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Introduction

An inverse function theorem of the Nash-Moser type is proved for Fréchet
spaces admitting generalized smoothing operators; the proof is based on
Newton’s method. In particular, for Kéthe sequence spaces, property (£2) in
the standard form and the topological condition (DN) in the sense of Vogt
are shown to be sufficient for the Nash-Moser theorem to hold under classi-
cal assumptions on the mappings.

In the literature, inverse function theorems of so-called Nash-Moser type
with “loss of derivatives” are proved for Fréchet spaces that admit smooth-
ing operators as introduced by Nash [8]; a possible proof relies on New-
ton’s method as suggested by Moser in [7] (see e.g. [2; 3; 5; 11; 12; 13] or [1;
6] for generalized results). For instance, Lojasiewicz and Zehnder [5] prove
such a theorem showing that Newton’s method still converges if the classical
“tame” assumptions on the mappings (cf. [2]) are replaced by “linear-tame
estimates with 1 <A <2” while the theorem fails if A = 2 (cf. [5]). This paper
contains a generalization of [5]; the aim is to find out under which more
general conditions on the Fréchet space Newton’s method converges. The
hypothesis of smoothing operators is replaced by the weaker assumption
of the existence of generalized smoothing operators, and the (linear-) tame
estimates supposed in [5] are replaced by more general estimates. It is then
considered as a property of the Fréchet space under which assumptions on
the mappings the inverse function theorem holds. This property of the Fré-
chet space is quantitatively measured by means of the existence of suitable
generalized smoothing operators.

The first section contains preliminaries. Section 2 treats the standardized
case, “loss of derivatives = 1”; for this situation, a generalization of the re-
sult in [5] is proved. It is carefully checked which property of the Fréchet
space is needed to compensate this loss of derivatives in order to make New-
ton’s method converge. In [5], the existence of classical smoothing opera-
tors and hence property (DN) in standard form are assumed; here only the
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weaker property (DN) and certain generalized smoothing operators are re-
quired. In the case “loss of derivatives = 0” it is even sufficient to suppose
only property (DN). Section 3 shows that much more general problems—
for instance, the full result in [5]—can be reduced to the above standardized
situation by means of a formal transformation of the fundamental systems
of seminorms. An inverse function theorem is obtained where the assump-
tions on the mappings are coupled with a property of the Fréchet space for-
mulated by means of conditions of type (S, 4)) (cf. Definition 3.1) on the
existence of generalized smoothing operators. In Section 4, the previous re-
sults are evaluated for Kothe sequence spaces. Sufficient conditions for the
existence of the above generalized smoothing operators are given in terms
of the quantitative variants (DN, ,)) and (Q, ) (cf. [9]) of the topological
properties (DN) of Vogt [14] and () of Vogt and Wagner [17]. In particular,
it is shown that the Nash-Moser theorem holds under classical assumptions
on the mappings for each Kothe sequence space that is an (2) space in stan-
dard form and satisfies the topological condition (DN). It seems to be re-
markable that it is enough to suppose property (DN) in its topological form
and that it is not necessary to assume a tamely invariant version of property
(DN) in standard form, which might be suggested by the negative example
in [5].

The contents of this paper form part of the author’s Habilitationsschrift.

1. Preliminaries

We use common notation on Fréchet spaces (cf. [4]). A Fréchet space E
equipped with a fixed fundamental system |-[p<|:|; <]|+[; < -+ of contin-
uous seminorms defining the topology is called a graded Fréchet space (cf.
[2]). The sequence of seminorms is called grading (cf. [2]); sometimes we
shall also consider gradings (|-|,);cs for some set JC R, with |-|;<|-|, if
s=<t. A linear map A: E — F between graded Fréchet spaces is called (¢)-
tame for a map ¢: Ny— N if there exist ky and constants c; > 0 such that
|Ax|x = ckllx|l¢x) for all & =k, and x € E; the map A is called linear-tame
if ¢ (k) < ak+ b for all k and suitable fixed a, b. A is called tame if @ =1 and
is called normwisely tame if ¢ =1 and b = 0 (cf. [2]).

For ¢, y: Ny— N, the space E is called a (¢, y)-tame direct summand of
F if there exist a (¢)-tame linear map A: E — F and a (y)-tame linear map
B: F— E such that Bo-A =idg; if, in addition, A-B = id then we say that
E = F is (¢, y)-tamely isomorphic, and A is called a (¢, Y)-tame isomorph-
ism. If ¢(k) <ak+b and Y (k) <ak+b for all k and fixed a, b, then E is
called a linear-tame direct summand of F (and, if E = F is (¢, ¢ )-tamely iso-
morphic, £ and F are said to be linear-tamely isomorphic); the same nota-
tion is used with tame and normwisely tame in place of linear-tame.

Kéthe sequence spaces are graded as follows: Let a = (a; x)j=1 k=0 be a
matrix such that 0 < a; ; < g ., for all j, k and sup, a;,, > 0 for all j. For
1 < g <o we put
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M(a) = {x = (x;)7%; CK: | x[lx = (Z;]x;|%] )7 < +oo for all k)

(where K =R or (D). A*(a) is analogously defined with |x||; = supj|x;|a; «.
For0<sa;<=ap<-:--/+4wand ro<r<ry<---7Re[0,], we consider
the power series space A z(c) = Al(a) with a; , = e’k“f (of finite type if R <
or of infinite type if R = oo, respectively).

We shall make use of the topological invariants (DN) (cf. Vogt [14]), ()
(cf. Vogt and Wagner {17]) and (DN) (cf. [15]). For a seminorm |-| on E the
extended real-valued dual norm is defined by |¢|*:= sup{|¢(x)|: |x|<1}e
[0,0], o€ E".

DEerFINITION 1.1 (cf. [14; 15; 17]). Let E be a graded Fréchet space.

(i) E has property (DN) if there is a p such that for all £ there are K
and ¢ > 0 with
BrEYRMRP
(ii) E has property (DN) if there is a p such that for all £ there are K and
0<7<1,c>0, with
Il el 7'k
(iii) E has property (Q) if for all p there is a g such that for all Q there
are0<0<1, c>0, with
*1—o| . Ibo

-le=clI5

Properties (DN), (DN), and () are topological invariants and independent
of the chosen grading; (DN) and (DN) are inherited by subspaces; and ()
is inherited by quotient spaces. The Fréchet space E has property (DN)
(resp. (Q)) if and only if there exist a grading |- |; and constants ¢, > 0 such
that |-|2 < cx|*|x—1|*|x+1 for all k (resp. such that |-|§2 < ¢;|-|f_1||t+; for
all k) (cf. [16]); (E,|-|¢) is then called a (DN)-space (resp. an (Q)-space) in
standard form. We shall further employ the following quantitative variants
of properties (DN) and (), which are defined in [9]. Let

F={¢d:Nyg—>Njy: ¢(n+1) = ¢(n)+1forall nj.

DEFINITION 1.2 (cf. [9]). Let E be a graded Fréchet space and ¢,y €.
(i) E has property (DN, ) if there exist by and constants ¢, > 0 such

that
|7 < |- |5 Y | 13! for all by <1< y(n)<m.
(ii) E has property (0 ) if there exist by and constants c,, > 0 such
. (¢, ¥)
that

|- |*‘“”’) v < ¢l |}““"”“"|- |;“,,"“‘“” for all b=y (l)<n<y¢(m).

(iii) E has property (DN,) (resp. (,)) if there exist ¢, ¥ €F such that
o(k), ¥ (k)< k+D for all k and some fixed b and E € (DN, ) (resp.
Ee Q) If ¢(k), ¥(k)<ak+b for all k and fixed a, b then we
analogously write E € (DN,) (resp. E € (2})).
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REMARKS 1.3 (cf. [9]). Let E, F be graded Fréchet spaces and ¢, ¢, 0, 7€ ¥.

(i) Let E be a (o, 7)-tame direct summand of F. If F is a (DN)-space
in standard form then E e (DN ,); if Fe (DN ) then Ee€
(DNyg.g,y.n). If Fis an (Q)-space in standard form then E € (Q,, ));
if Fe(Q,y)) then E€ (Q;.4,p0n)-

(ii) E has property (DN) (resp. (2)) if and only if there exist ¢,y €F
such that E€ (DN, 4) (resp. E€ (Q 4, y)))-

(iii) Properties (DN,) and (£,) are invariant with respect to tame iso-
morphisms; properties (DN;) and (£,) are invariant with respect to
linear-tame isomorphisms.

(iv) The Kothe space E = A%(a) has property (DN 4)) (resp. (@, y))) if
and only if there exists a Kothe space AY(b) that is a (DN) (resp. ())
space in standard form such that A%(a) = AY(b) is (¢, ¥)-tamely iso-
morphic; this is proved in [9, 3.8].

2. A Standardized Inverse Function Theorem

In this section an inverse function theorem is proved under the standardized
assumption “loss of derivatives = 1”. This generalizes the result of Lojasie-
wicz and Zehnder [5]; the proof is based on Newton’s method and on the
technique of [5], and the full result proved in [5] for power series spaces fol-
lows from Theorem 2.2 by means of a simple formal reduction (cf. Corol-
lary 4.9). In [5] the Fréchet space is presumed to admit smoothing operators
and hence is a (DN) space in the standard form; in this section these assump-
tions are weakened and replaced by the existence of generalized smoothing
operators in the form of condition (3(1,1)) and property (DN).

DerINITION 2.1. The graded Fréchet space E has property (§(,, yy) if the fol-
lowing holds: There exist p, u: N —]0, [, a number « > 1, and constants
b =1 and ¢, > 0 such that, for each 6 = 1, there is a (not necessarily linear)
map Sy: E — E such that:

(@) |Spx|, < c,0°™|x|,_1, n =1, x€E;

(b) |x—Sex|, = c,0#*W|x|,_;, n= b, x€E; and

(c) sup,{p(n)—ap(n)} = +co.
In this section we suppose that E and F are graded Fréchet spaces, where E
satisfies properties (S(l,l)) and (DN) with p =1 in Definition 1.1(ii). Hence
we assume that there exist numbers 0 < ¢, < 1, integers ¢(n), and constants
¢, > 0 such that

(d) |x]|n = calx[i™ x|ty n =1, xEE.

Let U= {xeE:|x|, <1} and let : (U C E)— F be a continuous (nonlinear)
map so that $(0) = 0. We assume that for each x € U the linear map

d'(x): E-F, ®'(x)v=Ilim %(fl)(x+ tv) — P(x))

t—0
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exists, and we assume that for each xe U there is a map L(x): F— E such
that ®'(x)oL(x)=idr. We further suppose that there are constants ¢, >0
such that:

(1) |2(xX)|n =< calx]n, x€U;

(2) |2 (X)V|p =< cullx|alv)i+|v]n), x€EU, vEE;

(3) |®(x+0v)—®(x)—¥'(x)v|, < c,(| x|} +|v]i]|0]4)s X, x+v € U; and
@) |LX)Y|n = cul|X]nsrl Y1+ |P]ns1), x€U, y€F.

TueorREM 2.2 (cf. [5]). If ®: (UC E)— F is as above and E satisfies prop-
erties (3(1, 1y) and (DN) in the form of (d), then ®(U) is a neighborhood of
zero in F.

REMARKS 2.3. (i) More precisely, the following holds in Theorem 2.2:
If =141/ and pog=(2/(2—7))p(1)+7/(2—7), and if so= b is chosen
so that u(sg) = ap(sy)+7pe+1, then there exist 6 >0 and a mapping :
(VCF)— E defined in V'={y € F: | y|;, < 8} such that y(0) =0, (¥ (»)) =,
and |¢(»)|; = c|y|s, for y € V and some ¢ > 0. Furthermore, there are o(n),
k(n) (which can be explicitly calculated from the given data) and constants
¢, > 0 such that

I‘p(y)ln = Cn(lyla(n)-l_lylg((?t))

(i) If also F has property (DN) then it is enough to assume that (2) and
(3) hold for n = 1. If F has property (DN) then we can choose k(n) =11in (i)
(enlarging sy, o(n)).

(iii) If in the situation of Theorem 2.2 the map ®’(x): E — F is bijective,
xe U, then: ® is injective in a (possibly smaller) neighborhood U of zero;
the inverse map ¢: ¥V — U is uniquely defined in a suitable neighborhood V
of zero in F and continuous; and the Gateaux derivative y’(y) exists and
V'(y)=L(y) for yeV. If &: UXE — F is continuous then y : VX F— E
is continuous as well, and ® is a C!-diffeomorphism near 0. The proof is
standard (cf. [2]).

Proof of Theorem 2.2 (cf. [5]). We want to show that there is a neighbor-
hood V of zero, V' C F, such that for each ye V and 0, = 27, 7 =1+1/a, the
iteration

Xo=0, Xjp1=X;+Ax;, Ax; =S¢ L(x))zj, z2j=y—P(x})

is well-defined such that x;e U for all j and x;—»xe U with ®(x)=y. In
order to show this we prove several lemmata.

LEMMA 2.4 (cf. [5, Lemma 1]). Let L(n) = ap(n)+1. For every neN there
is a constant K,, > 0 such that, for all y € F with |y|, <1, we have

x| =< KngjL(n)U'n and |zj|, < KngjL(n)IJ’In
Sfor all j as long as |x;|, <1.
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Proof. Let|y|;<1and assume that |x;|,<1fori=1,...,j. From (1) we have
|2l < [ 2|0+ | B0 < |¥]n+ Cal x| 0
In particular we have |z;]; < 1+ c¢,. From (a) and (4) we obtain
|AXj] < €8P |L(x)2j|n-1 = ch07 (| x)1n+|7]n)

and thus |x;, |, + |y, < (c; + 1)07(|x;|, +|y|,). The assertion follows
because

|4 1]n = (ch 1) 20O I=DM=D) | < K LGNy J

LEMMA 2.5 (cf. [5, Lemma 2]). For each p > 0 there exist s = so(p), 6 >0,
and M > 0 such that, for all y € F with | yls0 < 0, we have the estimate

|2l = Mb;7#| ¥,
as long as |x;|; < 1.

REMARK. If u=(2/(2—7))p(1) then we can choose any sy = b satisfying
p(So) = L(sp) + 7.

Proof. We choose u, sg as in the remark. The proof is by induction on j. The
case j =0 is clear. We assume that the assertion holds for j and that |x;|, <1,
i=0,...,j+1. We put R(x;v) :=®(x+v)—P(x)—P’(x)v and see that z;, =
tI)'(x,-)(I—S(,j)L(xj)zj —R(x;; Axj). By means of (2), (b), (4), and Lemma
2.4, the first term is estimated by
|9 () (= Sg,) LX) zj1 = 2¢1 (1= S, ) L(x)) ;] < 2¢1¢,67| L(x)) 2] -

= cs,ej_“(s)(lles + |Zj|s) = C!OJL(S)_#(S) Iyls = c.;lgj—-{-ul |y|s
if s= b and L(s)—pu(s) < —7u. From (a) and (4) we further obtain

|Ax;|1 < 107D IL(x)zj]0 = ¢1607V|z)l;-
By means of (3) and the hypothesis of the induction, the second term is esti-
mated by
|R(xj; ij)ll = 2C1|ij’|% = c{'sz”(l)lzjﬁ
< c{M2PV 2| y| < M0 | |5,

Altogether we get

Izj+1|l = C(1+M2|y150)ej::lf‘l|y|50SMe_j:-pllyISo

if we choose M = 2C and 6 < M ~2. This proves the assertion. -]

COROLLARY 2.6. Let puo=2/2—-m)o()+7/2—17), =1+ 1/ce, and
choose sy = b with u(sg) = ap(sg)+Tue+1. Then there is a 6 > 0 such that
|x;|1 = $ holds for all j if |y|,, < 6.

Proof. If |x;, <3 for i=0,...,j, then from Lemma 2.5 we conclude for
i=0,...,jthat
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|Ax;|; = c6P®)z], < c]MBFD~#o |,

if 6 and M are chosen as in the lemma and | y|;, < . Since py> p(1), we have

|Xj 41l = EIAx,hqung(l) bo| y|,. <

choosing a smaller § if necessary. This gives the assertion. O

In the following we choose pg, 5o as in Corollary 2.6; this is possible by means
of (c). In contrast to [5] we do not suppose any (DN)-type condition in the
following Lemma 2.7 and assume only property (DN) for E in Lemma 2.9
(in place of condition (DN) in the standard form in [5]); moreover, we have
no assumptions on F at all.

LeMMA 2.7 (cf. [5, Lemma 3]). Choose pny, sy, 06 as in Corollary 2.6. For
each m there exist ¢, > 0 and y(m), v(m) = 1 such that, for every y € F with
|¥|s, < 6 and all j, we have

|2;]1 = cmb; (l)’|7(m)+|y|f,(('f?z))

Proof. By Lemma 2.5 the statement holds for 0 < m < py with »(m) =1
and y(m) = so; the case j =0 is also clear. We assume the statement to hold
for some m = py. Then

| @ () (T— 8o, ) L(x)2;]s < €76,y

follows from the proof of Lemma 2.5 if s = b satisfies
n(s) = ap(s)+(1+1/a)(m+1)+1.

Applying the hypothesis of the induction and observing the proof of Lemma
2.5, we further obtain

|ROxs; Axp1 = 677D |z;[F = 4cten 675 V(U3 |yomy + Y ),

since 2p(1)—2m < —7r(m+1) if m = py. This proves the statement for m +1.

O
REMARKS 2.8. (i) In Lemma 2.7 we can choose p(m) =2"""#0 if m = p,
and y(po) = So; y(m+1) = max{y(m),s(m+1)}, where s=s(m+1)=b is
chosen so that u(s) = ap(s)+(1+1/a)(m+1)+1.

(ii) Observing that |z;|f < c|z;]} € if 1/a < e =<1 and enlarging g, s, We
also can choose v(m) = (1+¢)"~*0 for m = pu,.

(iii) If F has property (DN) than a choice »(m) =1 is possible. For in-
stance, if |-|3 < ¢,|*|s,| oy hOlds in F then we can choose y(po) = s and
v(m+1) = max{w(y(m)), s(m+1)}.

(iv) If E=F=A%(a) and r, = k then p(s) =1 and u(s) =s—2. Hence,
for « >1 in (i) it suffices to choose s(m+1)= (1+1/a)m+a+ 5. Further,
we have w(n) = 2n in (iii). By (ii) and since |- [;,*¢ <|-|5|*|(1+¢)» We can thus
choose v(m) =1 and y(m) = A(1+¢)"™ for e > 1/a and a suitable A.
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LEMMA 2.9 (cf. [5, Lemma 4]). Choose pg, Sy, 6 as in Corollary 2.6. For all
n,a there exist o = a(n,a), «k =«(n,a), and c, > 0 such that, for all yeF
with | y|s, < 6, we have
Iijln = c,,0j“’(|y|a+|y|§),
|Zjln < a0 Y| +|2]5)-
Proof. From Lemmas 2.5 and 2.7 we obtain the estimates

|Ax;11 = c{07 1zl < e, 07D Ly + 12 15G0)-

Lemma 2.4 implies that [Ax;|s < |x;.1|s+|x;)s < ¢,0/)|»|s. From (d) we
obtain

lejln = cnIijl |ijl¢(n)
< Cn,moj-“ ex)(p(1)— m)“”(m”w(")”T)(IJ’ly(m)+Iylf,((':f)))l G”IJ’IW)
< ;0,7 (|y]s+|¥5)

if m= p(1) + (ex(arp(¢(n)) + 7) + a)/(1 —€,), 0 = max{y(m), ¢(n)}, and
k=v(m)(1—e¢,)+e¢,. Next we examine the case z;,.; =P(x;)(/— S(,J)L(x,-)z,-—
R(xj; Ax;). First we obtain
|9’ (x;)(I— ng)L(xj)zjl,,
=< ¢ (|%)]n| (1= S )L (x) 21 + (1 — Sp,) L(x;)z;]n)
=< ch (07 |7 |al(F— Sp ) L(x)) 25"
+ (= Sg)L(x)) 2| up| I = So ) L(x)) 21 =
<c, (9L(n)+fn(L(b)—u(b))|yl
+9‘""(¢("”|L(xj)z, ¢(n))0.—(1—fn)u(m)lL(xj)zjlzn—_frlz
< cfy f(OFM R LO—pOY| |
+gen(p(¢(n))+L(¢(n)+l))|y|¢(n)+l)9j—(l—fn)u(mH(l—én)L(m)lyI}n'—fn

= Cn91+1(|y|o+|y|a)
if 0 = max{m, ¢(n)+1, n}, k=2 —¢,, and m is chosen so large that
pim)—ap(m) =1+ + 1_16
xmax{L(n)+e,(L(b)—u(d)), e,(p(d(n))+L(d(n)+1))].

Here we have used (2), (4), Lemma 2.4, (d), (a), and (b). Applying (3) to-
gether with Lemmas 2.4, 2.5, and 2.7, we conclude that

| R(x;3 Axj)|, = c;r(GJL(n)Iylnejzp(l)lzjlf'*’ojp(l)lzjllgjrun)lﬂn)
=< Cop, 07Dy L (17 ]y oy F VLN = a0 2|0+ | 2]

if o = max{n,y(m)}, xk =v(m)+1, and m = 7L(n)+2p(1)+ ra. This proves
Lemma 2.9. [l
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REMARKS 2.10. (i) If Fe (DN) as well (with p = 1in Definition 1.1) then the
proof of Lemma 2.9 can be much simplified since z;,; can be estimated
directly by means of Lemmas 2.4 and 2.7 (much as |Ax;|,). In this case the
proof of Lemma 2.9 and hence of Theorem 2.2 uses the estimates (2) and
(3) only for n=1.

(ii) If E, Fe (DN) then we can choose k =1 in Lemma 2.9.

Proof of Theorem 2.2. Lemma 2.9 implies that z; is a null sequence in F and
x; is a Cauchy sequence in E. For the limit x =lim; x;€ U we have ®(x) =
lim; ®(x;) = y since ® is continuous. From the proof of Corollary 2.6 we
obtain that |x|; < c|y|s,, and the estimate in Remark 2.3(i) follows from
Lemma 2.9. O

REMARK 2.11. Theorem 2.2 still holds if Definition 2.1(a) is only required
for all n € I and some infinite set 7 such that 1e 7 and sup,c;{u(n)—ap(n)} =
o0,

The same proof also gives the following inverse function theorem without
“loss c_>f derivatives”. Here it is enough to assume property (DN), and condi-
tion (S(y,1y) is not needed.

THEOREM 2.12. Let E satisfy condition (DN) in the form of (d). Let ®:
(U C E)— F satisfy the assumptions of Theorem 2.2, where we assume in
place of (4) that

(4)0 IL(X)}’I,, = Cn(lxlnlyll'l'lyln)’ X€ Us yGE
Then ®(U) is a neighborhood of zero in F.

Proof. In the proof of Theorem 2.2 we choose Sy;x =x, p(n)=0, and
L(n)=1in Lemma 2.4. O

3. Generalized Smoothing Operators

In this section, Theorem 2.2 is applied in order to prove inverse function
theorems for Fréchet spaces under more general assumptions. In place of
the particular estimates (1), (2), (3), and (4) of the previous section, we now
admit more general estimates and then give conditions on the Fréchet space
E such that the inverse function theorem still holds; these conditions on E
are formulated by means of the following variants of property (§(1,1)) (cf.
Definition 2.1). In particular, a tamely invariant condition (S,) is intro-
duced; this property will be shown to be sufficient for the Nash-Moser theo-
rem to hold under classical assumptions on the mappings.

DEerFINITION 3.1.  Let (E, (|*|,)n=0) be a graded Fréchet space.

(i) Leta,deNand a = d. E has property (S, 4)) (we write E € (S(4, 4))) if
there exist p, u: N—]0, [, aset /C N, a number o > 1, and constants



376 MARKUS POPPENBERG

b= a+d and c, > 0 such that for every 8 = 1 there exist (not neces-
sarily linear) maps Sy: E — E such that:
@) |Sex|, < c,0°|x|,-aq, n€IU{a}, x€E;
(b) |x—Spx|s < c,0#M|x|_gq, n= b, x€ E; and
(¢) superfp(n)—ap(n)}=+oo.

(ii) E€(S(,, 4)) means that (i) holds for I = {n: n = aj.

(ili) E€(S(4) means that for each ay = d there is an a = a, such that Ee
(S(a,d_))- _

(iv) E€(S(4)) means that there is an @y = d such that Ee (S, 4) for all
az=zay.

(v) E€(S,) means that for each d there is an @ = d such that E € (S(4, 4))-

(vi) Ee(S,) means that for each d there is an @y = d such that E € (S, 4))
for all a = ay.

REMARKS 3.2.

(1) Property (E(l, 1y) coincides with the condition given in Definition 2.1.
(li) (S(a,d)) implles (S(a,d))’ (S(d)) lmplles (S(d))! and (St) lmplles (St)
(iii) (S¢q, d)) implies (S_(a,d_l)) and (S4)) implies (S(4_;)); the same holds

for (S¢q, 4y) and (S(g)). _ _

(iv) (S,)isequivalent to M 4= 1(S(4)), and (S,) is equivalent to M z=1(S(a).

(v) (S¢s)) and (S(4)) are preserved when removing or adding a finite
number of seminorms. For instance, (E,||,) € (S, 4)) implies that
(E,|*|n+p) € (Sa—p,ay)- _

(vi) (E,|*|n) € (S(q)) implies that (E,|-|z,) € (S()); more precisely, we
notice that (E, |+ |,) € (S(qs, ¢)) implies that (E, |-|4,) € (Sa,1))-

(vii) (E,|*|an) € (Sqy) implies that (E,|-|,) € (S(s); more precisely, we
notice that (E, |+ |4u+») € (S, 1)) if and only if (E,|:|,) € (S(au+5, )
O<b=<d-1.

(viii) Properties (S, 4)) and (§(a, 4)) are inherited by normwisely tame
direct summands.

(ix) (S,) and (S,) are tame invariants and are inherited by tame direct
summands.

Next we prove tllat the to_pological invariants (2) and (DN) are necessary
for properties (S;) and (S(4). In _\_ziew of Remarks 3.2(iii) and (iv), it is
enough to show this for property (S(y,).

LeEmMA 3.3. If E has property (§(1)) then E has properties (?) and (DN).

Proof. To show property (), let U, = {x€ E: |x|, <1}. Let p be fixed. We
choose a = p so that E€(S(,,1y). For each n = max{a, b} we then have

U,_; C c,(8°™U,+6~*MU,)
for all 6 = 1. Applying standard arguments (cf. [14; 17]), we conclude that

I I*l a,,l *o,, — ;L(I’l)
T p(m)+p(n)’

Inductively applying the above inequality, for £k =0, 1, ... we obtain that

Hnl
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. |* . *l_an"'an+k].|*Un"'”n+k
|- [7=1 = cn,il- 12 n+k .

This proves (). In order to show property (DN) we fix ay so that Ee (§(a, 1)
for all @ = ay. For k = ay we must then show that there are p = k and a con-
stant ¢ > 0 such that |-|§ < ¢|+|,,|+|,- For a given a = a, we can choose p,(n),
pq(n), and b = b, according to Definition 3.1 so that (i)(a) and (i)(b) hold
and sup, p,(n) = +oo. Then we have

|X|a < €n, o (07D |x]o_1+ 0P |x|,_)), n=b,, 0=1, xeE
with suitable constants ¢, , > 0. From this we get
pa(a)
pa(n)+p,(a)

Inductively applying these estimates, for n, = b, (which will be chosen later)
we obtain

leas c;;,alxlzz:(”xlg—-l, 0= U(n, a) =

’ 1—o(n,, a))(l —o(n,_y,a—1))---{(1—0a(n »ag+1)) eoo|y|Pao+1
|X]a = ¢ x|~ ot N ~otna ag+ 180t D) | x|ka_| |xn:::|_1,

where 0< p;<1and (1—-0(n,,a))---(1—o(ng 1, ap+ 1)) +p+ - +pg 1=
1. We choose n,, ..., Ny 41 50 that (1—0(ng, a))---(1—0(ng,+1,a+1)) = 3.
This is possible since sup, u,(n) = +o for a = a,. If kK = a is given then we
obtain the assertion by choosing p = max{ag, n,—1, ..., 1, +1—1}. U]

As a result in the reverse direction, we show in the next section that a Kéthe
sequence space satisfying properties (2) in standard form and topological
(DN) has property (S;) and hence (S;,).

We now connect the conditions introduced in Definition 3.1 with the in-
verse function theorem. We consider the following situation. Let E, F be
Fréchet spaces equipped with fundamental systems of seminorms (|:|;);e»
J C R, where || < ||, for s < ¢ (e.g., we shall look at the cases J =N,
or J=1[0,[). Let /e J and 9 >0 and put U ={xe€ E:|x|; < n}. Let ®:
(U C E)— F be a continuous (nonlinear) map with (0) = 0. Assume that
the linear map ®’(x): E — F exists (wWhere ®’(x)v denotes the Gateaux deriv-
ative) for all xe U. It is useful to introduce the following notation.

DeriNITION 3.4. Let a, 3,7, ¢: J— J be monotonically inceasing and let ®
be as above. We then call ¢ an («, 3, y)-map if the following holds. There is
amap L:(UCE)XF—- E such that ' (x)L(x)y =y, xe U, and y e F, and
there exist d, t,e€ J and constants ¢, > 0 such that, for all e J with = ¢,
we have:

(1) |2(X0)|; = | x|y X€ U;

(2) |®' ()|, = ¢ (|x|anylV]i +|V]an), X€U, vEE;

(3) |®(x+0v)—B(x)— ¥ (X)v|, < /(| X|ain| VI +|01i]V]acn)s X, X +ve U; and
4) |L(x)y|, = ct(lxly(t)|y|d+ |J’|B(t))s xeU, yeF.

For the Fréchet space (E, (|+|,);eJ), we shall use the following notation:
(i) Ee(NM: (a, B, v)) means that for each («, 8, y)-map ®: (UCE)—> F
the set #(U) is a neighborhood of zero in F; and
(if) Ee(NM;: (o, B, v)) means that (i) holds under the restriction F = E.



378 MARKUS POPPENBERG

For J=Nj and a:Ngy— [0, [, the term «a(7) must be replaced by [a(n)]
where [x] := max{z € Z: z < x}. Using the notation just described, the result
of Lojasiewicz and Zehnder {5] means that for a space E admitting linear
smoothing operators (e.g. E = A% (a), ry = k) we have

Ee(NM;: (n+d,An+d,An+d)) for each deN, and 1<=A<2,

while A2 (/) ¢ (NM: (n, 2n, 2n)) (see Corollary 4.9 for generalizations).

In the following we shall investigate sufficient conditions for a graded
Fréchet space (E, (|+|,):e /) to satisfy E € (NM: (a, 8, ¥)). In view of the appli-
cations it is useful to see that this property is inherited by direct summands.

LEMMA 3.5. LetJC Randlet a,B,vy, ¢, ¥: J— J be monotically increasing
so that sup f(J)=supJ for f=a,B,v,$,¥. Assume that (F,|-|;c)) is a
(¢, ¢)-direct summand of (E,|-|,c))-

(i) If Ee (NM: (peoa, By, doyey)), then Fe (NM: (a, B, 7)).
(ii)) If Ee (NMj: (¢oaoy, ¢oBey, doyeoy)) and al(t), B(1), (P=y¥)(7) =1,
then Fe (NM;: (o, B, 7v)).

Proof. Let S: F— E be y-tame and let 7: E — F be ¢-tame so that 7-5 =
idf.

(i) Let ®: (UC F)— G be an (a, B, y)-map. Then V = T~!(U) is a neigh-
borhood of zero in E. We define ¥: (V' C E)— G where ¥(x) = &(Tx) for
x€V. Then ¥'(x)v=®'(Tx)Tv for xeV and ve E, and M(x): G — E de-
fined by M(x)y = S(L(Tx)y) satisfies ¥'(x)M(x)y =y for xeV and yeG.
Hence ¥ is a (¢oa, Boy, poyey))-map and ¥(V') is a neighborhood of zero
in G. Since ®(U) D ¥(V), ®(U) is also a neighborhood of zero in G.

(ii) Let ®: (UC F)—F be an (o, 8,v)-map. Put V=T"YU) and ¥:
(V C E) > E where ¥(x) =S®(Tx)+x—STx for xeV. Then ¥'(x)v=
S®'(Tx)Tv+v—STv for xeV and ve E, and for M(x): E — E defined by
M(x)y = S(L(Tx)Ty) + (I — ST)y we have ¥'(x)M(x)y =y for xe V and
yeE. Visa(¢poaoy,dpefy, peyeoy)-map and ¥(V') is a neighborhood of
zero in E. Hence, for y € E with | |, < 6 there exists x € V' such that T¥(x)=
&(Tx) =Ty and so u =Txe U with &(u) =Ty. Since T is surjective, the
open mapping theorem implies that 7 is open; therefore the set 7{yeE:
|¥ls, = 8} is a neighborhood of zero in F. Hence ®(U) is a neighborhood of
zero in F. L]

Applying the standard inverse function theorems (2.2 and 2.12) yields the
following.

THEOREM 3.6. Let the graded Fréchet space (E, (|:|,):cs) satisfy property
(DN).

(i) If J=N then E e (NM: (n, n, n)).

(i) If J=Ng and E€ (S,), then E€ (NM: (n,n+1,n+1)).

(iii) Let a,B,v:J—J be monotonically increasing so that supa(J)=
sup J. Let (r,)y—o C J and noe N be chosen so that r,<r, .,/ sup J and
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(5) v(a(ry)) < alr,4+1) and B(a(r,)) < r,,+ for all n = ny.
If (E,|*|a(r,) € (Sqy) then it follows that (E,|-|,) € (NM: (a, B, 7).

Proof. (i) This follows from Theorem 2.12 after removing a finite number
of seminorms.

(ii) By means of Remark 3.2(v), we may assume that £e(DN) with p=1
in Definition 1.1. Let ® be an (n, n+1, n+1)-map with /,d, #; as in Defini-
tion 3.4. We choose a = /+d+1,+1 so that Ee (S, )). We then change the
gradings in E and F by removing the first a—1 seminorms. With respect to
the new gradings we obtain an (n, n+1, n+41)-map with/=d =1and ¢, = 0,
and E€(S(,)) holds by means of Remark 3.2(v). The assertion follows
from Theorem 2.2 and Remark 2.11.

(iii) Let ® be an («, 8, v)-map as in Definition 3.4. We choose a € N with

a(r,) = I and r, = d. With respect to the new gradings |- ||F =|-|5., and
I-1&=]-I7, ® is an (n,n+1,n+1)-map with /=d =a in Definition 3.4.
Now (ii) gives the result. O

For a given triplet («, 8, y) one must check whether there exist r, satisfying
(5) so that (E, || ) € (S()) for s, = a(r,). If « is strictly increasing then (5)
is equivalent to

(5)" Sp4+1= @(sp), n = ny, where ¢(¢) = max{(aB)(¢), y(#)}.
If supa(J) =supJ and o~ '(¢) :=sup{se J: a(s) < t}e J with a(a”(2)) < ¢
for all ¢ (this holds e.g. if /=N, or J=[0, [ and « is continuous), then
E e (NM: (id,, 8, v)) implies that E e (NM: («, a "', 7)) (consider on F the
grading |- |§—1( n)- In concrete cases it is obvious how r,, and s, = a(r,) should
be chosen. Table 1 contains some examples.

REMARK 3.7. Let J=|[0, o[, by, by, b3=0, and A, B, C=1. Put d =
max{b,+ b,, b3, 1} and D = max{AB, C}. Then the following choices of r,
and s,, = a(r,) satisfy (5).

Table 1
a(t) B (@) Ty Sy = a(ry)
t+b1 t+b2 t+b3 dn—b, dll
At Bt Ct (1/A)D" Dn
tA tB tC e(I/A)D" eD"

CoroLLARY 3.8. Let (E,|-|;) be a graded Fréchet space with property
(M) Let bl’ b2, b3ENO and A,B, C=1. Put d= maX{b1+b2, b3, 1} and
D =max{AB, C}.

(i) If J=Ng and (E,|-|4:) € (Sy), then
(E,|-]|n) € (NM: (n+ by, n+ by, n+ by)).
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(il) lfJ= [0, 00[ and (E, |° ID")E (S(l))a then
(E,|*|;) € (NM: (At, Bt, Ct)).

(iii) If J=[0,[ and (E,|:|.0") € (Sqy)), then
(E’ l. It) € (NM: (tA: tBa tC)).

(iv) If J=Nyand (E,|:|,) € (S)), then
(E’ l' In) € (NM: (n+ bla n+ b2a n+ b3))

(v) If J=Ngand (E,|+|,) €(S,), then
(E,|*|s) € (NM: (n+d, n+d, n+d)) forall d.

Proof. (i), (ii), and (iii) are clear by means of Theorem 3.6(iii) and Remark
3.7; (iv) and (v) follow from Remarks 3.2(iv) and (vii). O

If E€(S,) then the inverse function theorem holds for each («, 3, v)-map
¢: (U C E)— F, where a(n), 3(n), y(n) < n+b for some fixed b; this gives
for E e (S,) the Nash-Moser theorem under classical assumptions on @ (cf.
[2; 3]). If (E,|+|p~) € (Sqy)) for every D e N then the inverse function theo-
rem can be applied to each («, 3, v)-map ®: (U C E) — F, where a(n), 8(n),
v(n) < An+b for some fixed A, b. It is obvious how to obtain further cor-
responding results.

4. An Inverse Function Theorem for Kithe Spaces

In this section the conditions of type (S, 4)) introduced in Definition 3.1 are
evaluated for K6the sequence spaces A(a). In view of Lemma 3.3 we assume
that A?(e) admits a continuous norm |-|o. Let 0 < g; < a;, 4+ be a Kothe
matrix, and let 1 < g < oo,

THEOREM 4.1. Let a,deN and a = d. Then X%(a) € (S(4,ay) (resp. (S(4,a)))
holds if and only if the following is true. There exist p, p: N—]0,00[, > 1,
and b=a-+d, as well as a set ICN (resp. I ={n:n=a}) and c, > 0 and
vj =1 such that sup,¢;{p(n)—ap(n)} =+ and, for all j, the following
condition holds:

a; » 1/p(n) a; g 1/p(n)
sup c;‘(L) <+y; =< inf c,,( L. ) . (a, b)*
nelU{a) j,n—d n=b j,a

Proof. Let AX(a)e (S, q4)), where p,pu,a,b,1,c, are chosen as in Defini-
tion 3.1. Putting in the unit vectors we see that, for all j and 8 = 1, one of
the following two alternatives holds: Either a; , < 2¢,0°a; ,,_, for all ne
IU{a}, or a; ,<2c¢,07*"a; ,_, for all n = b.

Put

1/p(n) 1/u(n)

a; . 2¢c,a; ,_

vj= sup (——L-) and ;= inf (—"——’—-’-’—d) .
nelU{a}\ 2Cn @} n—d n=b @, q

Then, for each j and 6 = 1, either ;< 6 or y; = 6 holds. In particular this
implies that ; < 4+ and v; < »;. If, on the other hand, condition (a, b)* is
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fulfilled then we define Sy(x;) = (y;) putting y; = x; if v; < ¢ and y; = 0 other-
wise. Then (a) and (b) of Definition 3.1(i) are true. O

REMARK 4.2. For (a,b)* it is necessary that for b <nel and suitable

c;, > 0 we have
+ n

Putting v; = a; ,/a; ,_q4, We obtain the following sufficient condition for
(a, b)*.

LeMMA 4.3. Assume that for p, p: Ng—10,0[, b=a+d, and c,>0 we have

a;n a; , p(n)
—-’—’——-—sc,,(—f'—) , nelU{al; (a)*
j,n—d ,a—d

aj',j“‘") < c,,a}j(a"_’_daj,n_d, n=b. (b)*

Then condition (a, b)* holds for v; = a; ,/a; ,_4 (the constants c,, may have
changed).

REMARKS 4.4. (i) If AM(a) e (DN) with dominant norm |-|, (as in Defini-
tion 1.1) and if p < a—d, then (b)* holds with sup, {u(n)} = +oo.

(ii) Condition (a)* is not really a condition of (Q)-type. However, if
A(a) € () then for every p there is an @, such that, for all a = a, and d with
a—d = p, condition (a)* holds for suitable p(#n) and n = ay+d. This follows
since, by means of (), for each p there is a ¢ =: a, such that for everyn = g

there exist 7 and ¢ > 0 such that ca/%' = a/",a; ,; this implies

m
a; a; a;
LI /1L Sc( ”q) for n=d+q.
d,n-d  Yjq %,p

CoRrOLLARY 4.5. (i) If A%a) € (DN) with dominant norm |-|, and, in addi-
tion, c,,aj% n = @j n_1Qj 541 holds for suitable constants ¢, > 0, then it follows
that M(a) € (S(4, 4y) Sor all a = p+d. In particular, X(a) € (S,).

(ii) If AM(a) e (DN)N(R,) then it follows that X(a) € (S,).

Proof. Part (i) follows from Theorem 4.1, Lemma 4.3, and Remark 4.4(i);
here we may choose p(n) = 1. Part (ii) follows from (i) and Remark 3.2(ix)
since, by means of [9], the space A%(a) is tamely isomorphic to some Kothe
sequence space, which is an (2) space in standard form. O

We notice that instead of assuming property (2) in standard form in Corol-
lary 4.5(i) it is enough to assume that condition (a)* holds for some bounded
p. For that is suffices to suppose that there are ¢ and A4 with a; ,/a; ,_; <
c,,(aj,a/aj,o)”. For A(a) e (DN)N(Q,) and their tame direct summands, the
inverse function theorem holds under classical assumptions on the map-
pings by means of Corollary 3.8(v) (cf. Remark 3.2(ix) and Lemma 3.5).
It is remarkable that in this case condition (DN) is only needed in its topo-
logical form.
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Next we evaluate the conditions of type (S, 4)) for power series spaces.
Let0<op=<a;=<---7+oand ro<r < --”Rel0,], and put A%(a)=
A(a) with a; , = e"*%/. We need only consider power series spaces of infinite
type, as follows.

THEOREM 4.6. For deN and A = A% (), the following are equivalent:

(i) Ae (S, qy) for some a=d,;
(i) Ae (S, ay) forall a=d,;
(iii) A€ (S) or Ae(S) or both;
(iv) R =oo, and thereis 0 <A< 2 such that r,/r,_,< A <2 for infinitely
many n; and
(V) R =0, and there is u > 5 such that sup,{r,_ —ur,} = +o.

Proof. The directions (ii) = (iii) = (i) and (iv) & (v) are clear. We prove
the implications (i) = (iv) and (iv) = (ii). If (i) holds then Theorem 4.1
implies that

1 . 1
sup expjo(r, —r,—q) —C } <+v;=<inf exp[a-(r —d—I)——+c¢ },
nel { s " p(n) " / n=b S 4 nn "

where sup, ¢/ u(n) —ap(n)} = +ooand o > 1. For b < n e I we conclude that
rn_rn—d_&_sln'}'jsrn—d_ra &
p(n) a Q p(n) Qj
Since n can be chosen independently on the left- and on the right-hand side,
respectively, we obtain for j — o that sup, r,, = +oo. Further,

Yn—rh—a < p(n) <l
Tn—a—t;,  p(n) o

holds for infinitely many »; hence

I'n Ty

1
rn—d—Ta & Iy_gq—I

and r,, — +oo gives (iv).
If (iv) holds and a = d then we put p(n) =r,—r,_gand pu(n) =r,_4—ry,
and choose o > 1 so that A < 14 1/«. For infinitely many n we then obtain

pwn)—apn)=r,_s(1+a)—ar,—r, = r_s1+a—alr)—r,— +co.
Then, putting v; = e, (ii) follows from Theorem 4.1. O

COROLLARY 4.7. AL(a) e (S,) holds if and only if

I'n

lim inf <2 forall deN.

n I'm—a

ExaMPLEs 4.8. (i) For r, = A", A>1, we have A%(a) e (S,)) if and only
if A9< 2.
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(ii) If lim,,(r,,,/r,) =1 then AZ(x) € (S,).
(iii) Let ¢, p: Ny — Ny be monotonically increasing, where

p(ny<p(n+1)=¢(p(n)) and ry,,/r,=A<2
for all n. Then (AL(a), |-, )€ (Squy-

u(n)

Applying Corollary 3.8, we also obtain the full result of Lojasiewicz and
Zehnder [5].

COROLLARY 4.9.

(1) Let rpy = k. Then A (o) e (NM: (An+ b, Bn+ b, Cn+ b)) holds for all
b=0and A,B,C=1if D=max{AB, C}<2. (In[5], the case B=C, AB<?2
is stated.)

(ii) Let o, ¢: Ng— N be increasing, and let 1 < ryy/r, <A <2 for all n.
Then (A%(a),|+|, )€ (NM: (id, ¢, ¢)) and hence also € (NM: (o, @' ¢, ¢)).

Proof. Part (i) follows from Example 4.8(i) with Corollary 3.8(ii). To show
part (ii), we put s, = 0 and s, ; = ¢(s,). By means of Theorem 4.6 we have
(AL (a), |- |,s )e (S“,), and Theorem 3.6 gives the assertion. O

In Lemma 3.3 we proved that conditions () and (DN) are necessary for
property (§(1)). We now consider Kéthe spaces satisfying both properties (2)
and (DN) and look for sufficient conditions for properties of type (S, a))-
For that, the quantitative variants (DN, 4)) and (Q,, ) introduced in [9]
are useful (cf. Section 1).

Let & be defined as in Section 1, and let ¢! (k) := max{/: (/) < k}, €.
Then

ol k) <P (k) =k = (PKk) < d(k), deT.

We assume that the space A(@) has properties (DN, ) and (Q, ) for
¢, ¥, 0, 7€ F (motivated by Remark 1.3(ii) and Lemma 3.3). This means that
there exist by = 0 and c,,, > 0 such that:

m—I - m—y{(n)_Y(n)—1 : .
a4 S gy 9 gim) for all j and by <! < ¢¥(n) <m; and (*)
aZli=oh = ¢ lgo(m = "a*? for all j and by < o(/)<n<o(m).  (**)

Our goal is to establish the conditions (a)* and (b)* of Lemma 4.3 for suit-
able p(n), p(n) and then to state assumptions on ¢, ¥, g, 7 so that also con-
dition (c) of Definition 3.1(i) holds.

For that we fix a=d > 1. With I = ¢ (a—d) and m = ¢ Y(n—d), from
(*) for by < ¢ Ha—d) < Y(a) < ¢ {(n—d) we obtain the estimate

¢ Y(n—d)—¢ Y a—-d) ¢ N n—d)—y¥(a)  ¥(a)—¢ '(a— d).
a = a_/ a—d aj n—d

Hence for p(n) = (¢ Y(n —d) — Y(a))/(¥(a) — ¢ (@ — d)) we have the in-
equalities

alt* W < c,at® a; gy bosodNa—d)<yY(a)<dN(n—d). (b)*
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In order to derive condition (a)* of Lemma 4.3, we discuss two different
possibilities; the first one is simpler while the second one yields better results
if for instance (DN, ) holds.

We first use the decomposition a;, ,/a; ,_q = (a; ,/a; )@} ./} ,_q4) and
the estimates

. *% . ¥(n) * . u(n)
(i) a”"(s)c,,( G.a ) and (ii) _Ya_ (s)c,,(-?—’—’ﬂ) .
4, a 4,a~d A, n—d
Condition (a)* follows for p(n)=+vy(n)—u(n). For I=a—d and m =n,
from (**) we derive

qfm—ola—d) —lg0(n)— —r Y@, 7" Y(a)—o(a— d)
_;a = Cp Ja—d ajn

bo < o(a—d) < 77 (a) < a(n).

For by < a(a—d) < 7~'(a) and n > a we obtain (i) with
a(n)—77Y(a)

r~Ya)—o(a—d)’

In a second attempt we use the estimates

. @i, O a; o (x#) a n\°
(l) S n SC‘",k( J,n+k) , (1) J‘In+k ___cn’k( J.)n) ,

Qj,n—d Qj,n j,n Qj,a

e @ g (4%) a; L
(iii) 2L <, —2%).
a; "\ a;

J,a J,a—d

This condition implies (a)* for p(n) = a8y, where £k must be chosen later.
(iii) holds for y = y(n).

(i) For I = ¢ Y(n—d) and m = ¢ "}(n+k), () implies that

-1 -1 -1 -1
gt nrH=T=d) < ¢ b R =Y ) b2 9N =)

for all by< ¢ (n—d)<y(n) <o (n+k). This gives (i) for a=
(Y(n)—o Y (n—d)/ (¢~ (n+k)—¥(n)).
(ii) By means of (**), for / = @ and m = n+ k we have the estimate

(n+k)—a(a) a(n+k) V), 7 Hn)—ala)
ajon >c k a] n+k

v(n) =

for by<o(a) <7 (n), k= 1. ThlS gives (ii) with
o(n+k)—771(n)
77(n)—o(a)

LeEMMA 4.10. Let A(a)e (DN y)) N (R, ) With ¢,¢,0,7€F. Let a=
d = 1 with ¢ (a—d) = by and 7~'(a) > o(a—d). Then, for every n > a with
¢ Y (n—d) > max(b,, y(a)} and 77" (n) > o(a), conditions (a)* and (b)* of
Lemma 4.3 hold where

¢ (n—d)—y(a) a(n)—7""(a)

@ —ea—a) M P = Toa—a)

B =

—p(n).

p(n) =
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This holds also for k =1 and ¢ \(n+k) > y(n) if

(n) = o(n+k)—77'(n) o(n)—77"(a) Y(n)—¢~'(n—d)
P = T+ k) —v(n) 7 — (@) 7-Na)—o(a—d)

In Lemma 4.10 we have lim, u(n) = +o for each @ and d. Hence, for condi-
tion (c) of Definition 3.1(i) it is sufficient that p(n)/u(n) < 6 <1 for infinitely
many A.

CoroLLARY 4.11. Let A(a) € (DN y)) N (Q(,.s)) With ¢,¥,0,7€F. Let
a=>d=1with¢ (a—d)= by and r=V(a) > o(a—d). Assume that either (i)
or (ii) holds:
a(n)—7"a) Y(a)—¢ '(a—d)
¢~ (n—d)—y(a) 77(a)—o(a—d)
(ii) There is 0 < 8 <1 such that for all ny there exist n = ny and kK = 1 with
o(n+k)—7"Y(n) a(n)—7""(a)
¢~ (n+k)—y(n) 771 (n)—o(a)
Y(m)—o N (n—d) Y(a)— ¢~ (a—d)
¢~ n—d)—y(a) 77(a)—o(a—d)
In both cases it follows that X(a) e (S(4, 4))-

(i) < A< 2 for infinitely many n.

<é<l, ¢ Y n+k)>y(n).

From Corollary 4.11 we can obtain conditions behaving in a stable fashion
with respect to certain isomorphisms; this is an advantage when compared
to the easier but more unstable conditions stated in Corollary 4.5.

In order to evaluate Corollary 4.11, we assume that A7(a) e (DN, )N
(2(.q)) With ¢, ¥, 0, 7€ F. We fix a=d =1 with ¢ '(a—d) = by and 7~1(a) >
o(a—d). We are looking for sufficient conditions for A%(a) e (S, 4)), and
consider several cases.

Case I: Let ¢(n) < n+b; and Y (n) < n+ b,. In view of Corollary 4.11(ii)
it is enough to have
. o(n+ky—1"Yn) o(n) d+b,+b,

hmnlnf k—'bl"—bz ‘r‘l(n) n—d—bl—yb(a) -

where k = k(n) and ¢ " Y(n+k) > y(n).

(@) If o(n) < An then limsup,((o(n + k) — 77 (n))/(k—b,— by)) < A
holds for fixed n, and moreover lim sup, (a(n)/(n—d—b,—y(a))) <
A. Hence the assertion follows for arbitrary 7.

(b) In the general case we choose &k = n > b;+ b, and obtain the sufficient
condition

liminf 2200 _
n 7Y (n)n?
If o(n) < An® and 7(n) < Bn® with «, 8 = 1, then this holds if a <
1+1/28.
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Case II: Let ¢(n)<An+b, Yy(n)<Bn+b, o(n)<Cn+b, and 7(n)<
Dn+ b with A, B, C, D = 1. We want to apply Corollary 4.11(ii). For a fixed
n we have

1
lim sup o(n+k)—7""(n) -

< AC,
k9 Un+k)—y(n)

and moreover

lim su o(n)—717"Ya) y(n)—¢ Y (n—d)
n D T l(n)—o(a) ¢ n—d)—y(a)

From this we obtain the sufficient condition

s~ Ba+b—(1/A)(a—b—d—A)
(AB= A D Dy a—b-D)—Cla—a)—b ~ -

In all of the above situations we have established that A%(a) € (S(,, 4)) for
a=d=1if ¢ (a—d)= by and 77 (a) > o(a—d). We next vary a and d as
well and look for sufficient conditions for A(a) e (S,). First we notice that
for all ag, b, there exist @ = d = a, such that ¢ Y(a—d) = b, and 77!(a)>
o(a—d). This follows since there are p = ay with ¢ ~!(p) = by and g = p+a,
with 771(g) > o(p), and we can put a = q and d = g— p. We further notice
the following: If for any a, there are @ = d = a, such that E€ (S(,, 4)), then
E e (S,) (cf. Remark 3.2(iii)).

In Case II we can choose for @, numbers a@ = d = a, so that ¢ (a—d) =
bo and 77 !(a) > o(a—d). For fixed p = a—d we have

L Ba+b—(V/ANp=b—A)
U /DY (a—b—D)—Cp—b

In Case II we hence obtain the sufficient condition (4B—1)ABC*D? < 1.
We next consider condition (i) of Corollary 4.11. For d € N we put

o(n) o Y(n)
3 n—d) and Y_hmnmfr"‘l(n)'

If X;Y <2 for allde N then A(a) € (S,)). If ¢, ¥, 0, 7 are chosen as in Case Il
then we obtain the sufficient condition ABCD < 2.

=< (AB-1)CD.

< BD.

X, = liminf
n

Altogether we have proved that A?(a) € (S,) holds in all the cases listed in
Theorem 4.12. This implies that the Nash-Moser theorem holds for E=
A?(a) under classical assumptions on the map ® (cf. Corollary 3.8(v)). It
seems remarkable that the conditions below are in general not tamely in-
variant. In particular, the conditions (DN)N(Q,) or (DN,)N(£,) are suffi-
cient for A%(a) € (S,). For properties (DN, ,,) and (2, ,) see also Remarks
1.3(i) and (iv).

THEOREM 4.12. Let ¢,y,0,7€F and A(a)e (DN, ) N(Q.s), and let
A,B,C,D,a,B=1 and beN,. Assume there exists an ny such that ¢(n),
Vv(n), o(n), 7(n) are for n=ny less than or equal to the terms listed in Table 2,
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Table 2

o(n)y<s Y(n)=s on)<s r(n)=< Condition

(i) o(n) v(n) n+b n+b —
(ii) n+b n+b An+b 1(n) —
o(2n)a(n) _

(iii) n+b n+b o(n) 7(n) llrrhmf Tt 0

(ivyv n+b n+b  An¢ Bnf l<a<1+1/28

(v An+b Bn+b Cn+b Dn+b ABCD<?2

(viy An+b Bn+b Cn+b Dn+b (AB—1)ABC?*D?*< 1

wii) (n)  ym  on) 7y vd:liminf —2" liminf 2o

n qb“(n——d) n T_l(n)

and that the stated condition holds. Then it follows in each of the seven cases
listed that X(a) € (S,).
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