Siegel’s Lemma for Function Fields

JEFFREY LIN THUNDER

Introduction

Since the work of Thue early this century, an important tool in transcenden-
tal number theory and Diophantine approximation is the fact that a system
of homogeneous linear equations over @ has a relatively small integer solu-
tion. This idea was formalized by Siegel in 1929 [7], and it has since been
common to refer to results along this line of thought as “Siegel’s lemma”.
Using the notion of a height, one can formulate the question of finding small
solutions to systems of linear equations for arbitrary global fields—that is,
fields for which one has a “product formula”. It has proven useful to give
versions of Siegel’s lemma for such fields other than @. This was carried out
for number fields by Bombieri and Vaaler in [3]. Here we formulate and
prove a Siegel’s lemma for function fields, where by “function field” we mean
any finite algebraic extension of a field of rational functions in one indeter-
minate. We will give definitions for the heights used below in the next section.

Throughout this paper, k = ko(7T") will denote the field of rational func-
tions in one indeterminate over the field ky (we put no restrictions on the
field ky). We let K be any finite algebraic extension of k. As in [2], we denote
by K the field of constants of K (this is the algebraic closure of kyin K by [2,
Chap. 12, Thm. 6}) and the effective degree by m(K, k) =[K: kK1/[K: ko].
More generally, if L is a finite algebraic extension of K with field of constants
L, then the effective degree of this extension is m(L, K) = [L :K]/[Lgy: K;].

THEOREM 1. Let K be a function field and let h4 be a height on K" (as de-
fined below). There is a basis a,, ..., a, of K" satisfying

n

i n
El ha(a;) < hy(K")+ )

where g is the genus of K.

(g—1+m(K, k)),

As will be shown in Lemma 5, we always have the lower bound for a basis

D ha(a;) = hy(K"),

i=1
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so that the inequality in Theorem 1 is replaced by an equality whenever X is
a field of rational functions, and this is best possible.

One can reformulate Minkowski’s second convex-bodies theorem using
the language of adeles (see e.g. [3]). Theorem 1 in the case where K is a ficld
of rational functions is an analogue to this reformulation. In this case Theo-
rem 1 follows from an upper bound on the first minima, that is, an analogue
of Minkowski’s first theorem. This upper bound is provided by a generaliza-
tion of the Riemann-Roch theorem ([10, Chap. 6, Thm. 1] or Theorem 3
below) for the case of a field of rational functions.

Together, Theorem 1 and Lemma 5 imply the following.

CoROLLARY 1. Let K and h, be as above. Then there is a nested sequence
of subspaces Vi CV, C - C K" with dimg(V;) =i and

—hA(V) = h K"+ ——— (K 2 (g—1+m(K, k))

forl=<i<n.
We will see that Theorem 1 also implies the next corollary.

COROLLARY 2. Let K be as above. Suppose m and n are positive integers
with m < n, and let M = (a;;) be an m X n matrix of rank m with entries
a;j€ K. Then there are linearly independent b,, ..., b, _,, € K" with M b7 =0

satisfying

h(b;) < h(M —1+m(K, k
,21 (b;) = h(M)+ (Kk)(g +m(K, k).

Corollary 2 is an analogue of [3, Thm. 9]. The height # without the subscript
denotes an analogue of the “usual” absolute height for number fields. Here
we refer to the logarithmic, or additive, absolute height for number fields.
In [3] the multiplicative height is used, so in order to make a direct compar-
ison one should exponentiate both sides of the inequality in the statement of
Corollary 2. The difference between Corollary 2 and Theorem 9 of [3] is that
the quantity g—1+m(K, k) plays the same role here that the discriminant
plays in [3]. This is actually quite natural when one looks at the proofs. The
discriminant appears in the results of Bombieri and Vaaler precisely as the
covolume of a lattice (the lattice of integral points). This covolume is used
in the adelic version of Minkowski’s theorem which guarantees the existence
of an integral point in a certain domain (i.e., a point of small height). Here
we use an analogous argument to guarantee the existence of a point of small
height, with the quantity above playing the role of the covolume. (See Theo-
rem 3 below and its corollary.)

We can also prove results on relative extensions. Specifically, suppose K is
as'above and L is a finite algebraic extension of K with {L : K] =r = 2. Sup-
pose F is a finite algebraic extension of L that is a galois extension of both K
and L, with galois groups G(F, K) and G(F, L), respectively. Let gy, ..., 0, be
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elements of G(F, K) that are representatives of the distinct cosets of G(F, L)
in G(F, K). We then have the following result analogous to Theorem 12 of [3].

COROLLARY 3. Let M be an m X n matrix with entries in L, and let W be the
mrXn matrix
o;(M)
M= :
o.(M)

Suppose the rank of M is mr and mr < n. Then there are linearly indepen-
dent by, ..., b, _n,€ K" with MbT = 0 that satisfy

n n—mr

;::1 h(b;) = h(fm)‘i'm(g—l +m(KX, k)),

where g is the genus of K.

Corollary 3 follows from Corollary 2 just as Theorem 12 follows from The-
orem 9 in [3].

As in the number-field case with the discriminant, one may well ask if the
dependency on the genus is necessary. In [6] it is shown that some power of
the discriminant is needed in the formulation of Siegel’s lemma appearing in
the work of Bombieri and Vaaler. Here we adapt the methods used in [6] to
function fields and show the following theorem.

THEOREM 2. Let K be a separable algebraic extension of k of degree d with
field of constants ky. Let |l <m<n—2andlett ={(n—m—1)/2], where [-]
denotes the greatest integer function. Then there is an m X n matrix M of rank
m with entries in K such that any n—m linearly independent b,, ...,b,,_, €
K" with MbT = 0 satisfy
n—m
> h(b;) = h(M)+
=1

i

Hg—1+d)

If kg has at least d elements, then

t(g—1+d) _ (n—m)(d-1)
d?—d d )

'S h(b) = h(M) +
i=1

Theorem 2 shows that some dependency on the quantity g—1+m(KX, k) is
necessary in the upper bound of Corollary 2, at least in certain instances.
Note that the effective degree is generally bounded by the genus, except when
the genus is 1. In [4] it is shown that there are function fields of genus 1 with
arbitrarily large effective degree. Also, it is not clear whether separability
should be an issue here. It only enters the picture due to our particular con-
struction of a system where all solutions have relatively large height in terms
of the height of the solution space. Finally, as in the case of number fields,
there is the possibility of finding a basis defined over an algebraic extension
of K which would have smaller height.
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I. Heights and Divisors

Let X be a function field as above and let M(K) denote the set of places of
K over K. For ve M(K) we write K,, for the completion of K at the place v,
and for x € K, we write ord,,(x) for the order of x at v. Here ord, is normal-
ized so that its image is Z and, as usual, ord,(0) = . Thus, K is the subfield
of all elements x € K with ord,(x) = 0 or o for all places v. For n a positive
integer and x = (xy, X3, ..., X,) € K] we set

ord,(x) = min ord,(x;).

I<i<n
We denote the ring of integers of K, by R,; that is,

R,={xeK,: ord,(x) = 0}.
An element

A=(A,)e ][I GL,(K,)
veM(K)

will be called admissible if R]A,= R} for all but finitely many ve M(K),
where R C K denotes the R,-module @™ ; R,e;; in other words, A4 is an
idele in GL,(Kp), where Kp is the adele ring of K. We denote the set of ad-
missible elements by @x~, or simply Q if the field and dimension are under-
stood.

Given an A € @k, we may define an additive height 44 on K” for n > 1as
follows. Let x € K", x # 0. We then get a divisor

divy(x) = X, ord,(xA4,) v,
and we define the height of x with respect to 4 to be
h4(x) = —deg(div4(x))/m(K, k).

This height is projective, as the degree of a principal divisor is 0. Moreover,
it is “absolute” in the following sense. If L is a finite algebraic extension of
K and A € @k~, then A can also be viewed as in @;- in the natural way. Sup-
pose x € K" and let D be the divisor of K given by D = div4(x). View x asin
L" and let D’ be the divisor of L given by D’= div4(x). by [2, Chap. 15,
Thm. 9], we have deg(D’) =m(L, K)deg(D). By [2, Chap. 15, Thm. 2],
m(L, k) = m(L, K)m(K, k). Thus, h4(x) remains unchanged if one views x
as in L”".

We can extend this height to subspaces of K” via Grassmann coordinates.
Specifically, let S C K” be a subspace of dimension d over K where 0 < d < n.
(Throughout this section and the next two, d will denote a positive integer,
not the degree of the extension in the statement of Theorem 2.) Pick a basis
S, ..., 84 0f S and let (s;;) be the d X n matrix with rows sy, ..., s4. Let ¢(n, d)
denote the set of ordered d-tuples of integers (iy, i,, ..., i) satisfying 1 < i; <
i, < -+ <iy < n and order the elements of c(n, d) lexicographically. Fora e
c(n,d), let
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X, = det (s;).
« lSlSd( l_])
JE«Q
We then get a vector X = (X, )e K (@) which is the set of Grassmann coordi-
nates of S with respect to the basis s, ..., s;. We define

divy(S) = Sord, (X A%A4,)-v,
v
where A?A, is the dth compound of 4, = (a})):

d v
A?A, = det(a)].
v ({65( u))
JeEa
Since the Grassmann coordinates are projective, div4(S) is unique up to prin-

cipal divisors, so we get a well-defined divisor class div4(S) which is indepen-
dent of the choice of basis. We define the height of S with respect to A4 to be

h4(S) = —deg(div4(S))/m(K, k).
We also define

div(A) =divy(K") =X, ord, (det(A4,))-v and div,({0}) =0.
It can be shown (see [9, Part I, §2]) that
divy(S) = X, ord,(X,)-v,

where X, € K,fz) is the set of Grassmann coordinates for the subspace of K}
spanned by SA, with respect to the basis s, 4,, ..., s;A,. We also remark that
if $* C K" is the dual space of S (i.e., the set of x e K" such that x-s = 0 for
all s e S), then (see [9, Part I, §2])

hp(S*) = hy(S)—ha(K"),

where B e @ is given by B, = (A7)}, the inverse of the transpose of A,.

Here we have defined a height on K" (actually on L” for any finite alge-
braic extension L of K') via the local changes of coordinates given by A. Typ-
ically, one defines the height on K” via the canonical basis ey, ..., e, (using
the identity matrix for every place v), and we denote this height simply by A.
From the duality described above, the height of the null space of the matrix
M in Corollary 2 is equal to the height of the row space of M. We define
h(M) to be this height. If V' is any n-dimensional vector space over X and
A€ Qgn, we get a height on V' by choosing a basis for V' and identifying it
with K”. As we shall see in the following section, the height induced on a
subspace of K" can be realized in this manner, so that Corollary 2 follows
from Theorem 1.

II. An Extended Riemann-Roch Theorem

We continue with the notation of the previous section. For each place v let
P, C R, be the unique maximal ideal:
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P,={aeR,: ord,(a) > 0}.

For d < n we write K2 = ®%., K, e;, and similarly for R? and PZ.

LEMMA 1. Let v be any place and d be a positive integer less than or equal
ton. If A,e GL,(K,) then

R’;'NKZ = R?B;
Jor an nxXn matrix B,,, where B}, consists of a B,€ GL;(K,) in the upper
left-hand corner and zeros elsewhere. Moreover,
ordv(det(Bv)) = _Ordu(xv)’

n
where X, € K4 is the set of Grassmann coordinates for the subspace Sy =
KZA, with respect to the basis e, A,, ...,e4A4,.

Proof. The first statement is true since R, is a principal ideal domain, so
that every R,-module is free. We have

R'NS,=RIB,A,.

Let C, = B, A, and denote the nonzero rows of C, by s, ..., s;. Then the
s;s are a basis for S,, and the equality above may be expressed as

d
RINS, =P R,s;. (1)
i=1

n
Moreover, if Y, e K{4) is the set of Grassmann coordinates of S, with re-
spect to the basis sy, ..., sy, then

Y, = det(B,)X, € R{<.

Thus, it suffices to show that ord,(Y,) =0.
Suppose this is not the case and write P, = 7,R,. Then C, has rank less
than 4 modulo =,; that is, there are ¢y, ..., c; € R,, not all in P,, satisfying

d
E C;iS; € Pvn.

i=1

We then have

d
S cim,'s; e R,

i=1

which contradicts (1). This proves the lemma. O

Let S € K" be a subspace of dimension d > 0. For A = (A,) € Gx~ we define
Lg(A)={xeS:xeR}A, for all v}.

Then Lg(A) is a vector space over K and we denote its dimension by /5(A).
In the case n =1, A € @ corresponds to the divisor div(A4) = X ord,(A,)-v
and Lg(A) consists of all x e K such that ord,(x) = ord ,(A4,). If D=XD,-v
is any divisor of K we let L (D) be the set of x e K such that ord,(x) =D,
for all places v.
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The repartitions (adeles) over S, which we denote by R, are elements
r=(r,)e H Sy
ve M(K)

satisfying ord,(r,) = 0 for all but finitely many v, where S, € K} is the sub-
space spanned by S. We view S C ®Rg by setting x, = x for xe S. For A as
above we define the parallelotope Ag(A) to be

Ag(A)={reRs:r,e RJA, for all v}.

Thus, Lg(A) = Ag(A)NS. Similar to the case n =1 above, if D=XD,-v
is a divisor of K we define Agx(D) to be the set of (r,) € R that satisfy
ord,(r,) = D, for all ve M(K).

Under componentwise addition, ®g forms a vector space over K, with
subspaces Ag(A) and S. The following theorem in the case n =1 is equiva-
lent to the Riemann-Roch theorem.

THEOREM 3. Let K be a function field with field of constants K. For S € K"
a subspace of dimension d > 0 and A€ Qgn,

: R
dim (s

)—JS(A—‘) = —deg(divs(8)) +d(g—1);

that is,

. ® _
dnmxo< A e S)—IS(A ) = ha(S)m(K, k) +d(g—1),

where g is the genus of K and A™' = (A;) e Q.

Proof. Let Me GL,(K)taking K%to S, and lets; = e;M for 1 < i=<d. Then
Ls(A™Yy = {(xe K% xe R MA,)™! for all v}

and similarly for Ag(A~'). Let XUEK,,(Z) be the set of Grassmann coordi-
nates of S, A, with respect to the basis s;A4,, ...,s;A4,. Then X, is also the set
of Grassmann coordinates of KZMA, with respect to the basis e;MA,, ...,
e, MA,. We let Be @ be defined by B, = MA,. We then have div,(S) =
divg(K9), Is(A™") = Ixa(B7Y), and

(RS _ (RKd
As(AD)+S ~ Age(B~)+K4’

so we may assume that S = K9 Now by Lemma 1 we may assume d = n. The
theorem in the case where K, is finite follows from [10, Chap. 6, Thm. 1].
Here we basically follow the first proof of the Riemann-Roch theorem given
in [2].

We first show that /g»(A) is finite for all admissible 4. Toward this end,
write A, = (a;;) and consider the R, module R,af| + R, a3, + --- + R,a},. Since
R, is a principal ideal domain, this module is equal to R, A,; for some A4, €
K\{0]. We then have A4, = (A4,;) € Rk, where x € Lg(A) implies that x; €
Lg(A;). We repeat this for each column of A, getting A;e @ such that




154 JEFFREY LIN THUNDER

X € Lg»(A) implies that x;€ Lg(A;) for each i between 1 and n. Now each
Ik (A;) is finite by [2, Chap. 14, §2], so Ix~(A) must be finite as well.

Next, for A, Be Q- we say A|Bif R]'A, 2 R B, for all ve M(K); that is,
Agn(A) 2 Ag-(B). If A| B, we claim that

. AKn(A)) ( )
dimg { ———— | =de [R}A,:R!'B,]-v
KO(AKn(B) g UGE(K) v v v U]

= deg(div(B)) —deg(div(A)).

Indeed, it suffices to consider the case where R, A4, = R B, for all but one
place v, and further that » = 1. This case follows from the definition of
degree (see [2, Chap. 14, §1, Lemma 1]). From standard isomorphism theo-
rems, we now have (dropping the subscripts)

A(A)/A(B) - A(A) - A(A4)+K"
(ABY+A(A)NK")/A(B)  AB)+A(ANK" — AB)+K"

and
AB)+AANK" _  AMANK"  AMANK" _ L(A)
A(B) ~ AB)NAA)NK"  ABNK" LB’
Thus
_ (A) A(A)+K"
deg(le(B)) deg(le(A)) dim KO(L(B)) + dim Ko(m) (2)
for A|B.

By [2, Chap. 13, §2, Lemma 2], there is an @y € Qg such that A(ay) +K =
®Rg. Define AgeGgn by Ag=ayl, where 1€ Q- is the admissible element
given by the identity matrix at all places. Then Agn(Ag) + K" =Rgn. Let
B e @k~ be arbitrary and let A € Gg- be given by A(A) = A(Ag) + A(B). Then
A|B and, by (2),

L(A R
deg(div(B)) —deg(div(A4)) = dim Ko( LE B; ) +dimg, (W)

This shows that the last summand above is finite, and we may rewrite (2) as
deg(div(B)) —deg(div(A))

Rgn Ryn
= I(A) —I(B) +dlmKo(m'%<—;>—dlmK0<m7K:-I—(7> (2')

for A|B.
Now let A, Be @k~ be arbitrary. Let Ce Gk~ be such that C|A4 and C|B
(the existence of such a C is clear). Then, by (2’) (again dropping subscripts),

. R g~
deg(div(A)) — dlmK"(K(j)i(-l——K-_"> +[(A)

+1(C)

) Rg
= deg(div(C)) — dlmxo(m)

_ ®
= deg(div(B)) — dano(FB)%(—,,)+ I(B).
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Thus, for any A € Gk«, the quantity deg(div(A4)) —dimg (Rg/(A(A)+K")) +
/(A) is the same. By considering /€ Qx~, we get

(RK"
+Ign(A
AKAA)+KW) k()
@.Kﬂ
Ag-(I)+K"

&R
B "(’K(O) _dim""(AK(o;{ n K))

=n(l—-g),

where 0 denotes the zero divisor. Note that deg(div(A4™')) = —deg(div(A4))
for any A € @g». Theorem 3 follows. ]

deg(div(A4)) —dim Ko(

= deg(div(I))—-dimKO( )+1Kn(1)

As remarked in the introduction, Theorem 3 in the case where X is a field
of rational functions yields an analogue to Minkowski’s first convex-bodies
theorem. More generally, it yields the adelic analogue of Minkowski’s first
theorem for function fields. Specifically, we have the following.

CoroLLARY. Let K be as above and let A€ Qg~. If deg(div(A)) > n(g—1),
then there is a nonzero x € Ly-(A™"). In particular, if K is a field of rational
Junctions and h,(K") < n, then there is a nonzero x € K" with h,(x) < 0.

III. Proof of Theorem 1

Let AeQgn, giving a height 4,4 on K” as defined above. We define minima
U1y -+ -5 by as follows:

pi =inf{p: K" has i linearly independent elements of height < u}.
Certainly py < py < -+ < p,. Let v, ..., v, be a basis for K" with h4(v;) = u;
for 1 <i < n. We then define

i
V=@ Kv; for 0<i=n
j=1
and V, = {0}.

LEMMA 2. Letl1<i<n.If hy(X) <p;then xeV;_y; that is, h,(X) = p; for
all x¢V;_;.

Proof. The case i =1 is true by the definition of x,. We proceed by induc-
tion on i. If x¢ V;_;, then

pi < maxfhy(x), pi_i},
whence u; = u;_;. We get a contradiction by the induction hypothesis since
VieaCVioy. O

The subspaces V; are thus “minimal” in the sense that they contain all vectors
of minimal height. These will turn out to be the subspaces in Corollary 1.
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We first prove Theorem 1 in the case where K = k, so assume until stated
otherwise that this is the case.

Let we M(K) be the place with ord, (T') = —1 and let M € GL ,(K,,) satisfy
RZM =R and V;"M = K], for each i =1, ..., n, where ¥} € K is the sub-
space spanned by V;A,,. Let D =X D,-v be a divisor of degree —1 and let
by, ..., b, e K,, satisfy ord,,(b;) = u;. Define

b,
B,=xnPA,M
b,
and define B, = n:A, for all places v # w. (Recall that P, = 7,R,.) Then
B e @y~ and we get a new height Ap satisfying

hp(K"™) = h (K")+n—2] p;, (&)

i=1

since ord, (det(M)) = 0.
LeEMMA 3. For any xeV;\V;_,, hg(x) = 1. In particular, hg > 0 on K".

Proof. LetxeV,\V,_,. Then xA,,M € K}.. Using this and ord,,(,) = 1 gives
b
ord,, (xB,) = ord,,(72*)+ord,, | x4, M
bn
<ord, (x4, M)+ord, (b;)+ D,
=ord, (XA, M)+u;+D,,.

Now since R, M = R}, we have ord, (xA,, M) = ord,,(xA,,). Thus

ord, (xB,) <ord,(xA,)+pu;+D,,.
Also,
ord,(xB,) = ord,(xA4,)+ D,

for all v # w. This shows that Ag(x) = h4(x)+1—pu;. Since x ¢ V;_;, we have
h4(x) = p; by Lemma 2. This proves Lemma 3. O

Lemma 3 and the corollary to Theorem 3 imply that 4z(K") = n. This to-
gether with (3) gives Theorem 1 in the case where K is a field of rational
functions.

Now suppose more generally that K is any function field. Let xy, ..., x,,, be
a basis for K over k. View ® -~ as the Cartesian product of m copies of ®R~.
Define ¢: Rynm — R g by

m
¢(r1, sesy rm) = 2 X;X.
i=1

Then ¢ is one-to-one, onto, and bicontinuous with respect to the restricted
direct product topologies {2, Chap. 13, §2]. Let A’e @;~~ be given by
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¢ (Ag(AT) = Agan (A7) 7).

(It is clear that the inverse image of a parallelotope is a parallelotope.) Since
¢ maps k""" to K" and the genus of k is 0, Theorem 3 gives

m(K, k) h4(K")+n(g—1) = (m(K, k)/m)(hs(K"™) — nm). (4)
LEMMA 4. For ve k"™ with v #0, we have h4(v) = h4(¢(Vv)).

Proof. Letve k"™, v#0, and let D' = —div,-(v), so that A4 (v) = deg(D’).
Now by construction we have ord, (D, ,vA;) =0 for all we M(k), so that
D'v e Apnn((A’)7). This implies that ¢(D’v) € Ag-(A™); that is,

ord, (D), ¢(v)A,) =0 forall v|iw, we M(k).

Thus
ha) = S50,
where D is the divisor
D= > > Dj-v.
weM(k) v|w
Since deg(D) = m(K, k) deg(D’) [2, Chap. 15, Thm. 9], the lemma follows.

O
We now apply what we have proven already to """ and A’to get vy, ..., V,, €
k™" linearly independent over k, with

nm

12_31 ha (V) < hy(K™™).

Assume that A4 (v)) < -+ < hy(v,,,). Define a; = ¢(vy), and recursively
a; .1 = ¢(v;), where / is least such that a,, ..., a;, ¢(v,) are linearly indepen-
dent over K. Note that / < mi+1 since [K: k] = m and the v;s are linearly
independent over k. Thus

n h , knm
El ha(¢7'(a)) < —i%;—)-

Theorem 1 follows from this, Lemma 4, and (4). O

LEMMA 5. Let K and A be as above and let Xy, X,, ..., X,, be linearly inde-
pendent elements of K". Let p and q be two positive integers with p+ q < m.
Let S and T be the subspaces of K" spanned by Xy, ..., Xp,and X, .y, ..., Xp4 4,
respectively, and let W be the subspace spanned by X, ...,Xp.,. Then

ha(W) = ha(S)+h(T).

Proof. Let ve M(K) and write x} = x; A, for all i. By definition

p+q
ord,,</\x}-’)= min {ordv( det (x,g-)},
i=1 aEC(n,p+q) lsi.5p+q
JEo
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But, by Laplace’s expansion of the determinant,

Uy v
det (xj)= 2 det (x) det (x),
l=i=p+gq oec(n,p)1=i=p p+l=si=p+q
Jea oSa J€O Jjed’
where ¢’ = a\o. Therefore

p+q p p+q
—ord,{ A x}]=< —ord, x/|—ord,[ A x}|,
i=1 i=1 i=p+1

which proves the lemma. O]

Lemma 5 shows that if x, ..., X, is any basis for K", then
n
2 ha(x;) = hy(K").
i=1

Thus, in the case where K is a field of rational functions, the inequality of
Theorem 1 becomes an equality and this is best possible. This also shows
that hy(V;) < py+---+p;foreach 1 <i < n, so that Corollary 1 follows from
Theorem 1.

IV. Proof of Theorem 2

Throughout this section K will be a separable algebraic extension of k of
degree d, genus g, and field of constants kg (so that m(X, k) = d). To prove
Theorem 2 we will explicitly construct a system of m equations in » un-
knowns which satisfy the statement. In order to do this we require some aux-
iliary results. Our first goal is a general result that is an analogue of [6, Lem-
ma 4]. A similar result (but not explicitly involving the genus) was proven
by Silverman in [8].

LEMMA 6. Let F be a finite algebraic extension of k and let G be a finite
algebraic extension of F (separable or not) of degree e. Let x,, X3, ..., X, be a
basis for G over F. Then

m(G, K)h(xy, ...y X.) = 86— 1—-m(G, F)(gr—1),

where g; and g denote the genera of G and F, respectively. If G = F(a) then
(e—1Dm(G,k)h(l,a) = gg—1—m(G, F)(gr—1).

In particular, if F =k then

gc—14+m(G, k) gc—1+m(G, k)
> , h(l, o) = .
Proof. Write x =(x;, ..., X,) and D = div(x), so that m(G, k)h(x) =

—deg(D). Denote the constant fields of G and F by G and F),, respectively.
By Theorem 3,
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®R
nﬂ(},k)h(X)==gcﬂ—1’Flg(l))—'dhn(%(](;zziiizi). (5)

Note that xi, ..., x,€ L5(D) are all linearly independent over F (since they
are over F'). Thus, at least m(G, F) of them are linearly independent over G,
and we have

lg(D) =z m(G, F). (6)
Define ¢: Rre —» R as in the proof of Theorem 1:
e
¢(l') = d)(rl’ seey re) = Elxiri’
1=
Let I € G- be the admissible element given by the identity matrix at all places.
We claim that ¢(Ag(I)) € Ag(D). Indeed, if re Ar-(I) and w e M(G), then

ord,, (r-x) = lm.in ford,, (rix;)}
<i<e

= min {ord,(r;)+ord, (x;)}

I=si<e

= min {ord,, (x;)}

i<i<e

= OrdW(D)’

by the definition of D and since ord,(r;) = 0 for all ve M(F). This shows
that

. (RG . (RFe
d‘m‘”"(AG(D) n G) = d‘m”"(AFe(I) +F“>' 0
Now, by Theorem 3,
: R e .
dlmpo(m) = Ipe(]) —deg(div(])) + e(gr—1)
=e—0+e(gr—1)
= egr. (8)

The first part of the lemma follows from (5)-(8) and the definition of the
effective degree.

Finally, suppose that G = F(a). Then 1, o, @2, ..., ¢! is a basis for G
over F. By the definition of 4,

(e—Dh(l,a) =h(1,c, ..., ).
This finishes the proof of Lemma 6. O

We now make the following definitions. A primitive element o€ K is an
element that satisfies k(«) = K. We define 6(K) to be the smallest number
such that there exists a primitive element o € K with A(1, @) = 8(K); this
makes sense because we are assuming that K is a separable extension of k.
By Lemma 6 we have
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6(K) = —5 9

The field of definition of a nonzero point (xy, X3, ..., X,) € K" viewed as a
projective point is the subfield of K generated over k by the quotients x;/x;
with Xj # 0.

LEMMA 7. Let X = (X1, X2, ..., X,) € K" with x # 0. If K is the field of defini-
tion of x viewed as a projective point, then

h(x) = 6(K)—(d—-1).
If the cardinality of k is at least d, then h(x) = 6(K).

Proof. This is clear if d =1, so assume d = 2. After possibly reordering the
coordinates, we have proper inclusions

k C k(x]) c---C k(x], ...,XI) =K.

Let F be a separable closure of £ and consider the polynomial

d / t
P(Xy, ..., X)) = ]_];( El(xj’“ffi(xj))Xj),
i=2\j=
where a4, ..., 04 are the embeddings of K into F with g, the identity map. Since
K = k(x, ..., X;), this is a nonzero homogeneous polynomial of degree d —1.
Suppose first that ky has at least d elements. Then there exist ay, ..., a,€ kg
such that P(ay, ...,q,) # 0. We then have that o = X}_;a;x; is a primitive
element of K. Moreover, we have ord,(«) = ord,(x;, ..., X;). We may assume
without loss of generality that x,, = 1, and thus A(1, @) < A(x). If &k has less
than d elements we choose ay, ..., a,€ ko[T'] of degree less that d such that
P(a,, ...,a;) #0. Let « be as above. Then « is again a primitive element and
we have

h(l,a) <= h(xy, ..., x)+(d-1)h(1,T) < h(x)+(d—1). O

LEMMA 8. Let ae K witha#0, and let x =(xy, ..., X,) € K" be a nonzero
solution of

Xi+ax,+ - +a""'x, =0.
Then h(x) = h(l, a).
Proof. Without loss of generality, x; =a. If ord,(a) <0 then ord, (x) <
ord,(a) = ord,(1, a). If ord,(a) = O then
ord,(a) = ord,(x;) = min{ord,(ax,), ..., ord,(a" " 'x,)},
so that ord,(x) < 0 = ord,(1, @) again. This proves the lemma. O
We are now in a position to prove Theorem 2. Let « € K be a primitive ele-

ment with 2(1, «) = 6(K) and let a € kyx[T'] be of degree e, where e = [6(K)].
Put r=n—m—t and s = t+1, and consider the system of equations
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xi+ax,+ o +a" T x A ax, g Faax, o+ +at lax, =0

Xris+1=0

X, =0.

This is a system of m linearly independent equations in n variables, and
since r = s, the solution space V'C K" satisfies

h(V)=h(,a,...,a" \a,aa,...,a° 'a)
<e(r—1)+h(l,a)
< ré(K).

Now suppose x € K" is a nonzero element of V and set u = x;+axy+ -+
+a"x,and v =X, +ax, 4 +a*"x, 5. If v=0then A(x) = h(1,a) =
e=6(K)—(d—1)/d by Lemma 8. On the other hand, if v # 0 then K is the
field of definition of x viewed as a projective point and Lemma 7 gives h(x) =
8(K)—(d—-1), or h(x) = 6(K) if k, has at least d elements. Thus, if x, ...,
X,_m 1s any basis for V, then

n

> h(x) = (n—m)@(K)—(d—1))
= = r&(K) + t8(K) — (n—m)(d—1)
= h(V)+t6(K)—(n—m)(d—1).

Similarly, if k& has at least d elements then we obtain

n—m —m)(d—1
S h(x) = h(V) + 16(K) = mc)l( ).
i=1
Theorem 2 now follows from (9). O

Y. Concluding Remarks

Others have studied geometry of numbers over function fields. In particular,
Mabhler in [5] proves what amounts to our Theorem 1 in the case where X is
a field of rational functions. However, he did not prove it the same way we
do here. In particular, he did not use a result like Theorem 3 to derive an
upper bound for the first minima. Our proof here is much shorter. It is inter-
esting to note that Armitage [1] was able to prove the Riemann-Roch theo-
rem for function fields using Mahler’s result.

Note that our proof of Theorem 3 is almost entirely self-contained; we
need only the following two facts:

(i) The dimension /x(D) is finite for any divisor D.
(ii) There is a divisor D such that Ag(D)+ K = Rg.

Both these facts are easily verified when X is a field of rational functions (for
the second, use the zero divisor). Thus, one can give a short, self-contained
proof of Theorem 3 in the case where K is a field of rational functions.
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Now suppose K is any function field and let R = Ky(X) be a rational sub-
field of K, where K|, is the field of constants of K and X € K\ K,. Using the
fact that ¢(®R zm«/r) is dense in R and that Theorem 3 holds for R, one im-
mediately verifies (i) and (ii) for X (for (ii), use D = div(x) with x a basis for
K over R, as in the proof of Lemma 6). The fact that the image of ¢ is dense
follows from the approximation theorem (see [2, Chap. 13, §2, Lemma 2}).
Thus, a rather short proof of the Riemann-Roch theorem can be given using
only standard facts from the theory of valuations.
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