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Introduction

Let X be a convex polyhedral set in a space of constant curvature. Its polar
dual P(X) is the set of outward-pointing unit normal vectors to the support-
ing hyperplanes of X. In the spherical and Euclidean cases, P(X) is a subset
of the unit sphere. In the hyperbolic case, P(X) is a subset of the unit pseu-
dosphere in Minkowski space (sometimes called the “de Sitter sphere”). In all
three cases P(X) naturally has the structure of a piecewise spherical cell com-
plex. The spherical cells of P(X') correspond bijectively to the faces of X.

A piecewise spherical cell complex, with its intrinsic metric, is /arge if
there is a unique geodesic between any two points of distance less than .
Equivalently, it is large if it satisfies Gromov’s CAT(1)-inequality [G].

Piecewise spherical cell complexes play an important role in the study of
certain singular metric spaces: the link (or “space of directions”) of a point
in such a singular space often has a piecewise spherical structure. The large-
ness condition is closely related to the notion of nonpositive curvature in the
sense of Alexandrov and Gromov. For example, a polyhedron of piecewise
constant curvature has curvature bounded from above if and only if the link
of each point is large (cf. [G; B]). A similar result holds for the induced sin-
gular metric on the branched cover of a Riemannian manifold [CDI1].

In 1986 Rivin [R1] proved that the polar dual of a convex polytope in
hyperbolic 3-space is large. (This was published as the paper [HR] of Hodg-
son and Rivin.) The proof is a simple geometric argument; the main result
of [HR] is in the converse direction. The referee has pointed out that some
related results, in the smooth category, are proved in [S].

In 1988 Moussong [M] considered a related situation: he gave a simple,
necessary and sufficient condition for a piecewise spherical, simplicial com-
plex with all edge lengths = 7/2 to be large. The results of both Rivin and
Moussong are generalizations of Andreev’s theorem [A].

In this paper we use Moussong’s ideas to extend Rivin’s argument to any
hyperbolic convex polyhedral set (not necessarily compact) of any dimen-
sion. The main result is the following.
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THEOREM. The polar dual of a convex polyhedral set in hyperbolic space is
large.

This theorem is stated, in a sharper form, and proved in Section 4 as Theo-
rem 4.1.1.

A geodesic in P(X') is a special case of a “broken geodesic”, ¥ = (v, -+» Y&)-
This means that each v; is the arc of a great circle in some cell of P(X') and
that the terminal point x; of v; coincides with the initial point of v;,,. Asin
[HR], one associates to each point x; a supporting hyperplane H; of X and
to each «; the codimension-2 subspace G; = H;N H;_,. (This is explained in
Section 3.1.) Thus, G; and G;, are hyperplanes in H;. The argument of
[HR] then has two steps.

(1) When v is a geodesic, one shows that G; and G, are either parallel or
ultraparallel. Hence, there is a region S; in H; bounded by G;and G, ;.

(2) When v is a closed geodesic, the regions S; fit together to give a piece-
wise isometrically immersed “cylinder” in the ambient hyperbolic space.
The exterior dihedral angle along G;is the length of v;. From this, one
concludes that the length of v must be = 2.

It follows from this last fact that P(X) is large. The proof of (2) generalizes
easily to higher dimensions; however, the proof of (1) does not. As we ex-
plain in Section 3 (Remark 3.2.3), the argument for (1) in [HR] comes down
to the Gauss-Bonnet theorem in dimension 2, and there is no obvious gen-
eralization of this argument to higher dimensions.

Our proof of (1) in higher dimensions occupies all of Section 3. It is based
on ideas of [M]. The basic result, Theorem 3.2.2, relates the metric on P(X)
to the inner product on the ambient Minkowski space.

In Section 5 we relate the main result to a conjecture of [CD2]. Suppose
K?™~1is a piecewise spherical cell complex homeomorphic to the (2m —1)-
sphere. In [CD2] we considered a number x(K2"~!), defined as a certain
alternating sum of normalized volumes of the dual cells to the cells in K 2™,
Hopf’s conjecture on the sign of the Euler characteristic of a nonpositively
curved 2m-manifold leads to the conjecture that (—1)"x(X 2™ ~!) = 0 when-
ever K2™~!is large. In Section 5.2 we recall the following formula of Hopf
for the normalized volume v of a 2m-dimensional hyperbolic polytope X >™:
(—1)"20(X2™) = k(P(X)). (This is a special case of the Gauss-Bonnet theo-
rem of [AW].) It follows that the sign of x(K>™ 1) is correct when K" is
the polar dual of a hyperbolic polytope.

In Section 6, we relate the main result to the study of the space of large
piecewise spherical structures on a given simplicial complex.

1. Piecewise Spherical Polyhedra

In this section we collect some well-known facts about piecewise spherical
polyhedra.
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1.1. Convex Polyhedral Sets

Let V be a finite-dimensional real vector space. A subset X of V is a con-
vex polyhedral set if it is defined by a finite number of affine inequalities.
In other words, there are linear functions A; € V* and constants ¢c;eR, i =
1, ..., k, such that

X={weV |\ =c,i=1,...,k].

A face of X is a (nonempty) subset F of X obtained by changing the inequal-
ities A;(v) < ¢; into equalities A;(v) =¢; for i in some subset of {1,...,k}.
(Equivalently, F is a face of X if for any two distinct points x, y in X such
that (x, yY)NF # @, we have [x, y] C F, where (x, y) and [x, y] denote, re-
spectively, the open and closed line segment from x to y.) Let F(X') denote
the set of faces of X partially ordered by conclusion and let Fy(X') be the set
of proper faces of X.

A convex polyhedral set X is called a convex polytope (or a convex cell)
if it is compact. Equivalently, X is a convex polytope if it is the convex hull
of a finite set.

A polyhedral cone C in V is a convex polyhedral subset defined by a finite
number of linear inequalities; that is,

C={veV|\Ww)=0,i=1,...,k}.

The linear part of C, denoted L(C), is the largest linear subspace contained
in C. Thus, L(C) is the minimum element in F(C). The cone C is nondegen-
erate if L(C) = {0}.

For any subset S of V, let Span(S) denote the linear subspace spanned by
S. A polyhedral cone C is of full dimension if Span(C) = V.

Suppose X is a convex polyhedral set in V and xe X. The tangent cone
at x, denoted T,(X), is the polyhedral cone in V (=7, V) consisting of all
inward-pointing vectors at x; that is,

T.(X)={veV|x+tve X for some ¢ > 0}.

If F is a face of X, then this cone is independent of the choice of x in the
relative interior of F and is denoted by T (F, X). Explicitly, T(F, X) is the
cone determined by the codimension-1 faces of X containing F. The linear
part of T(F, X) is given by

L(T(F,X))=T(F,F)=Span(F —x)
(where F —x is a translate of F to the origin) and
Span(7'(F, X)) = Span(X —Xx).

1.2 Intrinsic Metrics

Now identify V with some Euclidean space and let S(V') denote the unit
sphere in V. A spherical convex polyhedral set o is the intersection of a polyhe-
dral cone C with S(V). If C is nondegenerate (or, equivalently, if ¢ contains
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no pairs of antipodal points), then ¢ is called a spherical convex polytope or
a spherical cell. A piecewise spherical cell complex K is a cell complex to-
gether with an identification of each cell with a spherical convex polytope.
All such cell complexes will be assumed to be locally finite and to have a
lower bound on the height of their cells. (The height of a cell ¢ is the mini-
mum distance between disjoint faces of o.)

A broken geodesic v in a K is a sequence (v, ..., Yx), Where each v; is an
oriented geodesic segment (= segment of a great circle) in some cell of K
and where the terminal point of v; is the initial point of v; ;. The length of
v, denoted by f£(-y), is the sum of the lengths of the v;. The intrinsic metric
on X is defined as follows: the distance d(x, y) between points x and y in K
is the infimum of the lengths of all broken geodesics from x to y. It follows
from the assumptions above that, if x and y belong to the same component
of K, then they can be joined by a broken geodesic whose length realizes this
infimum (see [Br, Sec. 1] or [Pa]). Parameterizing by arc length gives a path
v: [a, b] = X such that d(y(s), y(2)) =|s—¢| for all s, ¢ € [a, b]. This means
that X is a geodesic space (also called a length space). Such an isometric
path is a geodesic.

The underlying metric space of a piecewise spherical cell complex with its
intrinsic metric is called a piecewise spherical polyhedron.

1.3. Orthogonal Joins

Suppose that V and W are disjoint Euclidean spaces, that c C S(V') and 7 C
S(W) are spherical cells, and that C(¢) and C(7) are the associated polyhe-
dral cones. Then C(o) X C(7) is a polyhedral cone in V@®W. The orthogonal
join of ¢ and 7, denoted o * 7, is the spherical cell defined by

o*x7=C(o)XC(?))NS(VOW).

It is obvious how to extend this to a definition of the orthogonal join of two
piecewise spherical complexes K; and K,. The resulting intrinsic metric on
K, * K, depends only on the intrinsic metrics on K; and K5, and not on the
particular cell structure.

Suppose K is a piecewise spherical cell complex. The spherical cone on K
(or simply the “cone”) is the orthogonal join of K with a point. The k-fold
suspension of K is the orthogonal join S¥~!* K. We note that there is no
canonical cell structure on S*~!* K; rather, it is partitioned into spherical
convex sets of the form $*~!* ¢, where o is a cell of K or o =#. (For more
information about orthogonal joins, see the appendix of [CD1].)

1.4. Links

Suppose that ¢ is a spherical cell in S” and that C (=C(0)) is the associated
polyhedral cone in R"*1, Let x be a point in o and let F be the face of C that
contains x in its relative interior. The tangent cone of o at x is defined by

T,(0) = T(F,C)Nx™t.
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The link of x in o is the set of unit vectors in this tangent cone,
Lk(x,0) =T(F,C)NS(x*).
If 7= FNS" then the link of 7 in o is defined by
Lk(7,0) = T(F,C)NS(F1),
and we have a natural identification
Lk(x,0) = Lk(1,0)*S(xtNF)
= Lk(r, o) *S* ],

where £ = dim 7 and x is in the relative interior of 7.
If x is a point in a piecewise spherical complex K, then define
Lk(x,K) =\ Lk(x, o),
X€ECo
where the union is taken over all cells o containing x. Similarly, for a cell 7
in K, define
Lk(r,K)=J Lk(7,0),
7Co
where the union is taken over all cells o properly containing 7. Thus, Lk(7, K')
is naturally a piecewise spherical cell complex. If dim7 = k and x is in the
relative interior of 7, then

Lk(x,K) = Lk(r,K)*S*,

so Lk(x, K) is also a piecewise spherical polyhedron.

1.5. Local Geodesics

Suppose K is a piecewise spherical cell complex. A closed geodesic in K is an
isometric embedding of a circle. A path vy:[a, b] - K is a local geodesic if
for each ¢t €[a, b] there is a neighborhood J of ¢ such that |, is geodesic.
(A closed local geodesic is defined similarly.)

Suppose ¥ = (v, - .., Yx) is a broken geodesic in K, where each «; is an
oriented arc of a great circle from x;_; to x;. If «y is closed (i.e., if x5 = xi)
then the indices / are interpreted as integers modulo k. At each break point
x;, define points v/ and v/, in Lk(x;, K) as the unit tangent vectors of «;
and v;, at x;, oriented outward from x;. Define an “angle” §; by

0; =d(vi,viv1) (1.5.1)

where d is the intrinsic metric in Lk(x;, K'). Then v is a local geodesic if and
only if it satisfies the following “angle condition” (cf. [M, Sec. 4] or [Br,
p. 3851):

;=w, i=0,1,....,k—1. (1.5.2)

1.6. Large Piecewise Spherical Polyhedra |

Any two points in the same component of a piecewise spherical polyhedron
K are connected by a geodesic segment. We say that K is large if, for any
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X, y € K with d(x, y) < w, the geodesic segment from x to y is unique. The

condition that X is large is equivalent to the condition that it satisfies the

CAT(1)-inequality of [G, p. 106]. (See [CD1, Thm. 3.1].) The systole of K,

denoted sys(K), is the infimum of the lengths of all closed geodesics in K.
The following lemma is a result of Gromov [G, Sec. 4.2.A & 4.2.B].

LemMMA 1.6.1 (Gromov). A piecewise spherical polyhedron K is large if and
only if the following two conditions hold:

(i) sys(K) = 2x; and
(ii) sys(Lk(o,K)) =2x for all cells o in K.

It is fairly obvious that if K is large then (i) and (ii) hold; the proof of the
converse uses the angle condition (1.5.2). For details of the proof, see [B,
Thm. 15] and [CD1, Thm. 3.1].

LEMMA 1.6.2. Let K be a large piecewise spherical polyhedron. Then any
local geodesic of length < = is actually a geodesic.

Proof. The proof uses Alexsandrov’s version of the largeness condition (see
[Tr, Thm. 4]). This asserts that, given any geodesic triangle in K of perim-
eter < 2, its “angles” must be no greater than those of its comparison tri-
angle in S2. Let v = (4, ..., vx) be a local geodesic and let x;_, and x; be the
endpoints of ;. We may assume (by subdividing the «;) that each v; is a
geodesic. The argument proceeds by induction on k.

If kK =1, then v = (,) is geodesic by definition. Let kK > 1 and assume by
induction that a = (v, ..., Yx—1) 1s an actual geodesic from X, to x;_,. Sup-
pose v is not an actual geodesic. Then the actual geodesic 8 from x; to x; has
length < w. Consider the geodesic triangle («, v, 8). The “angle”, between
« and vy, at x;_ (in the sense of Alexsandrov), coincides with min{, 6, _,},
where 0, _, is defined by (1.5.1). By (1.5.2), 6, _, = =. It follows that the com-
parison triangle in $? (which exists since perimeter (c, Yk, B) < 2w) must de-
generate to a segment. The CAT(1)-inequality then implies that the same
holds for (e, v, ), that is, ¥ = (. ]

DEFINITION 1.6.3. Suppose K is a subpolyhedron of a piecewise spherical
polyhedron K. Then K is a locally convex subset of K if any local geodesic
in K is actually a local geodesic in K.

The next lemma is an immediate consequence of Lemma 1.6.2.

LEMMA 1.6.4. Suppose that K is large and that K, is a locally convex sub-
polyhedron. Let d, and d denote the intrinsic metrics on K, and K, respec-
tively. Then any local geodesic in K, of length < « is actually a geodesic in
K. Thus, if x,y€e K, and dy(x, y) < w, then d(x, y) = d\(x, y).

We also have the following simple formulation of local convexity in terms
of links. It is an immediate consequence of (1.5.2).
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LEMMA 1.6.5. Let K, be a subpolyhedron of K. Then K, is locally convex in
K if and only if the following condition holds at each point u of K;:

(*) If x,x’e Lk(u,K;) and d\(x,x') = «, then d(x, x’) = m, where d, and
d denote the intrinsic metrics in Lk(u, K;) and Lk(u, K), respectively.

2. Polar Duality

In this section we investigate convex polyhedral sets in $”, E”, and H". To
such a set X, we will associate a piecewise spherical polyhedron P(X), called
the polar dual of X. In essence, P(X) consists of the outward-pointing unit
normal vectors to X. The cell structure on P(X) is induced by the face struc-

ture on X: a cell of P(X) corresponds to the outward-pointing normals to a
face of X.

2.1. Dual Cones

Let V be a finite-dimensional real vector space as above. In this subsec-
tion, V is equipped with a nondegenerate, symmetric, bilinear form (, ). If
S is a subset of V, then St denotes the linear subspace of ¥ orthogonal to
Span(S).

Let C be a polyhedral cone in V. Its dual cone C* is the polyhedral cone
defined by

C*={weV|{(v,w)=<0 forall veC}. (2.1.1)

LEMmMA 2.1.2. Suppose u,, ...,u,€V and

C=teV|{u,v)=<0,i=1,...,kJ}.
Then

(i) C* = {nonnegative linear combinations of u,, ..., u};
(i) C**=C;
(ili) L(C*)=C*; and
(iv) Span(C*) = L(C)*.

Proof. Let C; denote the cone of nonnegative linear combinations of u;,
..., Ug. It is easy to see that C; C C* and hence C**C C; = C. On the other
hand, it is clear from the definition of C* that C C C**. This proves (i) and
(ii). Part (iii) is clear since w e L(C*) if and only if w and —w are in C*. Part
(iv) follows from (iii) since L(C) = (C*)* implies L(C)* = Span(C*). O

In particular, C is of full dimension if and only if C* is nondegenerate and
vice versa. 5
If F is a face of C, then its dual face F is the face of C* defined by

F=T(F,Cy=Ftnc*

The correspondence F ~ Fis an order-reversing bijection from F(C) to F(C*).
It follows from Lemma 2.1.2 that

Span(F) = F*NL(C)* and L(F)=C*
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2.2. Polar Duals in E"
Suppose {, ) is positive definite, and identity ¥ with Euclidean space E”. Let
X be a convex polyhedral set in V defined by
X={eV|{u,v)y=c,i=1,...,k},

and assume without loss of generality that X contains the origin. (The defi-

nition of polar dual is translation invariant.) Let W = Span(X). Let C*(X)

denote the polyhedral cone in V spanned by u;, ..., u, and W+ (i.e., C*(X) is

the set of all nonnegative linear combinations of the u; plus a vector in W+1).
Define the full polar dual of X to be

P(X,V)=C*X)NSV)
and the polar dual of X to be
P(X)=P(X)NW =C*X)NS(W).
Since S(W) C P(X, V), it follows that P(.X, V) is the orthogonal join
P(X,V)=S(WY)*P(X).

Let C(X) denote the dual cone to C*(X). Then C(X) is the largest poly-
hedral cone contained in X.

LEMMA 2.2.1. Let L be the linear part of C(X) and let L, be the orthogonal
complement of Lyin W. Then P(X) is a convex polyhedral set in S(L,). The
set X is a Euclidean cell (ie. compact) if and only if L, =W and P(X) =
S(W).

Proof. By Lemma 2.1.1, C*(X) C L(C(X))* = L§. The first statement of
the theorem follows. For the second statement, note that X is compact if
and only if C(X) = {0} or, equivalently, C*(X) =V. O

For each proper face F of X, define
F=T(F,X)%
or = FNP(X).

Note that FC C*(X), but since F is not necessarily a face of C(X), F need
not be a face of C*(X). See Figure 1.

LEMMA 2.2.2. or is a spherical cell. These cells partition P(X) into a piece-
wise spherical complex.

Proof. It is easy to see that C(X) C T(F, X) and hence FcC*(X). The
linear part of F is Span(7(F, X))* = Span(X)* = W+. Thus, FNW is a non-
degenerate polyhedral cone, so FNP(X)=FNS(W)isa spherical cell.

To see that these cells partition P(X), it suffices to observe that the cones
T (F, X)* partition C*(.X), that is, every v e C*(X) lies in the relative interior
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of T(F, X)* for a unique face F of X. Let ve C*(X) and consider the linear
function x — {x, v) on X. The set of maxima of this function is necessarily a
face of X that we denote by F,. Then, for an arbitrary face F of X, we have

veT(F,X)* e (w,v)y<0forall weT(F, X)
e {(x+w,v)<{x,v) forall xe Fand we T(F, X)
< xeF, forall xeF
< FCF,.

It follows that v lies in the relative interior of a unique 7'(F, X)*, namely
T(F,, X)* O

2.3. Polar Duals in S"

In this subsection, ¥V =R"*1 () is positive definite, and S(V) is the unit
spherein V. Let X be a convex polyhedral set in S(V'). Then there is a unique
polyhedral cone C =C(X) in V such that X = CNS(V).

Let C* be the dual cone. Points in C* may be viewed as outward-pointing
normal vectors to faces of C. The interior points of C* correspond to nor-
mal vectors at the cone point and thus should not be viewed as normals to X.
Hence, to define the polar dual of X, we consider fr(C*). Here fr(C*) de-
notes the frontier of C* in V (i.e., the non-interior points of C*), so that if
C* is of dimension less than n+1 then fr(C*) = C*. The full polar dual of
X is then defined by

P(X,V) = fr(C*)NS(V).
Letting W = Span(C), the polar dual of X is defined by
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P(X)=P(X,V)NW = fr(C*)NS(W).
As in the Euclidean case,
P(X,V)=S(W')*x P(X).

LeMMA 2.3.1. Let L be the linear part of C and let k = dim X = dim W —1.
Then P(X) is the frontier of a spherical cell X* of dimension k—dim L. In
particular, X is a spherical cell (i.e. L = {0}) if and only if P(X) is homeo-
morphic to a (k —1)-sphere.

Proof. Let X*=C*NS(W), and let fr(X™*) be the frontier of X* in S(W).
The cone C*NW is nondegenerate, so X™* is a spherical cell with fr(X*)=
P(X). |

The frontier of a spherical cell is naturally a piecewise spherical complex.
The cells of P(X) are the dual faces, o = FNP(X) = F*NP(X), where F
is a proper, nonzero face of C(X). It is easy to see that these faces partition
P(X) into spherical cells.

2.4. Polar Duals in H"

In this subsection, V is (n+ 1)-dimensional and the form ¢, ) on V is indefi-
nite of type (n, 1). In other words, (, ) has one negative eigenvalue and the
rest are positive. (Thus, ¥ could be identified with Minkowski space R™'.)
Let g be the associated quadratic form

q(v) =<(v,v).

We consider the hyperquadrics ¢ ~!(—1), ¢~1(0), and g ~(1) in V. The first,
q~'(—1), is a 2-sheeted hyperboloid; choose a component, denote it by H(V),
and call it the hyperbolic space of V. The hyperquadric ¢ ~!(0) is denoted
by L and called the light cone, while g~'(1) is denoted S,(V) and called the
unit pseudosphere in V. (5,(V) is sometimes called the “de Sitter sphere”.)

The form ¢, ) induces a Riemannian metric on H(V') of constant sectional
curvature —1 and a Lorentzian metric on $,(V') of constant sectional curva-
ture +1. (See [O, pp. 108-114].)

A subspace W of V is spacelike if the restriction of {, ) to W is positive
definite, lightlike if (, ) restricted to W is positive semidefinite but not defi-
nite, and timelike if W contains a vector w with g(w) < 0.

If C is a polyhedral cone in V, then

X=CNHY)

is called a convex polyhedral subset of H(V'); X is called a hyperbolic cell
(or a hyperbolic convex polytope) if it is compact. This is the case if and
only if C is contained entirely inside the light cone, that is, if g(v) < 0 for all
nonzero v in C.

Unlike the spherical case, the set X does not uniquely determine the cone
C. However, the cone C = C(X) is unique if we require that all codimen-
sion-1 faces of C be timelike, that is,
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C={veV|{u,vy=<0,i=1,...,kj}

with g(u;) > 0. (Lightlike and spacelike subspaces do not intersect H” and
hence do not affect X.) We will assume this is the case. Even under this hy-
pothesis, however, C may have lower-dimensional faces that are not time-
like (since, for example, the intersection of two timelike hyperplanes may
be a lightlike or spacelike subspace). For the polar dual, we are interested
only in outward-pointing normals to faces of X or, in other words, to time-
like faces of C.

Let C* be the dual cone to C. The timelike faces F of C correspond to the
spacelike faces F of C*. We therefore let

£ o = union of the spacelike faces of C*,
and define the full polar dual of X to be
P(X,V)=C%NS(V).
Letting W = Span(C), the polar dual of X is defined as
P(X)=P(X,V)OW = C%,NS(W).

Unlike the spherical and Euclidean cases, where P(X) is always homeo-
morphic to a disk or a sphere, the polar dual of a convex hyperbolic set can
have a much more arbitrary topology. However, when X is a hyperbolic cell
(i.e. compact), the following lemma states that P(X) is indeed a sphere.

LemMA 2.4.1. Suppose k =dim X =dimC—1. If X is a hyperbolic cell,
then C%y=09C* and P(X) is homeomorphic to a (k—1)-sphere.

Proof. Let weH" and let Cy={veV|q(v) <0, {(v,w) <0 for all we H"}.
Then Cj is the cone bounded by the (positive) light cone and Cg = Cy. (Cy is
not polyhedral, but the definition (2.1.1) of the dual cone still makes sense.)
If X = CNMH" is a hyperbolic cell, then C C int Cy; hence, Cy = Cj C int C*.
It follows that the spacelike faces of C* are precisely those on its boundary,
that is, C{y=0C"™.

For we H", the restriction of (, ) to w' is positive definite and $,(V) is
homeomorphic to S(wt) xR (= S$"~! x R) via the map

SWHXR-S(V);
(v,r)~» (1 +r) 20+ rw.

In order to prove the second statement of the lemma, it thus suffices to prove
that, for each v e S(w+4), the curve a,(r) = (1+7r%)2v+rw on S\(V) inter-
sects dC* precisely once. Restricting to the 2-plane spanned by v and w re-
duces the problem to the 2-dimensional case, which follows easily from the
fact that Cy C int C*. See Figure 2. O

For any proper face F of C(X), define
Pr=FNP(X)=F'NPX).
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|

C*

Figure 2

If F is a timelike face (so FN X is a face of X), then Pr turns out to be a
spherical cell that we denote by o (= PF).

LeEMMA 2.4.2. If Fistimelike, then o is a spherical cell. The set {0r} F timelike
partitions P(X) into a piecewise spherical cell complex.

Proof. If F is a timelike face of C then F* is a spacelike subspace of V,
so FI1NS,(V) = §(Fl) is a sphere Also, FC C* £ and the linear part of F
is Wt. Thus, o = FNP(X) = FNWNS,(V) is a spherical cell in S(F*).

Since the faces of C%,are precisely the duals of the timelike faces of C, these
spherical cells partition P(X) into a piecewise spherical complex. OJ

LeMmMA 2.4.3. Suppose F is spacelike. Then F+N X is a convex polyhedral
set in the hyperbolic space FrNH", and Pr = P(F*N X). Thus, Pg is the
polar dual of a convex set of smaller dimension.

Proof. Since F is spacelike, F* is timelike. F*NC is a polyhedral cone in
F* whose span is F*NW. It is easy to see that the full polar dual of F*NX
in F*is
P(F*NX,F*) =C(X)3,NS|(FY)
and hence
P(F*NX)=C(X)LoNS(FLNW)
=FtNP(X). O
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We shall next analyze what happens when F is lightlike.

2.5. Cusps

Let I, denote the positive light cone in R™!; thatis, L, = {ve R™!|g(v) =0
and (v, x) < 0 for all xe H"}. The sphere at infinity of H”, denoted by S,
is the projective image of L, —{0}. Thus, a point in S, is an open ray in
L, —{0}. Geometrically, a point in S, can be thought of as the limit point of
a geodesic ray in H".

If ye S.,, then y* (a linear subspace of R™!) is the tangent space along y
to L. Pick a point x in H", and consider the affine subspace

A, =x+y*.
If vey, then A, is the locus of those we R™! such that (v, w) = constant,

where the constant is, of course, (v, x). The horosphere at y (passing through
x) is the subset E, of H" defined by

E,=A,NH".

With the induced metric, E, is isometric to Euclidean (n —1)-space.

We return to the situation where X is a convex polyhedral set in H”. Let
So(X) denote the image of (C(X)NL,)—{0} in S,. The points in S,(X)
are the points at infinity of X.

For any y € So(X), let F, be the unique face of C(X) that contains y in its
relative interior. Thus, F; is either timelike or lightlike. The point y is called
a cusp point of X if F, is lightlike. If F'is any lightlike face of C(X), then
there is a unique cusp point y with F, = F; in fact, y = FN F.

Suppose that y € So(X) and that E|, is any sufficiently small horosphere
at y, where “sufficiently small” means that E, intersects only those faces of
C(X) containing F,. Set

Z,=E,NX.

Then Z, is an (n—1)-dimensional Euclidean convex polyhedral set, well-
defined up to similarity.

LEMMA 2.5.1. Let y € S(X). F, is timelike if and only if Z, is a polyhedral
cone. Thus, y is a cusp point if and only if Z, is not a polyhedral cone.

Proof. Let &, be the poset of timelike faces of C(X) that contain y. Then
&, indexes the poset of faces of Z,. Thus, Z, is a polyhedral cone if and only
if &, contains a minimum (= lower bound). But &, contains such a minimum
if and only if F, is timelike (in which case F, is the minimum). O

If y is a cusp point of X, then put
P,=Pp = F;*NP(X).

LEMMA 2.5.2. If y is a cusp point, then P, can be canonically identified
with P(Z,). Thus, the subcomplex P, corresponding to a cusp is isometric to
the polar dual of a convex set in E"~ !,
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Proof. There is a canonical identification of the horosphere E, with the
Euclidean space y'/{y) = E"~!, well-defined up to translation. (Here, O
denotes the line determined by y.) On tangent spaces, this identification cor-
responds to the isomorphism

T.E,=x*Ny* = y*/Ay)

induced by the projection y* — y*/Ay). If F is a timelike face of C(X)
containing y and if xe FNE,, then F*C F*Nx*Cy*Nx* =T E,. It fol-
lows that unit normals to F in R™! can be identified with unit normals to
T.(F ﬂlE ) in T, E,, and hence with unit normals to FNE, in E,, viewed
as E” D

2.6. Links in P(X)

Let us summarize the results of Sections 2.3-2.5. Let X be a convex poly-
hedral set in E”, $", or H”, and let C = C(X) be the cone determined by X.
If Y is a face of X, then Fy =C(Y) is a face of C. (In the spherical and hy-
perbolic cases, Fy is the unlque face such that Y = XN Fy.) Associated to ¥
is a spherlcal cell oy = YN P(X). (In the spherlcal and hyperbolic cases,
Y=Fyand gy = or,; in the Euclidean case, Y C Fy, but they need not be
equal.) Let Fo(X) denote the set of proper faces of X ordered by inclusion.

Let (X )°P denote this set with the opposite ordering.

PROPOSITION 2.6.1. Let X be a convex polyhedral set in E", S", or H".
Then P(X), the polar dual of X, is a piecewise spherical cell complex whose
poset of cells {oy} is naturally identified with Fy(X)°P. If X is a cell of di-
mension k in E”, S", or H", then P(X) is homeomorphic to a (k—1)-sphere.

LEMMA 2.6.2. Let X be a convex polyhedral set in E", S”, or H", and let
W = Span(C(X)). Let Y € Fy(X) and let y be a point in the relative interior
of oy. Then:

(1) Lk(y, P(X)) = P(Y,y*NW); and

(2) Lk(oy, P(X)) = P(Y).

Proof. The correspondence F ~ F gives a bijection between faces of C and
faces of C* such that

F=F=T(F,C**"
Thus F* = T(F,C*), where F* is the dual cone in V to F, viewed as a poly-
hedral cone.
Let F = Fy = C(Y). Then y lies in the relative interior of F, so
=T,(C").

The faces of F* are of the form T(I:“ é), where G is a face of F. In the
hyperbollc case, T(F, G) is spacelike if and only if G is spacelike (since
Span(T(F G)) = Span(G)), SO

20=T,(C%y).
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Thus, in the spherical and Euclidean cases,

Lk(y, P(X)) =S(y)NT,(C*)
=S(y*)NF*
= P(Y, y*).

The same holds in the hyperbolic case if we replace C* by C%, and F* by
FZ,. Intersecting both sides of the quation with W gives part (1) of the
lemma; intersecting with Span(Y) (= (Y)?1) gives part (2). O

3. The Intrinsic Metric on P(X)

3.1. A Geometric Interpretation of Local Geodesics in P(X)

There is an interesting interpretation of a local geodesic in P(X') in terms of
the hyperbolic geometry of X. This relationship is explained in [HR]. We
shall now recall it.

Each point v in S§ corresponds to an oriented hyperbolic hyperplane

H,=v'NH".

If ve P(X) then H, is called a supporting hyperplane of X. This terminol-
ogy is appropriate since v lies in P(X) if and only if X lies in the half-space

D,={ueH"|{u,v) <0}

and XN H, is nonempty. (If v belongs to the relative interior of the spheri-
cal cell oy, then H/NX =Y.)

Suppose that oy is a cell of P(X), that vyand v, are points in distinct faces
of doy, and that v is the geodesic segment in ¢y from v, to v,. Set

G=y*NH"=H, NH,,.

Then G is a totally geodesic codimension-2 subspace of H”. The length £(v)
of v is cos (v, v;). Hence, £(y) measures the exterior dihedral angle be-
tween H, and H, . Corresponding to the points of v, there is a 1-parameter
family of supporting hyperplanes obtained by rotating H, to H, about G
through an angle of (7).

Next suppose that y = (v, ..., yx) is a broken geodesic in P(X), where v; is
a geodesic segment in some cell from v;_; to v;, as in the previous paragraph.
Put H;=H, and G; = (yDtNH”" = H;_,N H;. Thus, v gives a 1-parameter
family of supporting hyperplanes “rolling” along the boundary of the con-
vex body X and containing Hy, H,, ..., H;_; in succession.

Consider the (n—1)-dimensional hyperbolic space H;. Then G, and G,
are oriented hyperplanes in H; with corresponding unit normal vectors v/
and v/, in Lk(v;, P(X)). Suppose that the broken geodesic v is actually a
local geodesic, that is, d(v/, v/+1) = 7 (cf. (1.5.2)). We shall prove in Proposi-
tion 3.3.3 that this implies the hyperplanes G; and G;, ; do not intersect in H;.
Hence, G; and G;,; bound an infinite (#n —1)-dimensional “strip” S; in H;.
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Finally, we suppose that y = (4, ..., ¥x) is a closed local geodesic. We then
obtain a sequence of strips (Sy, ..., Sx_1) such that S;C H; and S;_;N ;=
G;. Let S, = §yU---US;_; be the union of these strips in H". We note that,
even when the indices i and j are not consecutive (modulo k), the strips S;
and S; might have nonempty intersection. To eliminate these extraneous in-
tersections, one introduces an abstract (n —1)-dimensional hyperbolic mani-
fold 5'7 formed by taking the quotient of the disjoint union I1S; by the
equivalence relation identifying the boundary components of S;_; and S;
that correspond to G;. The natural map S'7—>S7 C H” is then a piecewise
totally geodesic immersion.

The (n —1)-manifold S‘., is a hyperbolic cylinder. That is to say, it is iso-
metric to H" X p,), where p, is either a parabolic or hyperbolic isometry
of H”~! and where {p,) denotes the infinite cycle group generated by g,.
Thus, to each closed local geodesic v in P(X) we have associated an im-
mersed hyperbolic cylinder S., in H” such that the length of v is the sum of
the exterior dihedral angles in S, . This cylinder will be used in Section 4 to
prove the main theorem (Theorem 4.1.1).

3.2. A Version of a Result of Moussong

Our goal in this subsection is to prove Theorem 3.2.2, which relates the
intrinsic metric on P(X) to the Lorentzian inner product on R™!. We begin
with a preliminary lemma that clarifies the statement of Theorem 3.2.2.

LEmMA 3.2.1. If v,we P(X) then (v,w) <1, with equality if and only if
v=w.

Proof. Suppose that v, w are distinct vectors in P(X) with (v, w) = 1. Then
the supporting hyperplanes H, and H,, do not intersect in H”. Thus, for any
x in H,,, the quantity {(w, x) is never zero. If it is negative, then the half-space
D, is contained in D,; if positive, then D,, C D,. In either case, H,and H,,
cannot both be supporting hyperplanes, a contradiction. O

THEOREM 3.2.2. Suppose v, w are points in P(X) with {v,w) > —1. Then
d(v, w) < cos (v, w),

where d is the intrinsic metric on P(X). In fact, suppose that neither of the

Sfollowing conditions hold:

(1) vand w belong to some cell of P(X);
(ii) v and w belong to P, for some cusp point y of X.

Then d(v, w) < cos v, w).
This theorem is a modification of [M, Lemma 9.7]. Although Moussong was

working in a slightly different context, both the statement and proof of The-
orem 3.2.2 are essentially the same as in [M] (our case is somewhat easier).
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Figure 3

REMARK 3.2.3. When X is a 2-dimensional convex polyhedral set in H?
there is an easy geometric proof of Theorem 3.2.2, along the lines of the
proof of [HR, Lemma 3.4], which we now recall. Suppose v, we P(X) and
(v, w) = —1. Then the supporting lines H, and H,, intersect at a point g,
which either lies in H? or on the circle at infinity (when (v, w) = —1). Let o
be the polygon, exterior to X, that is bounded by H,, H,, and some of the
edges of X, as indicated in Figure 3. Let g, ..., g; be the other vertices of
Q and let «, 6, ..., 6; be the indicated angles. Then « = cos™ (v, w) and
div,w)=0;+---+0.

For any finite-area polygon Q in H? (convex or not), the Gauss-Bonnet the-
orem states that the sum of the exterior angles of Q is equal to 27 + Area(Q).
In our case, the exterior angle at g, is «, at g, it is 7 —#8,, and at g, it is 7 —6,,
whereas for 2 <i < k—1 the exterior angle at g; is —6; (a negative number).
Thus

oat+(mr—0))—(0+ - +0,_))+(r—0;) =27+ Area(Q).
Hence, a = 3 §;+ Area(Q); that is,
cos v, wy = d(v, w) + Area(Q).

Thus d(v, w) < cos™ (v, w), and the inequality is strict unless Area(Q) = 0.
If Area(Q) =0, then H, and H,, are actually supported by edges of X and
gy is a vertex of X (possibly at «), and so we are in situation (i) or (ii) of the
theorem.

Before giving the details of the proof of Theorem 3.2.2, let us sketch the
rough idea. Suppose v and w are distinct points in P(X). By Lemma 3.2.1
we always have (v, w) < 1. Hence, the condition that (v, w) > —1 means that
|{v, w)] < 1, in other words, that v and w span a spacelike subspace of R™!,
The cone generated by v and w then intersects ST in a circular arc § of length
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cos~!¢v, w). In general, 6 will not lie in P(X). Let u denote the unit tangent
vector to 6 at v. In the sequence of lemmas to follow (in particular, Lemma
3.2.8), we show that one can always find a vector ze Lk(v, P(X)) such that,
as x moves along the geodesic v in direction z, the quantity cos™'{x, w) de-
creases at least as fast as it does when x moves along 6. (The condition that
Z have this property is just that (u#, z) = 1.) Using a compactness argument,
we show that we can extend vy to a path from v to w of length at most that
of &.

Suppose G is a subspace of H” and y € S... We say that G meets y if there
is a geodesic ray in G that limits at y.

LEMMA 3.2.4. Supposev,we P(X) aresuchthat HNH ,NX=0.Ifyisa
point in So(X) that meets H,and H,,, then y is a cusp point of X.

Proof. Let E, be a small horosphere at y, and let Z,=E,NX. Then Z,is a
Euclidean convex polyhedral set, and v*NE, and w*N E, are supporting
hyperplanes of Z, that do not intersect. It follows that Z, is not a polyhedral
cone (if it were, the intersection of any two supporting hyperplanes would
contain the minimum face). By Lemma 2.5.1, y is a cusp point. ]

LEMMA 3.2.5. Suppose that u is a unit vector in C*(X). Let d(H,, X) de-
note the distance (in H") from H, to X.

(i) Ifd(H,, X) > 0, then there is a unique point x, in X such that
d(H,, X)=d(H,, xo).

(ii) Ifd(H,, X) =0, then either
(@) H, is a supporting hyperplane for X (i.e. ue P(X)) or
(b) H, meets S(X) in a single point.

(iii) There is a vector z in P(X) such that {u,z) = 1. Moreover, if

dH,,X)>0,

then z can be chosen so that {u,z)>1.

Proof. (i) If a(t) is any infinite geodesic ray in X, then

{0 if a(t) and H, meet at infinity,

lim d(H,, a(?)) = o otherwise

{—
Since X is geodesically convex and since the restriction of the function x —
d(H,, x) to any geodesic segment is strictly convex, it follows that if d(H, x)
is bounded away from zero then there is a unique point x, in X where the
minimum value is obtained.

(ii) Suppose «;(#) and «,(¢) are two geodesic rays in X that both meet
H, at infinity. Let y; and y, be the corresponding limit points in So(X). If
¥y, # ¥, then, by convexity, the infinite geodesic from y; to y, is contained in
H,N X and hence H,, is a supporting hyperplane for X. Therefore, if H, is
not a supporting hyperplane then y, = y,, which proves (ii).
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(iii) First, suppose that d(H,, X) > 0. Then we choose z to be the parallel
transport of u to the closest point x,. It is then geometrically clear that H, is
a supporting hyperplane. This can also be checked by the following alge-
braic calculation. The vector z is the orthogonal projection of # onto (xg)*,
normalized to have unit length; that is,

_u+u, xg)xg
T AT xy )2

Since d(H,,, x) = —sinh{u, x) (see [T, Sec. 2]), the function x — {u, x) takes
its maximum value on X at x,. That is,

{u, x> =(u,x) forall xeX.
Since the inner product of any two points in H” is < —1,

(xg,X)=<—1.
Hence, for any xe X,

{u+u, xgdxg, x> = U, x)+ {1, xo)x0, X> < {u, x)—<u,x)=0.

It follows that u+<{u, xy)x, belongs to C*(X) and, therefore, so does its
positive multiple z. Since {z,x,) =0 and (z,2) =1, we see that ze€ P(X).
Moreover,

Cu, 2y = (1+<u, xp)2)? > 1,
as claimed.

Finally, suppose that d(H,,, X) = 0. By (ii) there are two cases to consider.
If H, is a supporting hyperplane, then put z = u. Otherwise, let y be the
unique point in S.(X) that meets H,. Let E, be a sufficiently small horo-
sphere at y and let Z, = E,N X. Then Z, is a Euclidean convex polyhedral
set and u* NE, is an affine hyperplane that bounds a half-space containing
Z,. Let H' be the oriented affine hyperplane in E), obtained by translating
utNE, to a closest point in Z,. Then there is a unique z € S{ such H; and
H, are parallel and meet at infinity at y, and such that H,N E, = H". Clearly,
ze P(X) and {(u, z) =1, as desired. |

In the next two lemmas and in Section 3.3, we must deal with the case where
the convex polyhedral set might be of smaller dimension than the ambient
hyperbolic space. In other words, the full polar dual might not coincide with
the polar dual. We set up some notation to deal with this situation.

NotaTtioN 3.2.6. Suppose Y is a convex polyhedral set in H”~! (possibly
of dimension < n—1). Let u e R"~%', If u is spacelike, then 7 = q(u)™"*u
denotes its normalization to a unit vector. Denote by #; and u, the orthog-
onal projections of u onto Y+ and Span(Y), respectively. Identify Y* with
R! and Span(Y) with R”~*~L1 If u, is any spacelike vector in R”~¢~11
then G,, denotes the hyperbolic hyperplane (u#,)* NH"~‘~L. As in 2.5,
P(Y)=S""1'% P(Y) (where the ambient space V' =R""!! is omitted from
the notation).
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LEMMA 3.2.7. Let u be a unit vector in R" %! such that u,e C*(Y). Then
there is a vector z € P(Y) such that {u, z) = 1. Moreover, z can be chosen so
that the inequality is strict except possibly in the following three cases:

(@) u; =0;

(b) u, is spacelike and d(G,,,Y) = 0;

(c) u,islightlike and uy € So(Y).

Proof. There are four cases to consider, according as the vector u, is zero,
timelike, spacelike, or lightlike.

Case I: u, =0. Put z=u. Then z lies in the suspension sphere and hence
in P(Y). Furthermore, {u,z)=1.

Case 2: u, is timelike. Then q(u;) =1—q(uy) > 1. In particular, u; #0.
Put z = @1,. Again, z lies in the suspension sphere and (u, ) = q(1)"/? > 1.

Case 3: u,is spacelike. Apply Lemma 3.2.5to ét, and Y to find z,€ P(Y) so
that {it,, z,) = 1. Put z=u,+ q(u,)"?z,. Then q(z) =q(u;) + q(uy) =1, so ze
S'"'x P(Y). Furthermore, (u,z)=q(u;)+q(u2){il2, 22> = q(u;)+q(uy) =
1, and the inequality is strict if and only if {#&,, z,) > 1. By Lemma 3.2.5(iii),
we can choose z; so that (iZ,, z;) > 1 unless d(G,,,Y) = 0.

Case 4: u, is lightlike. In this case one might try the approach used in
Case 2 or in Case 3. Both methods work; however, only the second method
yields a strict inequality. Since g(u,) =0, g(u;) =1—q(u,) =1. The first
method is to choose z = u;. Then z is in the suspension sphere and (u, z) =1.
Let y be the point in S, determined by u,. The second method can be ap-
plied whenever y ¢ S,(Y). Asin Lemma 3.2.5, we find a point x,in Y that is
closest to y. Explicitly, consider the smallest horosphere at y that intersects Y.
The intersection must be a single point x,. Let G be the hyperbolic hyper-
plane in H”~~! that is tangent to the horosphere at x;, and let z, be the unit
normal to G that points into the horoball. Clearly, z, € P(Y). We will choose
Z to be of the form

Z=/(cosB)u;+(sinf)z,
for an appropriate choice of 8 € (0, 7/2]. Any such z will lie in §/~1* P(Y).

Let € ={u,,2)>. Then ¢ >0 and (u, z) = (uy, (cosPu;)+{u,, (sinh)z,) =
cosf+esinf. Pick 6 € (0, /2] so that sinf < e¢. Then

cosf+esin@ > cosf@+sin2@ > cos?0+sin?f =1

and hence {u, z) > 1. O

LEMMA 3.2.8. Suppose v,w are points in P(X) with {v,w)> —1. Lei u
denote the orthogonal projection of w onto v', normalized to have unit
length:
_ w—=Lu,w)v
U= (1—<v, w>2)l/2 :




Polar Dual of a Convex Polyhedral Set in Hyperbolic Space 499

(Hence u is the unit tangent vector to the circular arc in St from v to w.)
Let Y be the face of X such that v belongs to the relative interior of oy. Then
there is a vector z in Lk(v, P(X)) (= P(Y, v*)) such that {u,z)=1. More-
over, if neither condition (i) nor (ii) of Theorem 3.2.2 holds, then z can be
chosen so that {u,z)>1.

Proof. Denote the orthogonal projections of v and w onto Span(Y) by v,
and w,, respectively. Since v, =0, 1, = (1—{v, w)*)™2w,. For any xeY,
0 = {w, x) = {w;, x)+ (w,, x) ={w,, x). Hence, w, and its positive multi-
ple u, lie in C*(Y'). We can thus apply Lemma 3.2.7 to find ze P(Y) with
(u,z)=1.

As for the question of strict inequality, it remains to show that cases (a),
(b), and (c) of Lemma 3.2.7 correspond to situations (i) and (ii) of Theorem
3.2.2.

Case (a): u, =0. Then w, =0 and hence weY. Thus, both v and w be-
long to oy and we are in situation (i).

Case (b): u, is spacelike and d(G,,,Y) =0. By Lemma 3.2.5(ii), either
G,, is a supporting hyperplane of Y or G,, meets S.(Y) in a single point y.
If G,, is a supporting hyperplane, then it intersects Y in a face Y. For any
xeY’, {w,x) ={Wwy,x)=Cu,,x)=0,s0Y'C H,N H,; that is, v and w both
belong to oy-. This is situation (i). Otherwise, H,N H,,N X =@ and H,N H,,
meets S,(X) at y. By Lemma 3.2.4, y is a cusp point of X. Hence, v,we P,
and we are in situation (ii).

Case (c): u, is lightlike and represents a point y in S(Y). We then argue
exactly as in the end of the previous paragraph, and conclude that we are
again in situation (ii). 0

Proof of Theorem 3.2.2. Consider the function

Sf(v) =cos v, w)
defined on the set
U={ve P(X)|{(v,w)> —1].

By Lemma 3.2.1, for any ¢ > —1 we have that
U.={ve P(X)|{v,w) =]}
is a compact subset of U.

Cram: For any ve U there is a point r(v) € U such that

d(v, r(v))+f(r(v)) < f(v)
andr(v) Zvifv#w.

To prove the claim, suppose ve U and v # w. Let ¥ and z be as in Lemma
3.2.8, that is:
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y= w—{v, w)v )
(1=, w2

{u,z)=1, zelLk(v, P(X)).

For sufficiently small € > 0, set
r(v) = (cose)v+(sine)z.
Let § = cos~ (v, w) so that w = (cos 8) v+ (sin8)u. Then

{r(v), w) =cosecosf@+<{u,z)sinesinf
= cos e cosf+sinesind
= cos(f —¢).
Hence,
d(, r(v)) +f(r)) < e+cos Kr(v), w)
<e+0—e¢
= f(v).

If neither condition (i) nor (ii) of the theorem holds, then we can choose z
so that {u,z)>1 (Lemma 3.2.8). Then {r(v), w) > cos(8 —e), which gives
the strict inequality d(v, r(v))+ f(r(v)) < f(v).

Now fix ve U and let V be the set

V={xeU|d(v,x)+f(x) < d(v, r(v))+f(r(v))}.
Note that for any x eV, r(x) also lies in V since
d(v, r(x))+f(r(x)) = d(v, x) +d(x, r(x)) + f(r(x))
< d(v, x) + f(x).
Note also that V is contained in Uy, ,, since for xeV,

S(x) =d(v, x)+ f(x) = d(v, r(v))+ f(r(v)) < f(v).

Thus, V is nonempty (since r(v) €V) and compact, so f attains its mini-
mum on V, say at p e V. We claim that p = w. If not, then r(p) lies in V and
since r(p) # p,

0<d(p,r(p)) = f(p)—S(r(p)),

which contradicts the minimality of f at p. Hence, p =w. In particular,
weV. Thus,

d(v,w)+f(w) =d(v, r(v))+ f(r(v)) = f(v),

with the last inequality strict except under conditions (i) or (ii). Since {(w, w) =
1, f(w) =0, so this proves the theorem. O

3.3. Some Consequences of Theorem 3.2.2

The goal of this subsection is to prove Proposition 3.3.3, which is the key tech-
nical lemma in the proof of the main result. We begin by recalling a general
result concerning the orthogonal join of two piecewise spherical polyhedra.
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Suppose that K| and K, are piecewise spherical polyhedra and that K, * K,
denotes their orthogonal join (cf. Section 1.3). If x, € K, and x; € K,, then
there is a geodesic segment (= arc of a great circle) of length 7/2 in K, * K,
from x; to x,. For 1 € [0, /2], let [ x;, x5, {] denote the point on this segment
of distance ¢ from x;.

The following is proved in [CD1] as Lemma A2 and A6 of the appendix.

LeMMA 3.3.1. Suppose that K, and K, are nonempty piecewise sphericai
polyhedra and that d,, d,, and d denote the intrinsic metrics on K,, K>,
and K, * K,, respectively. Let x =[x),X,,5] and y =[y;, 2, t] be points in
K, *K,. Thend(x, y) < w. Moreover, d(x, y) = wif and only if s = t and one
of the following conditions holds:

(@) s=0and di(x,, y\) = 7;
(b) s=n/2 and d,(x5, y;) = 7;
(c) s#0, s#x/2, di(x1, ) = 7, and d»(x5, y5) = =.

In the next lemma and its proof we return to the notation of Section 3.2.6.

LemMA 3.3.2.  Let Y be a convex polyhedral set in H" ™' and let v,w € P(Y)
be such that d(v, w) = &, where d is the intrinsic metric on P(Y'). Then

v,w)<-—1.
In other words, the hyperbolic hyperplanes
G,=v*NH""! and G,=wNH""!

are either parallel or ultraparallel.

Proof. If Y is of dimension n—1 (the maximum possible), then P(Y) =
P(Y) and the lemma follows immediately from Theorem 3.2.2. So, suppose
that dimY < n—1. For any vector ve P(Y), let v; and v, denote its orthog-
onal projections onto Y+ (= R') and Span(Y), respectively. If g(v;) # 0 for
i=1,2,let b; = g(v;)"?v; be the corresponding unit vector. Thus, ;e S’
and 7, € P(Y'). We want to apply the previous lemma to P(Y) =S* 1% P(Y).
In the notation of that lemma, v = [, D,, s} and w = [w;, w,, t], where s =
q(v;)V? and ¢t = g(w;)"/?. Hence, Lemma 3.3.1 gives that d(v, w) = m, that
s =t, and that one of the following conditions holds:

(a) v and w are antipodal points on the suspension sphere $°~;

(b) v and w liein P(Y) and d(v, w) = w; or

(©) g(vy) #0, g(vy) #0, vy =—w,, and d(D,, w,) = 7.
In case (a), {v,w)=—1. In case (b), (v, w) < —1, by Theorem 3.2.2. So,
suppose (c) holds. Then (#;, w;) = —1 and (by Theorem 3.2.2) {t,, w,) <
—1. Since s = ¢, we have g(v,) = g(w,) and q(v,) = q(w,). Hence, {v;, w;) =
—q(v;) and (vy, w3) < —q(v,). Thus,

(v, w) = (U, W) +{Up, W) < —(q(v)) +q(vy)) = —1,

so the lemma also holds in this case. 1
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In the next proposition we return to the situation considered in Section 3.1.

ProposITION 3.3.3. Let v = (vyy,...,Y¥x) be a closed local geodesic in P(X)
with break points vy, ..., Uy_1, Ux = Ug. (Interpret the indices as integers
modulo k.) Let H;=H, and G; = H;_,N\ H; be the subspaces of H" con-
sidered in Section 3.1.

(1) The subspaces G; and G, are either parallel or ultraparallel hyper-
planes in H;.

(ii) For i =0, ...,k—1, suppose that G; and G;,, are parallel. Let y;e
S« (H;) be the point at infinity where G; and G;,., meet. Further, sup-
pose that yo=y,= -+ =yi_1. Then {(y) = 2w and, if y denotes the
common value of the y;, then y is a cusp point of X.

Proof. (i) Asin Section 1.5, from the broken geodesic y we obtain unit tan-
gent vectors v/ and v/, in Lk(v;, P(X)), where v/ and v/, are in fact the
unit outward normals to G; and G;,; in H;. Since v is a local geodesic, con-
dition (1.5.2) gives

di(vi,viv) = 7,

where d; is the intrinsic metric on Lk(v;, P(X)). Let Y; be the face of X
such that v; belongs to the relative interior of oy; that is, Y; = H;N X. By
Lemma 2.6.2(1), Lk(v;, P(X)) = P(Y;, (v))*). Applying the previous lemma
with Y =Y;, v =1/, and w = v/,,, we conclude that (i) holds.

(ii) Suppose the hypotheses of (ii) hold. Let Z, denote the intersection of
the half-spaces bounded by the H; with a horosphere E, at y. Then Z, is an
(n—1)-dimensional Euclidean prism (i.e., it is isometric to the Cartesian
product of a polygon and an (n — 3)-dimensional Euclidean space), and £(y)
is the sum of the exterior angles. Thus, ¢(y) = 2x. Moreover, if v,w are
any two points on vy then the length of the segment of y between them is
cos~{v, w). Choose such v, w that are arbitrarily close and do not lie in
the same cell of P(X). If y is not a cusp point then, by Theorem 3.2.2,
d(v, w) < cos~ (v, w), which contradicts the hypothesis that v is a local geo-
desic. Hence, y is a cusp point and the proposition is proved. O

4. The Main Result

4.1. P(X) Is Large

THeEOREM 4.1.1. Suppose X is a hyperbolic convex polyhedral set of dimen-
sion n. Then:
(1) its polar dual P(X) is large; and
(2) if v is any closed local geodesic of length 2=, then v must lie in the
subcomplex P, for some cusp point y of X.

The proof uses Proposition 3.3.3, together with an argument of Hodgson
and Riven [HR].
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Proof. According to Lemma 1.6.1, P(X) is large if and only if

(1) sys(P(X)) = 2w, and
(i1) sys(Lk(o, P(X))) = 2« for all cells ¢ in P(X).

Each cell o of P(X) is of the form ¢ = oy for some proper face Y of X. By
Lemma 2.6.2(2), Lk(oy, P(X)) = P(Y). We can assume, by induction on
the dimension, that the theorem holds for Y; in particular, sys(P(Y)) = 2,
so condition (ii) holds. Thus, it suffices to check (i).

Let v be a closed local geodesic in P(X). As in Section 3.1, we construct
an (n—1)-dimensional hyperbolic cylinder S and its image S, in H" such
that £(y) is the sum of the exterior dihedral angles in S,. Hence S is iso-
metric to H"/{p. ), where the isometry p., is either hyperbohc or parabohc
We thus have two cases to consider.

Case 1: p., is hyperbolic. In this case the argument of [HR] shows that
£(7v) > 2. (Actually, [HR] is concerned only with dimension 3, but this part
of the argument works in any dimension.) The argument goes as follows.
Since p,, is hyperbolic, there is a unique closed geodesic & on S'v of shortest
length (& is the image of the axis of p,). Let « denote its image in S.,. Then o
is a piecewise geodesic in H”. The break points of « lie on the boundaries of
the strips §;; that is, such a break point lies on the intersection of two hyper-
planes H; and H;,,. By Lemma 3.2 in [HR], the “turning angle” of « at a
break point is less than or equal to the corresponding exterior dihedral angle
between H;and H; ;. Thus, the sum of the turning angles of « is < (7). By
Theorem 3.1 in [HR], this sum of turning angles is > 2«. Hence, ¢(y) > 2«.

Case 2: p., is parabolic. In this case we are in the situation of part (ii) of
Proposition 3.3.3. The proposition implies that -y lies in some P, for y a cusp
point of X, and its proof shows that ¢(y) =

Thus, ¢(y) = 27 in both cases, which verifies condition (i) and hence state-
ment (1) of the theorem. The analysis in Case 2 also shows that if {(y) =
then vy lies in some P, which is statement (2) of the theorem. O

4.2. The Induced Metric at a Cusp
We have the following converse to the last part of Theorem 3.2.2.

ProposiTION 4.2.1. Suppose X is a hyperbolic convex polyhedral set of
dimension n, and that d is the intrinsic metric on P(X). Suppose further
that v,w are points in P(X) and that either

(i) vand w belong to the same cell of P(X) or
(ii) v and w belong to P, for some cusp point y.

Then
d(v, w) = cos Kv, w).

Proof. We shall verify this for case (ii) only; the proof in case (i) is similar
and easier. Let d; denote the intrinsic metric on P,. We first note that, since
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y is the polar dual of a Euclidean convex set, if v,we P, then (v, w) = -1
and dy(v, w) = cos v, w) (by Lemma 2.2.1(2)). The proof is by induction
on n. Suppose the proposition holds in dimensions < n. We first claim that
P, is locally convex in P(X). To see this, we must check condition (*) of
Lemma1.6.5. Let u € P,and let Y be the face of X such that # belongs to the
relative interior of gy. Then

Lk(u, P(X)) = P(Y,ut) =S'"1%P(Y),
Lk(u, P)) =S'" 1'% P(Y),

where P,(Y) = P,NY and S'~! is the unit sphere in Y*Nu?. Let d’ and dj
denote the intrinsic metrics on P(Y) and P, (Y'), respectively. Suppose we are
given x, x’e P,(Y) such that dj(x,x’) = 7. Then dj(x,x’) = = and {(x, x’) =
—1. By the inductive hypothesis, d’(x, x’) = . By Lemma 3.3.1, the same
result holds after taking ¢-fold suspensions. This verifies condition (*) of
Lemma 1.6.5, and hence shows that P, is locally convex in P(X). By Lemma
1.6.4, any geodesic in P, is actually geodesic in P(X). As a result,

cos v, wy = dj(v, w) = d(v, w). O

DEFINITION 4.2.2. Let Cone(P,) denote the orthogonal join of P, with a
point. The completed polar dual of X, denoted P(X), is the piecewise spher-
ical complex formed by gluing Cone(P)) to P(X) along P, for each cusp
point y.

For example, if S is n-dimensional and of finite volume, then each P, is iso-
metric to the round sphere $”"~2 (by Lemma 2.2.1)) and so Cone(P ) is a
hemisphere. Thus, P(X) is obtained from P(X) by “capping off” the P,
with hemispheres. It is then clear that P(.X') is homeomorphic to the (n —l)-
sphere.

In general, if Kj, K, are large piecewise spherical subcomplexes and K is a
common subcomplex that is locally convex in both, then the result of gluing
K; to K, along K is large. (After taking Euclidean cones on K, K, and K,
this is a special case of Gromov’s gluing lemma; see [Pa, Lemma 4.3].) As a
corollary of Proposition 4.2.1 and Theorem 4.1.1, we therefore have the
following.

COROLLARY 4.2.3. P(X) is large.

4.3. Convex Polytopes
In this subsection we state two special cases of the preceding results.

COROLLARY 4.3.1. Let X be an n-dimensional hyperbolic convex polytope.
Then P(X) is a large piecewise spherical structure on S"~'. Moreover, the
systole of P(X) is greater than 2x, as is the systole of the link of any cell
in P(X).
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COROLLARY 4.3.2. Let X be an n-dimensional convex polyhedral set of

finite volume in H". Then P(X) is a large, piecewise spherical structure on
s,

5. The Gauss-Bonnet Formula for
Hyperbolic Polytopes

5.1. The Quantity k(K)

For ¢ a p-dimensional spherical cell, let a(o) denote its p-dimensional vol-
ume, normalized so that the volume of $7 is 1; that is,

_ vol(o)
a(o) = m

Also, let a*(0) = a(o™), where ¢* = C*(6) N'S? is the dual cell to ¢ (cf. Lem-
ma 2.3.1).

Given a finite, piecewise spherical cell complex K, consider the following
quantity:

k(K) =143 (—1)dima+ig*(g), (5.1.1)

where the summation is over all cells o of K. In [CMS] it is shown that the
value of « on the link of a vertex in a piecewise Euclidean complex plays the
role of the Gauss-Bonnet integrand. For this reason, in analogy with a well-
known conjecture of Hopf, we made the following conjecture in [CD2].

CoONIJECTURE 5.1.2. Suppose that K is a large, piecewise spherical structure
on the (2m —1)-sphere. Then (—1)"«x(K) = 0.

5.2. Hopf’s Formula

Suppose X" is an n-dimensional hyperbolic convex polytope. Its normalized
volume v(X") is defined by
vol(X")
XY= —-on—.
vXD) = SoEn
Thus, v(X") is a positive constant multiplied by the usual volume of X”.
The Gauss-Bonnet formula for hyperbolic convex polytopes is due to
Hopf [H]. (Of course, Hopf’s result predates the general Gauss-Bonnet for-
mula due to Allendoerfer and Weil [AW].) Hopf’s formula is the following.

THEOREM 5.2.1 (Hopf). Suppose X*™ is a hyperbolic convex polytope of
dimension 2m. Then

(—1)"20(X) = k(P(X)).

REMARKS 5.2.2. (1) The analogous formula for X 2" spherical or Euclidean
was proved in 1905 by Poincaré [P]. It states that if X is Euclidean then
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x(P(X)) = O (this also holds in odd dimensions), while if X>” is a spherical
cell then 2a(X) = «(P(X)).

(2) In writing the quantity x(P(X)), we have dualized twice: once in form-
ing P(X) and a second time in taking the normalized “exterior angles” a*(s).
Thus, «(P(X)) could have been written as an alternating sum of interior an-
gles of X (and this is the actual form of the formulas of Poincaré and Hopf).

(3) If we subdivide X2 into 2m-dimensional cells X7, ..., X}, then a for-
mal calculation shows that k(P(X)) = X «(P(X;)) (cf. [AW, Thm. III]). The
left-hand side of Hopf’s formula is also clearly additive with respect to sub-
divisions. Thus, it suffices to prove the formula in the case of a simplex.

(4) The formula also holds when X is a convex polyhedral set of finite
volume (use a limit argument). In this case it does not matter whether we
write the right-hand side as x(P(X)) or as x(P(X)). The reason is that, for
any cusp point y, «(P,) = 0 (by Poincaré’s result) and hence x(Cone(P,)) =
0, since « is rgultiplicative for orthogonal joins by [CMS, (3.2.9)]. Thus,
k(P(X)) = k(P(X)).

Since v(X2™) > 0, we have the following corollary.

COROLLARY 5.2.3. Let X" be a convex polyhedral set of finite volume in
H2™ (e.g., a convex polytope). Then Conjecture 5.1.2 holds for P(X). In
fact, we have the strict inequality (—1)"x(P(X)) > 0.

6. Spaces of Geometric Structures

6.1. The Space of Piecewise Spherical Structures

Let K be a finite simplicial complex. Denote by K ") the set of i-simplices in K.
A piecewise spherical structure on X is determined by a function £: KV —
(0, 7), written as e — {,, giving the edge lengths. Conversely, such a function
comes from a piecewise spherical structure on X if for each simplex ¢ in K
of dimension > 1 there is a spherical simplex with edge lengths as prescribed
by ¢.

This last condition is equivalent to a simple condition using linear algebra,
which we shall now describe. Given £: K1) 5 (0, r), define a new function
x: KW - (—1,1) by x, = cos(¢,). Clearly, £ and x determine one another. Sup-
pose that € K, m > 1, and that {v,, ..., v,,, .1} is the vertex set of o. Given
an arbitrary function x: K" - (=1,1), define a (m+1) X (m +1) symmetric

matrix c,(x) by
1 if i=j,
C, (X)) = e s L
o )U {XTUJ' if i#]J,

where 7;7; denotes the edge from v; to v;. Then there exists a spherical m-
simplex with edge lengths as prescribed by x if and only if c,(x) is positive
definite. (If o can actually be realized as an m-simplex in 8", then vy, ..., Uy 41
are unit vectors in R”*! and ¢,(x) is the matrix of inner products (v;, vj).)
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The space @Sy of piecewise spherilcal structures on K is defined to be
the subset of the Euclidean space RX" consisting of all functions x: K" —
(—1, 1) such that c,(x) is positive definite for all simplices ¢ in K (of dimen-
sion > 1).

LEMMA 6.1.1. ®S8g is a convex open subset of RX?,

Proof. That the c,(x) be positive definite is clearly an open condition. A
convex linear combination of positixe definite matrices is positive definite;
hence ®S is a convex subset of RX®. 0O

Given x e @8y, let K, denote the space K with the piecewise spherical struc-
ture determined by x. Similarly, if ¢ is a simplex in X, then o, denotes the
corresponding spherical simplex determined by x.

A point x e @Sy is extra large if the following two conditions hold:

(a) sys(K,) > 2w; and
(b) sys(Lk(oy, K,)) > 2= for all simplices ¢ in K.

(See Section 1.6 for the definition of “sys”.) Let ELg denote the set of those
x in @8 that are extra large.

Moussong [M, Lemma 5.11] showed that the function sys: ®8x — R de-
fined by x — sys(K, ) is lower semicontinuous. This gives the following result.

LeEMMA 6.1.2 (Moussong). ELg is an open subset of ®Sg.

If X is a convex polyhedral set in hyperbolic space, without cusp points,
then our main result (Theorem 4.1.1) asserts that P(X) is extra large. Hence,
whenever K is combinatorially equivalent to the polar dual of such an X,
the space ELg is nonempty.

6.2. Spaces of Polytopes

Suppose that Q is some n-dimensional convex simplicial polytope. (Sim-
plicial means that each proper face of Q is a simplex.) Since Q is simplicial,
its dual polytope Q* is called simple. We are only interested in Q and Q* up
to combinatorial equivalence. The boundary complex of Q is a simplicial
com%)lex, which we shall denote by K. (Thus, K is PL-homeomorphic to
S$"7) '

Let Hg (resp., Sk or Ex) denote the space of isometry classes of hyperbolic
(resp., spherical or Euclidean) polytopes that are combinatorially equivalent
to Q*. The topology on these spaces will be described in the course of prov-
ing the next lemma.

LEMMA 6.2.1. The spaces Hy, Sk, and Eg are naturally smooth manifolds

of dimension nf,— (”;’l), where f, denotes the number of vertices in K.

Proof. Suppose that X is a convex n-cell in H” that is combinatorially iso-
morphic to Q*. For each vertex v; of K we have a codimension-1 face of X



508 RuTH CHARNEY & MICHAEL DAVIS

and an outward-pointing unit normal #; in the unit pseudosphere S,(R™!).
Thus, X determines an fy-tuple u: K@ — S (R™!) of vectors in S{(R™1).
A small neighborhood of u in [S;(R™')]/° will determine a polytope of
the same combinatorial type (since X is simple). Since dim S;(R™!) = n, this
shows that the space of such X is a manifold of dimension nf;. The isometry
group O(n, 1) of H" acts properly and freely on this manifold, and Hy is the
quotient manifold. Since dim O(n,1) = ( ";’1), we conclude that dim Hy =
nfo— (";1). The analysis for S and Ek is entirely similar. LJ

REMARK. Actually, Hyg should be called the space of “marked” hyperbolic
polytopes of the same combinatorial type as Q* (since we have prescribed
an identification of the codimension-1 faces of X with the vertices of K). The
finite group G of combinatorial symmetries of Q* acts on Hg, and Hy /G is
the “unmarked” space. Similar remarks apply to Sk and Ek.

If X represents an element of Hy (resp., Sk or Eg), then P(X) represents an
element of ®8x. This defines a map P: Hx — ®Sg (resp., P: Sy — @Sy or
P: Ex — ®8g). The following result for n = 3 is proved as Corollary 4.6 of
[HR]. Another 3-dimensional result, Theorem 4.1 of [HR], immediately im-
plies that both results hold in all dimensions = 3.

ProrosiTION 6.2.2 [HR]. For n=3, the maps P: Hy — ®Syx and P: Sy —
®Sx are embeddings.

The map P: Ex — ®S is not an embedding. To see this, first note that the ele-
ments of P(Ey) are all isometric to the round sphere $”~!. Thus, the points
in P(Eg) may be regarded as geodesic triangulations of $”~! of the com-
binatorial type of K. Conversely, any such geodesic triangulation is clearly
in P(Ex). (f {vy, ..., v,} C S"!is the vertex set of such a triangulation, then
the Euclidean n-cell X defined as {zeR"[(z,v;) <1, 1 <i =< k} gives back
the geodesic triangulation as its polar dual.) Arguing as in Lemma 6.2.1, we
see that P(Ey) is a submanifold of dimension (n—1) fo—(;' ) Hence, the
fiber of P: Ex — @8, has dimension f—n.

LEMMA 6.2.3. P(Ex) C P(Hg)NP(Sy).

Proof. Realize a point in P(E) as a geodesic triangulation of $" . Identify
S$"~! with a codimension-1 sphere in the unit pseudosphere S7(R™!); for ex-
ample, let z € H" and identify $”~! with the intersection of z* and S{(R™1).
Push the vertices of the triangulation slightly into the half-pseudosphere de-
fined by v-z < 0. If u,, ..., uy are the resulting unit vectors in S{(R"!), then
the hyperbolic polytope X defined by X = {we H" | ;- w < 0} has P(X) com-
binatorially equivalent to K and close to the original triangulation of $” .
Hence, P(Eg) C P(Hg). The proof that P(Ex) C P(Sk) is similar, with the
pseudosphere S7(R™!) replaced by the unit sphere $” in R”+!, O

Thus, when X is the boundary complex of a simplicial polytope, the follow-
ing picture has emerged. The space ®8y of piecewise spherical structures on
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K is diffeomorphic to Euclidean space of dimension f;, where f; denotes
the number of edges in K. ®Sx contains submanifolds P(Hg) and P(Sk),
each of dimension nf,— (”;l). The fact that P(Hy) is nonempty means that
the open subset ELg of extra large structures is nonempty. The fact that
P(Eg) C P(Hg) means that any geodesic triangulation of the round sphere
can be deformed to an extra large piecewise spherical structure.

An interesting problem is to understand the topology of ELg. For exam-
ple, when is ELy connected?

6.3. The Lower Bound Theorem
Since P(H) is a submanifold of ®Sg, we have

dim P(Hj) < dim ®Sy.

In the combinatorial theory of convex polytopes, this fact is known as the
lower bound theorem, which we state next.

THEOREM 6.3.1 ([Ba]). Let Q be an n-dimensional simplicial polytope, n =
3, with f, vertices and f, edges. Then

fiznfo—("3").

For n > 3, the above inequality is strict unless Q is a so-called stacked poly-
tope. This means that K (= adQ) is obtained from the boundary of an #-sim-
plex via subdivisions that involve adjoining barycenters of (n —1)-simplices.
Thus, if n > 3 and Q is not stacked, then P(Hy) is a proper subset of EL.

Some explicit examples of elements in ELx — P(Hy) are given in [M]. One
such class of examples occurs when Q* is the product of two 2-simplices (so
that K is the join of two triangles). Realize Q* as the Cartesian product of
two 2-simplices T, T, in H? with acute angles. Its “polar dual” in R*!x R?!
is the piecewise spherical structure x on K formed by the orthogonal join of
two large triangles, P(77) * P(T,). It follows that x is large. Consider the
6 X 6 matrix c(x) obtained by taking inner products of the six unit vectors in
R?!x R?!that are normal to the codimension-1 faces of Q*. Thus, ¢(x) has
signature (4, 2). (Alternatively described, c(x) is the matrix of cosines of
edge lengths in the piecewise spherical structure x.) There are nine edges of K
of length #n/2. If we deform x to x’ by slightly increasing these edge lengths,
then it follows from Moussong’s theorem that x’ is extra large. On the other
hand, for small deformations, the matrix c(x’) will still have signature (4, 2).
Hence, x’ cannot arise as a polar dual of a hyperbolic polyhedra, since this
would require c(x’) to be of signature (5, 1).
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