theta})| \, d\sigma(\theta) \\ &+ \int_{T} \log(\max\{|I_{f}(re^{i\theta})|, |I_{g}(re^{i\theta})|\}) \, d\sigma(\theta), \end{split}$$

and the first term on the right approaches $\int V(\theta) d\sigma(\theta)$, just as in the upper-bound case. The second term approaches zero, which we can see from the following lemma, due to Sarason.

LEMMA 2. If u_1 and u_2 are inner functions without a common factor, then

$$\lim_{r\to 1}\int_T \log(\max\{|u_1(re^{i\theta})|, |u_2(re^{i\theta})|\}) \, d\sigma(\theta) = 0.$$

Sarason's proof of this lemma can be found in [7], but we include it here, with his permission, for completeness. The limit on the left side is the value at the origin of the least harmonic majorant in Δ of the subharmonic function $\max\{\log |u_1|, \log |u_2|\}$. It thus remains to show that this least harmonic majorant is the constant function 0. Let h denote this least harmonic majorant. Then $\log |u_1| \le h \le 0$. This implies that h has radial limits 0 almost everywhere on T. So, if h is not identically zero, then h is the Poisson integral of a negative singular measure on T. Hence $\varphi = e^{h+i\tilde{h}}$ is a singular inner function (here \tilde{h} denotes the harmonic conjugate of h in Δ). Since $|u_1| \le |e^{h+i\tilde{h}}|$, the inner function φ divides u_1 . But $|u_2| \le |e^{h+i\tilde{h}}|$ implies that φ also divides u_2 , contradicting our assumption about u_1 and u_2 . Thus $h \equiv 0$. This completes the proof of the lemma.

Our conditions for convergence of the integrals in (5) are satisfied, so we have

$$\lim_{r \to 1} I(r) = \iint \log|f(e^{i\theta}) - wg(e^{i\theta})| \, d\sigma(\theta) \, d\mu(w). \tag{11}$$

Next,

$$II(r) = \iint \log|F_w(re^{i\theta})| d\mu(w) d\sigma(\theta)$$

$$= \iiint \log|f(e^{it}) - wg(e^{it})|P_r(\theta - t) d\sigma(t) d\sigma(\theta) d\mu(w)$$

$$= \iint \log|f(e^{it}) - wg(e^{it})| d\sigma(t) d\mu(w). \tag{12}$$

We have $\int u(re^{i\theta}) d\sigma(\theta) = I(r) - II(r)$. When (11) and (12) are used in this, we find $\lim_{r\to 1} \int u(re^{i\theta}) d\sigma(\theta) = 0$. As explained earlier, this finishes the proof that the set of w for which f(z) - wg(z) has a nontrivial singular factor has capacity zero.

References

- [1] J. Caughran and A. Shields, Singular inner factors of analytic functions, Michigan Math. J. 16 (1969), 409-410.
- [2] P. Duren, Theory of H^p spaces, Academic Press, New York, 1970.

- [3] S. Fisher, *The singular set of a bounded analytic function*, Michigan Math. J. 20 (1973), 257–261.
- [4] J. Garnett, Bounded analytic functions, Academic Press, New York, 1981.
- [5] K. Hoffman, *Banach spaces of analytic functions*, Prentice-Hall, Englewood Cliffs, NJ, 1962.
- [6] N. S. Landkof, Foundations of modern potential theory, Springer, New York, 1972.
- [7] R. Mortini, A constructive proof of the Beurling-Rudin theorem, preprint.
- [8] W. Rudin, A generalization of a theorem of Frostman, Math. Scand. 21 (1967), 136–143.

S. D. Fisher
Department of Mathematics
Northwestern University
Evanston, IL 60208

sdf@math.nwu.edu

J. E. Shapiro
Department of Mathematics
Northwestern University
Evanston, IL 60208

shapiro@math.nwu.edu