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1. Introduction

The Extremal Problem on the Unit Disk

Let D denote the unit disk and o a finite set of four or more points on 30D.
Then the Banach space Q, of all functions ¢, holomorphic in C\g, for which
©(2) dz? is real along dD\¢ and for which the L,-norm

lell= | leldrdy <<,

has positive dimension. Let the homotopy types v; of cross-cuts in D\o be
given. By reflection across the boundary of @ (z ~ (z)™!), the cross-cuts Yj
become closed curves g; on the Riemann sphere. We assume that the family
of these closed curves on C\o is admissible in the following sense:

(i) the curves g; are nonintersecting Jordan curves;
(ii) no two of the closed curves g; is homotopic in C\o; and
(iii) none of the curves g; is homotopically trivial or homotopic to a single
point of .

The system of cross-cuts v; is called admissible if the corresponding re-
flected system of closed Jordan curves g; is admissible. The Banach space
Q, is a real subspace of the complex vector space of holomorphic, qua-
dratic differentials with finite norm on the Riemann surface C\o. Since there
is a global parameter z for the Riemann surface D, identifying ¢(z) with
©(2) dz? provides an isomorphism between functions and quadratic differ-
entials. Using this identification, we will refer to elements of Q, as quadratic
differentials.

Any quadratic differential on a Riemann surface S induces a vector of
heights of homotopy classes of simple, closed curves on S. The height of a
closed curve # is the infimum of the integrals

f |Im(p(z)"? dz)|,
¥
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where ¥ is any closed curve homotopic to . The conformal structure of the
Riemann surface S together with this vector of heights determines the holo-
morphic quadratic differential [HM; G; MS]. Quadratic differentials in O,
extend to Jenkins-Strebel differentials on C\o. This is because any noncriti-
cal, horizontal arc « along which ¢(c(#))a’(¢)? > 0 and which is a cross-cut
of D reflects to a closed, horizontal trajectory & on [D. To say that elements ¢
of Q, are Jenkins-Strebel differentials means that the families of homotopic
noncritical, horizontal trajectories of ¢ together with the critical trajectories
partition D into strips bounded by the critical trajectories. On C, the strips
joined with their reflections under j, where j(z) = ()}, become annuli. The
critical trajectories are those that meet zeros or poles of ¢. Each of the strips
determines the homotopy class of a cross-cut v;. Each strip has a height b;,
which is the vertical distance, measured in the metric |Im(¢''?(z) dz)|, be-
tween the horizontal boundary components of the strip. It is known [St]
that for Jenkins-Strebel differentials these heights b; determine the heights
of all simple, closed curves on the surface C\o. Conversely, the vector of
heights of all simple, closed curves determines the numbers b;. When we
refer to the heights of a quadratic differential, we usually mean the vector of
heights of all homotopy classes of simple, closed curves. However, in the
special case of a Jenkins-Strebel differential, by the heights of ¢ we will
sometimes mean the heights of the Jenkins-Strebel annuli for ¢.

Figure 2 (at the end of this article) illustrates the horizontal trajectory struc-
ture of a quadratic differential in Q,, where o consists of six points on d.
The disk is partitioned into three strip domains together with the critical tra-
jectories of ¢, which consist of three prongs emanating from the zero of ¢.

To state our extremal problem, we take as given the finite set ¢ on the
boundary of [ and also the quadratic differential ¢ in Q,; ¢ determines an
admissible family of cross-cuts v; together with heights b;. In addition, we
also assume there is given a compact subset £ of [ with finitely many com-
ponents, each of which is simply connected. Let & be the family of all uni-
valent mappings f from D\ E into D such that f(dD) = 4. Although map-
pings f in § are not defined on all of [, each f induces a homotopy type
S(v;) in D\ f(o). This is because, given any cross-cut v, we can select a
homotopic cross-cut 4; that lies in D\ E.

Given such an f and an admissible system of cross-cuts vy; on [D\o, we
obtain an admissible system f(y;) on D\ f(¢). Together with the positive
numbers b, this system determines a Jenkins-Strebel quadratic differential
¢r 1 Q).

In this article, we pose the problem of maximizing ||¢,| by varying f in &.
We show that the maximum exists and is realized by a uniquely determined
pair (fp, o). If we let f(E) be the set D\ f(D\E), then fo(E) consists of
horizontal “slits” for the quadratic differential ¢,. Generically, these slits
consist of arcs of horizontal trajectories of ¢,. In exceptional cases, some
components of f(£) may run through a zero of ¢(. Such a situation is de-
picted in Figure 2.
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The Extremal Problem on a Surface of
Finite Topological Type

Since our extremal problem involves considering the varying Riemann sur-
faces €\ f(o) as moving through the Teichmiiller space of C\g, it is natural
to reformulate the problem in the terms of Teichmiiller theory. Accordingly.
let S be a Riemann surface obtained from a compact Riemann surface by
deleting finitely many holes and punctures. Such a surface is said to have
finite topological type. If S has no holes, we say it has finite analytic type.
If S has some holes, it can be realized as half of a doubled surface S? with an
anticonformal involution j such that S¢ =S Uborder(S)U_(S). The border
of S is thereby realized as a finite set of simple, closed analytic curves in S9.

The Teichmiiller space, Teich(S), consists of equivalence classes of quasi-
conformal mappings g from S into a variable Riemann surface S,. Two
mappings goand g;, mapping S into Sy and S; (respectively), are equivalent
if there is a conformal mapping ¢ from S, onto Sy and a homotopy s, map-
ping S to Sy such that Ay = g¢ and A; = c- g, and if, for every point p in any
component of the boundary of S, sg!eh,(p) is in the same component. This
Teichmiiller space is called a reduced Teichmiiller space because, for p in
the border of S, we permit p to differ from hg'eh,(p) as long as it remains
in the same component of the boundary. It follows that g; and g, represent
the same element of Teich(S) if there is a conformal map ¢ from S, to S,
such that gjloceog, preserves the free homotopy classes of a set of curves
that mark a basis for the fundamental group of S.

Let ¢ = ¢(2)dz? be a holomorphic quadratic differential on S of finite
norm with the property that ¢(z) dz? is real-valued on the border of S. From
the heights mapping theorem [HM; MS; G; GM] we know there is a corre-
sponding holomorphic quadratic differential ¢ on Sy whose heights on Sy
are equal to the corresponding heights of ¢ on S.

Let E be a closed subset of S and let § be the family of pairs (f, Sy), where
f is holomorphic and univalent on S\ £ and maps to the variable Riemann
surface Sy. We assume that every component of E is simply connected and
that the function f induces an isomorphism from the fundamental group
of S onto the fundamental group of Sy. This last assumption ensures that
every element (f, Sy) of & determines a point in Teich(S), even though f is
defined only on S\ E.

For (f, Sy) in &, define f(E) to be S\ f(S\E) and let

Mf=||¢f||=ff |zl
Sy
Consider the extremal problem

M =sup{M;: (f, S;) € F). (1)

The following “slit mapping theorem” provides the solution to this extremal
problem.
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THEOREM 1 (Existence). Suppose S is a Riemann surface of finite topolog-
ical type, and that ¢ is a holomorphic quadratic differential on S for which
©(2) dz? is real-valued on the border of S. Let E be a closed subset of the in-
terior of S. Suppose also that E has finitely many components each of which
is simply connected. Then there exists a point 1€ Teich(S) represented by
an element (f, Sy) of & such that My realizes the supremum in (1). For this
point 1, the mapping f: S\E — S; has the property that each component
of f(E) is an arc of a horizontal trajectory of ¢y or a connected union of
arcs of horizontal trajectories and critical points of ¢y.

We also have a uniqueness result.

THEOREM 2 (Uniqueness). With all the same hypotheses as in Theorem I,
the point in Teich(S) represented by (f, Sy) is uniquely determined. In par-
ticular, if (g, S;) is another element of the family § and if the components
of g(E) are each contained in horizontal arcs of ¢, or in finite unions of
horizontal arcs of ¢, and critical points of ¢,, then h = g- f ~! extends to a
conformal mapping from Sy onto S; and qog(h(z))h’(z.')2 = @r.

2. Smoothing the Contours

In the classical slit mapping theorem for a finitely connected plane domain
Q = C\E, one first simplifies the problem of finding a slit mapping by assum-
ing that each component of the obstacle set £ has an analytic boundary
curve. This harmless assumption is justified by several preliminary applica-
tions of the Riemann mapping theorem. If £ = E,UE,U..-UE,, one first
uses the Riemann mapping theorem to map the complement of E; to the
complement of the unit disk. By this step, @ is changed to a conformally
equivalent domain where the component of the complement corresponding
to the E; is bounded by a closed analytic curve, so that one may as well
assume from the beginning that £, has this form. One can apply the Rie-
mann mapping theorem n times in succession to obtain a domain conformal
to @ such that every component of the complement is bounded by an analytic
curve,

In order to achieve this type of simplification in our setting, we need a
canonical way to embed S\ E by a mapping ¢ into a Riemann surface S’ of
finite analytic type so that S’\«(S\ E) consists of disks with analytic bound-
ary curves. The infinite Nielsen extension provides one way to realize such
an embedding. Since we do not need the details of the construction, we refer to
[B2] for the definition of Nielsen extension. We let Sy be the infinite Nielsen
extension of S\ E that attaches to S\ E a punctured disk corresponding to
each component of E. We then let S’ be the union of Sy together with these
n punctures. There is an injection ¢« of S\ E into S’. The mapping ¢« embeds
S\ E into S’ in such a way that . induces an isomorphism from the funda-
mental group of S onto the fundamental group of S”. The set E’=S'\t(S\FE)
is a new obstacle set whose boundary is made up of »n analytic curves.
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To the holomorphic quadratic differential ¢ on S with finite norm there
corresponds the measured foliation |dv| = |Im(¢'/? dz)| on S. Since ¢ induces
an isomorphism of fundamental groups, there is a corresponding measured
foliation |dv’| on S’ with the same corresponding heights that |dv| has on S;
by the theorem of Hubbard and Masur [HM], there is a quadratic differen-
tial ¢’ on S’ with the same corresponding heights.

Let G be the family of pairs (g, S;), where g is holomorphic and univalent
on S'\E’ and maps to a variable Riemann surface S,. The mapping ¢ from
S\ E to S’\ E’induces an isomorphism from the family & to the family G de-
fined by the formula

froge
Moreover, any extremal configuration for the family & and the quadratic

differential ¢ on S is also an extremal configuration for the family G and the
quadratic differential ¢’ on S’. We have verified the following result.

ProrosiTION 1.  In proving Theorem 1, it suffices to consider obstacle sets
E whose components are bounded by closed analytic curves.

3. Boundedness of the Norm

The objective in this section is to show that for a fixed Riemann surface S of
finite analytic type, for a fixed compact set E that is a union of simply con-
nected components contained in S, and for a fixed quadratic differential ¢
of finite norm on §, the set of numbers My = |¢/||, where (f, Sy) is in &, is
bounded.

We begin with two lemmas. The first gives a lower bound on the widths of
a finite set of curves measured with respect to all quadratic differentials with
norm equal to 1. The second gives an upper bound on the Teichmiiller dis-
tance in terms of the distortion of extremal lengths of this finite set of curves.
We are indebted to Howard Masur for these observations; they appear in
abbreviated form in [GM].

For a simple, closed curve 8 on S and a quadratic differential ¢(z) dz2 on
S, we define the width of 8 with respect to ¢ to be

width,(8) = inf[ f_IRe(cp(z)l/z dz)l},
B
where the infimum is taken over all curves 3 freely homotopic in S to 3.

LemMma 1. Let S be a Riemann surface of finite analytic type. Then there is
a finite set of simple, closed curves 3; on S and a positive number c such
that, for all holomorphic quadratic differentials ¢ with [[s|¢|dxdy =1, for
at least one of the curves 3; we have

width,,(8)) = c.

Proof. In the set {8, ..., By} we include the partitioning curves in some
pants decomposition of S. We also include pairs of curves crossing each par-
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titioning curve, the first obtained from the second by a Dehn twist about the
partitioning curve which they cross. The set of curves has the property that
if width(8;) =0 for every j with 0 < j < N then ¢ is identically equal to
zero. This is because these widths are the heights of the measured foliation
determined by the measure |Re(¢'/?)| and, if the heights on this finite set of
curves are all equal to zero, then the measure class of the measured foliation
is equal to zero.

Suppose the constant ¢ does not exist. Then there is a sequence of qua-
dratic differentials ¢,,, all of norm 1 and converging to a quadratic differen-
tial ¢y of norm 1, such that all of the widths with respect to ¢, of all of the
curves (3; converge to zero. Since the width,, (8;) converges to width,, (8)),
¢p is a quadratic differential of norm 1 that has zero width along each curve
B;. This is a contradiction. O

For a simple, closed curve 8 on the Riemann surface S, let A(83, S) denote
the extremal length of the family of all curves on S that are freely homotopic
to 3. Let (g, S,) be a point in Teich(S) and let K(g) be the dilatation of the
unique extremal quasiconformal mapping from S to S, that is homotopic
to g. From Teichmiiller’s theorem, we know that if g is the extremal map-
ping in its homotopy class then the Beltrami coefficient g;/g, has the form
k|o|/¢, where 0 < k <1 and ||¢|| = 1. Moreover, k is uniquely determined,
and if 0 < k < 1 then ¢ is uniquely determined. Corresponding to ¢ of norm
1 on S there is a terminal differential  of norm 1 on S, such that the extremal
mapping g takes the horizontal and vertical trajectories of ¢ onto the hori-
zontal and vertical trajectories of @, expanding in the horizontal direction
by the factor of K}/? and contracting in the vertical direction by the factor
of K12

Since extremal length is a supremum over all choices of conformal met-
rics on a Riemann surface, normalized to have total mass 1, of squares of
infima of lengths of curves in the same homotopy class, we have the follow-
ing string of inequalities:

2 2

A(g(ﬁj),sg)z( | |¢|"2) z( | |Re(¢"2dz)l)
8(8y) 8(8;)

2

=K0( |Re(<p‘/2dz)|),
B;

where we choose §; suitably in its homotopy class. By choosing the appro-
priate curve 3;, we find that

KO = C—ZA(g(Bj)’ Sg)s

which we summarize in the following lemma.

LEMMA 2. There exist a positive constant ¢ and a finite set of simple, closed
curves 3; on S such that, for all points (g, S,) in Teich(S),
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Ko(g) < — sup (A(g(8),S,).
C” 1<j<N

The preceding lemmas enable us to prove the main result of this section,
which gives a bound for the supremum in (1).

THEOREM 3. Assume S is a Riemann surface of finite analytic type, and lei
E be a compact subset of S that is a union of simply connected components.
Let ¢ be a quadratic differential of finite norm on S and let (f, Sy) be an
element of the family &, where f is a univalent holomorphic mapping from
S—E into Syinducing an isomorphism of the fundamental group of S onto
the fundamental group of Sy. Let My be the norm of the unique holomor-
phic quadratic differential on Sy whose heights are equal to the correspond-
ing heights of ¢ on S. Then the set of numbers My, for all (f,Sy) in &, is
bounded.

Proof. Note that although f is not defined on E, f determines a homotopy
class of mappings from S to Sy because the components of E are simply con-
nected. From the basic inequality for extremal length [G], we know that
M; < Ky| ¢|l, where Kj is the norm of the extremal quasiconformal mapping
g from S to S in the same homotopy class as f. On the other hand, if we
pick 8; representing homotopy classes so that the §8; lie in S — E, then

Ko(@) <— sup (A(S(B), S.
C% 1<j=N

But
A(S(B)), Sp) = A(f(B)), SN\ SF(E)) = A(B;, S\E).

Since each of these numbers is finite and there are a finite number of indices
1 = j < N, we obtain the desired bound. C

The conclusion of this theorem remains valid with the following alterations
in the hypotheses. S need only be a Riemann surface of finite topological
type and ¢ a quadratic differential of finite norm with the property that
¢(2) dz? is real-valued on the border of S. Elements (f, Sy) of the family §
consist of a univalent, holomorphic mapping f from S\ E into a variable
Riemann surface S;. The mappings f have the further property that they
map the border of S to the border of S;. Under these hypotheses, the map-
pings f automatically extend to mappings between subsurfaces of the dou-
bled Riemann surfaces S¢ and Sfd. The quadratic differentials ¢ and ¢ also
extend to these doubled surfaces. Any quadratic differential on S¢ with finite
norm that is symmetric with respect to the anticonformal involution j is de-
termined by its height on S. Moreover, S? and Sff are surfaces of finite ana-
lytic type. We obtain the following generalization of Theorem 3.

THEOREM 4. Assume S is a Riemann surface of finite topological type, and
let E be a compact subset of the interior of S that is a union of simply con-
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nected components. Let ¢ be a quadratic differential of finite norm on S for
which ¢(z) dz? is real-valued on the border of S. Let (f, Sy) be an element
of the family &, where f is a univalent holomorphic mapping from S\ E into
Sy inducing an isomorphism of the fundamental group of S onto the funda-
mental group of Sy. Moreover, assume f maps the border of S to the border
of Sy. Let My be the norm of the unique holomorphic quadratic differential
on Sy whose heights are equal to the corresponding heights of ¢ on S. Then
the set of numbers My, for all (f,Sy) in &, is bounded.

4. A Variational Lemma

A point in Teich(S) is represented by a pair (g, S;), where g is a quasicon-
formal mapping from S onto a variable Riemann surface S,. The pair (g, S,)
determines a Beltrami coefficient u on S given by the formula

p(z) = g:(2)/g,(2).

The Beltrami coefficient u determines g up to postcomposition by a confor-
mal mapping. Therefore, u determines the point in Teichmiiller space repre-
sented by (g, S,), and we may speak equivalently either of the Teichmiiller
class of (g, S;) or of the Teichmiiller class of p.

A quadratic differential ¢ on S and an element of Teich(S) represented by
a pair (g, S;) determines uniquely, by the heights mapping principle, a qua-
dratic differential ¢, on S,. The height of any closed curve vy on S measured
with respect to |Im(<,o" 2(z) dz)| is equal to the height of g(y) on S, measured
with respect to |Im(gaél,/ 2(2) dz|.

The following formula for the variation of M, =||¢,| is given in [G, p.
217]:

logMg=logM+2Re"—i;ﬂff pe dxdy+o([|p|w)-
s

5. Tangent Curves to Teichmiiller Space

The tangent space to Teichmiiller space can be realized as a factor space
of the tangent space at the origin to the open unit ball of Beltrami coeffi-
cients in L. In this section we give a variational lemma that is a necessary
and sufficient condition for a Beltrami differential to be a tangent vector to
a curve of trivial Beltrami coefficients. This lemma, although not always
prominently exhibited, is the building block for most of the existence theo-
rems of Teichmiiller theory [Al; Bl; R; G].

We will apply the lemma to the reduced Teichmiiller space of the Riemann
surface R = S\ E, where E is a finite union of simply connected components
each of which is bounded by an analytic curve. We let Q(R) be the finite-
dimensional normed space of holomorphic quadratic differentials  on R
for which
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Ii= f f V()| drdy < oo

and for which y(z) dz? is real on the boundary of R. Q(R) is the space of
finite-norm holomorphic quadratic differentials on the double R of R which
are invariant under the natural anticonformal involution j such that RY =
RUborder(R)U j(R).

A Beltrami differential u on R is called infinitesimally trivial if

([ )

for all ¢ in Q(R). A curve of Beltrami coefficients u, = f7/f} is called trivial
if the pair (f', f'(R)) represents the trivial element of the reduced Teich-
miiller space Teich(R) for each ¢, where the trivial element of Teich(R) is the
one represented by the identity mapping from R to R.

The variational lemma can now be stated.

LeEMMA 3. There exists a curve of trivial Beltrami coefficients p, tangent
to v if and only if
Re(ff ml/dxdy) =0
R
Jor all y in Q(R).

REMARK. The statement that u, is tangent to » is taken to mean that
| (2) = tv(2)||l/t >0 as t—0.
A proof of Lemma 3 can be found in [G, Thm. 6, p. 107].

6. Schiffer and Beltrami Variations

In this section we show how certain Beltrami variations are equivalent to
Schiffer variations. A Schiffer variation is obtained by attaching a disk along
a slit. The equivalence will mean that existence of the Beltrami variation im-
plies the existence of the Schiffer variation. On the other hand, the Schiffer
variation yields a curve of mappings univalent in the complement of the ob-
stacle set. Thus, if one is given a conformal invariant for a plane domain or a
domain contained in a Riemann surface, and if one can show that the tangent
vector to Beltrami variation paired with the cotangent vector for the con-
formal invariant gives a positive value, then one can conclude the existence
of a curve of mappings holomorphic and univalent in the complement of the
obstacle set along which the value of the conformal invariant is increased.
Before describing these two types of variation of conformal structure, we
prove a preliminary lemma concerning a way of introducing a new confor-
mal structure on a given Riemann surface S. Assume that W is a quasidisk
contained in the interior of S, and that we are given an orientation-preserving
quasisymmetric mapping s, from the boundary of W to the boundary of a



582 RicHARD FEHLMANN & FREDERICK P. GARDINER

quasidisk W, contained in the w-plane. We form the Riemann surface S, by
deleting W from S and sewing, in its placp, the quasidisk W, according to
the boundary correspondence given by A,. Formally, this means that S, is
the disjoint union of S\W and W, factored by the equivalence defined by
letting a point p in the boundary of W be identified with the point Ay( p) in
the boundary of W,,.

We define f: S — Sy by letting f, be the identity on the complement of W
and letting f;, be equal to any quasiconformal extension of 4, mapping the
interior of W to the interior of W,. Since W is simply connected, the ho-
motopy class of f; is determined independently of which extension is taken.
If we declare that a chart for S, is any local homeomorphism of the form
z°f5 !, where z is an arbitrary chart for S, then S, becomes a Riemann sur-
face which we will think of as a variation of S.

Starting with the same Riemann surface S, the same quasidisk W, and
another quasisymmetric mapping /; from the boundary of W to the bound-
ary of another quasidisk W}, we construct similarly the mapping f;: S — §;.
The following lemma states that the variation of the Riemann surface of S
created by this recipe depends essentially on only the quasisymmetric map-
ping on the boundary of the quasidisk #, not on which particular quasicon-
formal extension is chosen in the interior of this quasidisk.

LEMMA 4. If there exists a conformal mapping c from W, onto Wy such
that hi'scohy is the identity on the boundary of W, then (fy, So) and (f1, S1)
represent the same point in Teich(S).

Proof. We must find a conformal mapping C from S; onto S, such that
fole Cof, is homotopic to the identity by a homotopy that fixes the ideal
boundary points of S. We let C be the identity on the complement of W and
be equal to ¢ on W,. This is continuous on all of S; and also conformal be-
cause quasicircles are removable for conformal maps. The homotopy con-
dition is satisfied because f; o C+f; is equal to the identity in the comple-
ment of V. O

We now describe what is called the “Schiffer interior variation by attachinga
cell” [S]. This variation can be thought of as the process of cutting a button-
hole into a shirt along a short vertical slit, stretching the slit into a circular
hole and then inserting a disk into this hole. If we think of conformal equiv-
alence as defining geometrical shape, then this procedure changes the geo-
metrical shape of the entire shirt. As the size of the buttonhole increases
from zero to a small positive number, we obtain a variation of the geomet-
rical structure.

To be mathematically precise, let S be a Riemann surface, V a simply
connected open subset of S, and z a local parameter defined on V for which
z(V) = U is the unit disk in the complex plane C. In U, let I be the vertical
slit joining 2ie to —2ie and let J =z~ !(J). For each point z in the interior
of I we associate two points z, and z_, which are the prime ends corre-
sponding to the approach to z from the right or from the left side of 7. We
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let 1, and 7_ be the sets of points z, and z_ and let J, and J_ be the corre-
sponding sets on S.

Let w(z) be the univalent function defined in U\ 7 by the formula z =
w—e2w™l. Note that the circle w = ee” in the w-plane corresponds in the
z-plane to {z = 2iesinf: 0 < 0 < 27}. Let D, be the disk of radius e centered
at the origin in the w-plane. The Schiffer interior variation S, of S is formed
by attaching D, to S along the arc J. A point w = ee’ on the boundary of
D, with —7/2 < 8 < /2 is identified with p, if w(z(p,)) = w. Similarly,
w = ee’® with 7/2 < 8 < 37/2 is identified with p_ if w(z(p_)) =w. Let V, =
(V\J)UD,, and let

_ {WOZ on V\J,
W =
w on D,.

Charts for S, on open sets in S\ J are the same as charts for S. On V,, which
is an open set containing D,, we take w as the chart. This collection of charts
makes S, into a Riemann surface because the correspondence z = w—e?w™!
is holomorphic on the overlapping domain V' \ J, which is the common do-
main of definition of the charts w and z.

Define a Beltrami variation S, of S by deleting from S the interior of
the quasidisk W whose boundary is the set of p such that |w(z(p))| = 2¢ and
attaching a new disk. The new disk has local parameter { = z+3Z for z in W.
Note that the boundary of W corresponds to an ellipse in the z-plane and to
a circle with radius 2¢ in the w-plane. The Beltrami coefficient u(e) takes the
constant value 1/4 in W with respect to the local parameter z, and the size
of W depends on e. Both S and S, are obtained by a deformation inside
a simply connected subset, and they therefore determine well-defined curves
in Teich(S) that depend on the parameter .

THEOREM 5. In the Teichmiiller space Teich(S), the marked Riemann sur-
Jaces S, and S, represent the same point.

Proof. We apply Lemma 4 to the quasidisk W described in the previous
paragraph. Let W, be the disk defined by |w| < 2¢ in the w-plane, and for p
in the boundary of W let h(p) = w(z(p)). Let W, be a disk in the {-plane
and let ho(p) = ¢£(z(p)). To apply the lemma we must show there is a con-
formal map c such that hy'ece A, is the identity on the boundary of W. This
is equivalent to showing that Age k! is the restriction of a conformal map-
ping on the boundary of W;. Since |w|* = 4¢* on that boundary,

e 1

W——=w——w=2.
w 4

Therefore, for points on that boundary,

1 1, . 1/ 1 15
§’—z+zz—(w—z(w)+z(w——zw>)—1—6—w.

We conclude that S, and S, () represent the same point in Teich(S). O
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‘ 7. Proof of Existence

By Theorem 3 and 4, we know that the set of numbers M, = ||¢/|, where
(/f; Sp) isin &, is bounded. Select a sequence (f,, S,) such that M, approaches
the supremum of the values of M;. By using normal families, we obtain a
point (fy, Sp) such that M, is as large as possible. Let Ey = So\ fo(S\E), and
let ¢f, be the holomorphic quadratic differential on S, with the same corre-
sponding heights that ¢ has on S.

In order not to carry forward excess notation, for the remainder of this
section we assume S =S, ¢ = ¢, and E = E,. Thus, it is no longer true
that components of £ are each bounded by closed analytic curves. On the
other hand, for no univalent function f mapping S\ E into a variable Rie-
mann surface Sy and inducing an isomorphism of fundamental groups is it
possible for ||¢/| to be larger than ||¢||.

We divide the proof of Theorem 1 into several steps.

Step 1: The set E has measure zero. If not, one can find a Beltrami differ-
ential u that is identically zero on S\ E but for which [ [ ue dxdy > 0. Thus,
by the variational formula of Section 4, we obtain a curve of quasiconfor-
mal mappings f’ with Beltrami coefficients fx that are conformal on S\E
and for which M, where f = f, is larger than | ¢|.

Step 2: ¢ is in Q(S\E) and, in particular, ¢(z) dz? is real-valued on the
border of S\ E. Assume that ¢ is notin Q(S\E). Let L,(S) denote the space
of integrable quadratic differentials on S. Since ¢ is an element of L,(S)
that is not in Q(S\E), by the Hahn-Banach theorem there is an L, Bel-
trami differential » such that [f v dxdy > 0 and such that [ v¢ dxdy =0
for all  in Q(S\ E). This » is infinitesimally trivial for the Teichmiiller space
Teich(S\ E). By the variational lemma (Lemma 3), there exists a curve of
Beltrami coeflicients u, tangent to » that are defined for small positive values
of ¢ and are trivial as elements of the Teichmiiller space Teich(S\ E). This
means that if f’ are quasiconformal mappings with Beltrami coefficient pu,
mapping S into Riemann surfaces S, then there is a conformal mapping ¢,
from S\ E to f,(S\E) such that ¢, and f, are homotopic. Moreover, by the
variational formula of Section 4, the value of My, for small enough values
of ¢, is larger than ||¢||. This contradiction proves Step 2.

Step 3: Every point in E is either a critical point of ¢ or has a neighbor-
hood U such that UNE is a piece of a horizontal or vertical trajectory of ¢.
Suppose a point p in E is not a critical point of ¢. Then there is a neighbor-
hood U of p and a choice of local parameter { vanishing at p such that
o dz? =d¢?in U. But, by Step 2, we know that ¢ is an element of Q(S\E).
Thus, in UNE the parameter { gives a quadratic differential d¢? that is a
local expression for an element of Q(S\E). Therefore, the part of the bor-
der of S\ E that is contained in U is an analytic curve in the variable ¢. Since
d¢? is real-valued on this curve, in the ¢-plane it must be either a vertical or
horizontal line segment passing through the origin.
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Step 4: No piece of vertical trajectory is contained in E. Assume that the
obstacle set E contains a connected piece of a vertical trajectory. By scaling
we can assume that, in the {-plane, the vertical trajectory corresponds to a
piece of the vertical line segment joining —i to i, and that the local parame-
ter ¢ gives a homeomorphism from an open set on the Riemann surface
to the square with side length equal to 4 and centered at the origin. Inside
this box, consider the vertical line segment o of length 4¢ parameterized by
2¢ sin(#). Under the correspondence

F=w—elw),

this vertical line segment is mapped to a circle centered at the origin with
radius e. Form the new surface S, which is the Schiffer variation of S, by
attaching a disk of radius e to the boundary of this circle.

By Theorem 5, S, represents the same point in the Teichmiiller space as
the quasiconformal deformation S, . On the surface S, the Beltrami coeffi-
cient u(e) expressed in terms of the local parameter z is equal to 1/4. Because
of the variational formula for M} in Section 4, we can use the Beltrami vari-
ation to find a curve that increases the value of M;. Because this variation is
equivalent to a Schiffer variation, we obtain a curve of univalent functions
f! defined on S\ E for which M} increases, which leads to a contradiction.

On putting all of these steps together, we have completed the proof of
Theorem 1. Ol

" 8. Proof of Uniqueness

We assume (f, Sy) is an element of the family § that maximizes (1). By defi-
nition, for any other element of (g, S,) in &, we have

llegll = llerll-

Now suppose that g(E) = E, consists entirely of finitely many arcs of hori-
zontal trajectories of ¢, and, in addition, possibly some critical points of ¢.
We will show that then

losll = llegll

and that gof~! extends to a conformal mapping from Sy onto S,.

Let v be a simple, closed polygonal curve on Sy whose segments are, alter-
nately, regular arcs of vertical and regular arcs of horizontal trajectories of
¢r. Moreover, assume that vy is quasitransversal to the horizontal foliation
for ¢;. This means that if 8,3, are three successive segments on v, then 3,
departs from the side of o opposite to the side at which B3, enters «. With
this assumption (see [G]), the height of iy with respect to ¢ is realized by v,
that is,

[11m(es2)72 dz)| = heigh,, 1. @)
Y
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Let # =gof~!, and consider the quadratic differential defined on Sr—Ey
given by ¢ = gog(h(z))h’(z)z. This differential is holomorphic on S, — Ey, but
possibly not continuous on S;. Since E, has measure zero, ¢ is defined al-
most everywhere on Sy and is in L, because || @] = || ¢, || < [l¢/]|.

Because 4 is possibly discontinuous on Ey, he+y is also possibly discon-
tinuous. But since 4 is conformal and defined on the complement of E; and
since E, consists of a union of finitely many analytic arcs, #°+y has only
finitely many intervals of discontinuity. For vy = y(¢), let I = [, ¢;] be cne
of these intervals. When v crosses E, transversely, this interval reduces to a
point. There is a point P in some component of E, and another point Q in
the same component such that, as # converges to ¢y from below, A< y(¢) con-
verges to P and, as ¢ converges to ¢; from above, A-vy(f) converges to Q.
Because they are in the same component of E;, we can connect P and Q by
a curve «; lying in E,. We pick a different «; for each interval of disconti-
nuity of hA(y). Let ¥ be A(y) with these additional curves «; adjoined for
every point of discontinuity of A(y). We claim that

f |Im{p}?(z) dz}| < f |Im{@"%(z) dz}|. (3)
Y Y

By the definition of ¢, and ¢,, we know that
height‘pf['y] = height¢g['7]. (4)

On the other hand, since the height is an infimum over all curves in the same
free homotopy class, we have

height,, [¥] = f
h(v)
where the last summation is over a set of curves o; lying in components of
E,. By assumption, E, consists of horizontal trajectories of ¢, plus some
additional finite set of points, and therefore this summation is equal to zero.
Putting inequalities (2), (4), and (5) together and using the definition of 3,
we obtain inequality (3) for arbitrary ¢,-polygonal closed curves vy quasitrans-
verse to the horizontal trajectories of ¢,. On the other hand, from inequality
(3) together with the arguments used to prove the first and second minimal
norm properties in [G, Thm. 1 & Thm. 9], we conclude that

mie} @ da)|+ S [ [mle} @ az), ()

ledl = [ [ 1o} *@16" @) dxdy.
Sr

By Schwarz’s inequality, this is less than or equal to

lerl 21812 = el lee 2 < llesll.

However, one has equality in Schwarz’s inequality only if |¢,| is a multiple
of |@| and, from the normalizations and the fact that these quadratic dif-
ferentials are holomorphic, we find that gog(h(z))h’(z)2 = ¢r(z). By contin-
uation, it follows that /4 extends to a conformal mapping from S; onto
S,. (]
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9. Slit Mappings

Consider a multiply connected plane domain 2 bounded by a finite number
n of boundary contours, # = 3. We can select two components of the com-
plement and, by uniformization, we can find a conformal mapping, z — w,
from © onto the part of the annular region between two concentric circles
|w| =1 and |w| = R such that, as |w| approaches 1, z approaches one of the
components and, as |w| approaches R, z approaches the other component.
Then the other components of the complement of Q correspond to closed
sets contained in the annulus.

There are two theorems for this classical situation, which are called the
circular and radial slit mapping theorems. The circular slit mapping theorem
states that €2 can be mapped to such an annulus, with the smallest possible
value of R. In that case the complement of the image of @ consists of the
interior of the unit disk, the exterior of the disk of radius R, and n—2 con-
centric circular slits. Moreover, up to postcomposition by an affine mapping
of the plane, the realization of  in this form is unique.

The radial slit mapping theorem is realized by maximizing R, and the
n—2 components of the complement correspond in the w-plane to radial
slits. Once again, the realization of { is unique up to postcomposition by an
affine mapping. Both of these theorems are easy consequences of our Theo-
rems 1 and 2, where we use the quadratic differential dz%/z for the radial slit
mapping theorem and we use —dz%/z? for the circular slit mapping theorem.

The vertical and horizontal slit mapping theorems are obtained by apply-
ing our techniques to the quadratic differentials —dz? and dz? and to large
squares S,, containing the given obstacle set E. On each of the large squares
S,., the differential dz2 has finite norm equal to the area of S,,. By taking an
exhaustion of the plane by these squares and using the distortion theorem,
we obtain a normal family of suitably normalized mappings f,: S, — R,
where R, are larger and larger rectangles. The mappings f, take the horizon-
tal and vertical sides of S, to the horizontal and vertical sides of R,,, respec-
tively. The sequence f, converges uniformly on compact sets to a mapping f
from the complement of the obstacle set in the plane to the complement of a
finite number of vertical slits. Since the result is well known, we omit the
details and comment only that our version of the uniqueness theorem does
not apply here because the quadratic differential dz2 on C has infinite norm.

A more interesting slit mapping theorem is obtained by considering the
quadratic differential

2 _ p(Z) d22
q(z) ’

where g(z) and p(z) are polynomials, the degree of g(z) is at least three
more than the degree of p(z), and g(z) has only simple zeros. The obstacle
set E is a closed bounded set contained in C — {the zeroes of g(z)}. If E is
invariant under the conjugation j(z) =z and if p(z) and g(z) have real co-
efficients, then the extremal configuration will also be invariant under j. In

e(z)dz
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this example we see that the slits of our slit mapping theorem can take com-
plicated forms. In particular, a component of the obstacle set can corre-
spond under the extremal mapping to a union of arcs that emanate from
a singularity of ¢ along the n prongs meeting at this singularity (see Fig-
ure 2).

Another example comes from starting with a Riemann surface S of finite
topological type and with nonempty border. Then S determines the doubled
Riemann surface S? together with an anticonformal involution j such that
S = S U {the border of S}U j(S), where the border of S is the fixed point set
of j. We assume that the obstacle set E consists of a finite number of closed
simply connected components contained in the interior of S. Moreover, we
assume that there is a set of n given points {x;: 1<k <n}, n=1, on the
border of S. Let Q(S?—{x,: 1 < k < n}) be the space of integrable holomor-
phic quadratic differentials on S? — {x,: 1 < k < n} that are invariant under j.
Assume g is the genus of S? and 3g—3+n > 0, which guarantees that the
dimension of Q(S? —{x4:1 <k < n}) is positive. Fix a nonzero quadratic
differential ¢ in Q(S?—{x;:1=< k < n}), and consider the family § of all
functions f that:

(a) are holomorphic and univalent on S—E;;

(b) map S—E into a variable bordered Riemann surface Sy;

(c) take the border of S to the border of S¢; and

(d) induce an isomorphism from the fundamental group of S onto the
fundamental group of S;.

The family & and the obstacle set E extend by symmetry to the double sS4,
and Theorems 1 and 2 are applicable. The extremal in (1) of the introduction
is realized by a symmetric mapping f and a Riemann surface Sf with an
involution j;; f satisfies the symmetry condition fej = jr° f. The quadratic
differential ¢, and the image obstacle set f(E) = E[ are also symmetric with
respect to jy.

As a special case, we can take S to be the unit disk D, j to be the anticon-
formal involution across |z| =1, and S¥ to be the extended complex plane
C. The n given points are then situated on |z| =1 where n = 4. We will call
the unit disk with these n distinguished points a conformal polygon. To pose
the extremal problem, we are also given the obstacle set E, which is a com-
pact subset of the open unit disk with only finitely many components, and
a quadratic differential. The quadratic differential ¢ is holomorphic; its only
poles are simple and are situated at the n given points; and ¢(z) dz? is real-
valued along the circumference of the unit circle z = exp(if).

The variable bordered Riemann surface Sy is realized by the unit disk
|w| =1 with n variable distinguished points on the boundary. The family &
is the family of all conformal mappings of D\ E into D that map |z| =1 onto
|w| =1 and distinguished points onto variable distinguished points. The ex-
tremal in (1) maps D\ E into D, and f(FE) consists of slits on the horizontal
trajectories of ¢y .
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10. Trajectories around the Obstacle Set

The data for the extremal problem in (1) are the given Riemann surface S
with a quadratic differential ¢ on S and the compact subset E of S. The
unique extremal solving (1) is realized by the Riemann surface Sy, the con-
formal mapping f from S\E into Sy, and the quadratic differential ¢, on
Sy, where each component of f(E) consists of parts of horizontal trajec-
tories of ¢y.

We wish to compare the properties of the differential

¥(2)dz® = o, (f(2)) f'(z)* d2?,

which is defined on S\ E, to the originally given quadratic differential ¢ de-
fined on S.

1. Only a finite number of horizontal trajectories of Y terminate at E,
whereas, in general, full strips of trajectories of ¢ pass through E.

2. Branches of the natural parameter ¥(z) = ¥(2)"? dz can be selected
that map all of S\ E onto a union of horizontally slit rectangles, where-
as branches of the natural parameter & = [ ¢(z)"/? dz map S\ E onto a
union of rectangles with arbitrary deleted continua.

3. For any curve v contained in S\ E, the height of the homotopy class
of v in S\ E with respect to ¢ is equal to the height of the homotopy
class of v in § with respect to ¢.

4. For any curve v contained in S\ E that is homotopic in S with fixed
endpoints to a horizontal segment « of ¢, the y-length of v is at least
as large as the y-length of «.

5. 11> llell unless ¢ = .

The significance of these properties of y is most easily understood when
the orignally given Riemann surface S is a conformal polygon P, that is,
when P is the unit disk D with the set ¢ of n =4 marked vertices on its
boundary. We call any interval of the boundary of D joining two adjacent
vertices a side of the polygon. Two cross-cuts of D are homotopic if they
join the same two sides of the polygon.

The holomorphic quadratic differential ¢(z) dz? belonging to P must be
real-valued on the boundary of D and may have at most simple poles, all of
which occur at the vertices of the polygon. Its natural parameter maps the
unit disk to a finite number of strips S;, which determine homotopy classes
of cross-cuts. Let the width and height of each of these strips S; measured in
the natural parameter for ¢ be a; and b;. We summarize the properties of
¢ and the pull-back f*¢, of the extremal differential ¢, in the following
theorem.

THEOREM 6. Assume we are given the polygon P, the holomorphic quad-
ratic differential ¢ belonging to P, and a compact subset E of the interior of
P that consists of finitely many simply connected components. Then there
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exists a holomorphic quadratic differential Y defined on P\ E with the fol-
lowing properties.

1.

2.

5.

Only a finite number of the horizontal trajectories of ¢ terminate at
the set E.

Branches of the natural parameter ¥(z) = [ y(2)"/? dz map all of P\E
onto a union of horizontally slit rectangles R; whose vertical sides cor-
respond to parts of some of the sides of the polygon P.

The rectangles R; join the same sides of P as the strips S;, and the
height b; of each strip S; is equal to the height of R;.

. If a cross-cut a of P joins the same sides that are joined by the strip S;,

and if this cross-cut lies in P\E, then its length measured in the ||'/*-

metric is at least as long as the width a} of the rectangle R;.
Y| =X aib; =X a;b; = ||¢|, and there is strict inequality unless ¢ = ¢.

Proof. All of these properties follow from considering the extremal qua-
dratic differential ¢, on Sy and the results of Theorems 1 and 2. O

Figures 1, 2, and 3 illustrate the case where n =6 and E has two compo-
nents. In Figure 1, we see the obstacle set E with no relationship to the hori-
zontal trajectory structure of ¢. In Figure 2, the components of £ have been

Figure 1 Figure 2

Figure 3
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compressed into horizontal segments of ¢,, and one component is comprised
of the union of three prongs emanating from a singularity. In Figure 3, we
see the trajectory structure of ¥ = f*¢, with only finitely many horizontal
trajectories of y leading into E. Otherwise, the trajectories of ¥ go around
the components of E.
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