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1. Introduction

In this paper, we consider a family of functions that are meromorphic and
univalent in the unit disk A = {z € C: |z| < 1} and that have some rather strik-
ing geometric properties. These functions all have the form

n
. 1
p(z) = l+ > azt with |a,|=—. (1)
2 k=1 n

It is well known that if x given above is univalent in the disk then

0 # p'(z)
n n
= —i2+ S kapzK = —-13(1— 3 kakz"“).
4 k=1 ¥4 k=1

Therefore, |na,| < 1 and equality is possible only if all zeros of —z2u’(z) lie on
the circle {|z| = 1]. In that case, a,_, =0 and (k—1)a,_; = —na,(n—k)a, _;
[1, p. 166; 2, p. 10]. We will call a function given by (1) a meromorphic poly-
nomial of degree n.

Figure 1 gives the image of the disk under mappings by some meromor-
phic polynomials of this type; that is, all zeros of p’ lie on {|z| =1}. The
image of the disk is, of course, the unbounded component shown. The coef-
ficients ay, ..., a,_, are given.

The following theorem is the key to many of the results in this paper.

THEOREM 1. If u(2) = 1/z24+ 282} (n—k—1)/nla,z* — (1/n)z" is univalent
in the unit disk {|z| <1}, then Re(zu"(z)/p'(z)+1) =(n—1)/2 for each z,
|z| =1, such that p’'(z) # 0.

Proof. Note that, under the hypotheses, all zeros of u’ lie on the circle
{|z| = 1}. As noted earlier, this implies that

ay=a,_y_; forl<k=<n-2

Received May 12, 1993. Revision received July 20, 1994,

Some of the results in this paper are contained in the first author’s dissertation, completed in
1992.

Michigan Math. J. 42 (1995).

35



36 EvELYN M. PuprpL0O-CoDY & T. J. SUFFRIDGE

and
—22p'(2) = P(z)
n—2 —k—1
—1-3 k(n—k )akzk+1+zn+1
k=1 n

is a “self-inversive” polynomial. That is,

n+l . n+l
P(z)=JJ(1+ze'%) with J]e'* =1
j=1 j=1

so that z"*1P(1/Z) = P(z). If we set z=e"?, we see that P(e'?) =ei(n+1)0 p(e)
so that e "1+D/2p (0% — §(@) is real. Thus, it follows that e®u’(e) =
e =1/200T(9), where T(0) = —S(8) is real. Now differentiate with respect
to 0 and divide by ie’%u’(e”) to get

eiau”(eiﬂ) n—1 T'(G)
—+1= —i . 2
P T B S T ®
This completes the proof. O

Let U, be the family of univalent meromorphic polynomials (i.e., univalent
in the unit disk) with @_; =1 = n|a,| and with ¢y, = 0. Of course, a,_; =0
follows from the fact that all zeros of z2u’(z) lie on {|z| = 1}. This family
was mentioned by Brannan [1; 2]. The real-coefficient case was studied by
Schnack [10] and the general case by Mansour [7]. Mansour obtained some
necessary geometric conditions for u to be an extreme point of U,. He found
all extreme points in U, for 1 < n < 5. We require some results of Mansour
that parallel results of Suffridge [12] for polynomials. In some cases these
results have proofs that are almost identical to the corresponding results in
[12]. Generally, we give the basic idea of the proof in these cases.

We will show that \U;-; U, is dense in the family U of all functions of
the form pu(z) = 1/z+ 35—, a;z* that are univalent in the disk {|z| < 1}. It is
obvious that U is related to the family X of functions that are analytic and
univalent in {|z| > 1} and of the form o(z) = z+ X7, a,/z*, simply by re-
placing z with 1/z.

We prove a theorem concerning extreme points in the subclass of U, con-
sisting of functions that have real coefficients. We also prove Kirwan’s con-
jecture [6, p. 37] that ka; —a; < k for typically real meromorphic functions
with a simple pole of residue 1 at O (see also [5] for some results on typically
real meromorphic functions). Some of these results are contained in the first
author’s thesis [8].

2. Previous Results and Other
Preliminary Observations

Recall that a function u(z) =1/2+ X7, akz"‘ that is analytic in the unit disk
is univalent if and only if the equation [u(ze’®) — u(ze=)]1/(2i sin0) = 0 has
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no solutions for |z|<1 and 6 € (0, 7/2). We define R,, n =3, to be the
family of functions of the form (1) with a,_; = 0 that satisfy the condition
[n(ze™*™) — p(ze**)]/(2i sinka) # 0 when |z|< 1, a==/(n—1), and k=
1,2,...,n—2. That is, the univalence criterion stated above holds for the
discrete set of values of 6, n/(n—1),2x/(n—1),...,(n—2)w/(n—1) that are
uniformly distributed over the interval [0, w]. Thus, for large n, the func-
tions in the family R, should be “almost univalent” in some sense. For con-
venience, we define the operator A, (which actually depends on n as well) on
functions of the form (1), setting o = w/(n—1) as before, by

p(ze™*®) — p(ze™ ™)
2isin ka
We also define R, = {1/z+az:|a| < 1} and R, = {1/z+az’:|a| < 1].

The sense in which the functions in R,, are “almost univalent” for large n
is described in the following theorem.

App(z) = 3

THEOREM 2 {7, Thm. 1.12]. Suppose {n; )¢~ is a strictly increasing sequence
of positive integers and p., € R, for each k. Further, assume limy, _,  pp, = pt
uniformly on compact subsets of {|z| < 1}. Then p is univalent.

The proof is essentially identical to that in [12, Thm. 5] for polynomials.

There is a useful one-to-one correspondence between functions in R, that
have |a,| = 1 and univalent functions in U, with |a,| = 1/n. That is, results on
the family R,, can often be translated into results on the family U,,. Since the
family R,, is more tractable, the relationship is fortunate.

We view the family R,, as a subset of the metric space 9 (A) of meromor-
phic functions on the unit disk using the topology of uniform convergence
on compact sets in the spherical metric. Recall that an extreme point of a
subset A of a vector space over C or R is a point ¢ € A such that if x,ye A
withx # yandif 0 < ¢ <1, thena# tx+(1—1¢)y. Foreach n, R, is a compact
subset of IM(A) and the Krein-Milman theorem [4] applies. That is, R,, is
contained in the closed convex hull of its extreme points. Further, if L is a
continuous linear functional on R, then L assumes its maximum modulus
and its maximum real part over R, at an extreme point.

THEOREM 3 [7, Thm. 1.3]. IfR(z)=1/z+2}-, akzk is an extreme point of
R, such thata, =0, thena, =1anda,=a,_;_; fork=1,2,...,n—2.

Proof. Supposea, <1,

(n(2)+4(z)], and T(z)= 1

S(z) =
(2) 1+a, l1—a,

[u(z)—a(2)],
where
i(z) = 2" 1 u(1/2). 4)

Note that Az i(z) = (—1)"1(A,1)(z). Then |Ag2(2)/Ap(z)| =10n {|z| = 1)
and |Agp(2)/Arp(2)] = a, when z =0. It easily follows that S and T are
in R, and
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1+a, I—a
= S+ °T.
2 2

This completes the proof. O

)

REMARK 1. The restriction a, = 0 is not really necessary, since p is an ex-
treme point if and only if e'*u(ze’®) is an extreme point. Thus, the conclu-
sion is |a,| = 1 for all extreme points of R,,.

For u € R, we define
n—1 1
(2)=—— ——zp'(2). 5
p () . p(z) et (2) 5)

We will show that the univalent meromorphic polynomials with all zeros on
{|z] =1} are precisely the functions p* such that € R, and |a,| = 1.

LEmMMA 1 (7, p. 10]. If ue R, then p*€R,,.

Proof. Observe that z(Axu) = Ax(zp’). Therefore,
n—1

Apn=2(Agn). )

Thus, Agp*(z) =0if and only if (i) Agp(z) =0and (Axp)'(z) =0 (i.e., Asp
has a zero of multiplicity 2 or more) or (ii) z(Axp) (2)/(Aru(z)) =n-—1.
However,

App® =

n+1
Aep(z) = -2 H(l—i)

n ;=i Zj
where |z;| = 1 for each j, so that

Z(Axp)'(2) ntl —z/z; n+l  n-—1
Re ————=—1+Re 3 —L < -1+ =
App(2) j§1 I—Z/Zj 2 2
when |z| <1. Thus the theorem is proved for n>1. If n =1 then p*(z) =
in(iz) and the lemma follows for this case as well. O

REMARK 2. Note that we have just shown that if u € R, and z, is a zero of
A, p*(z) with |z9| =1, then z, is a zero (of multiplicity at least 2) of Ay u(=z).

THEOREM 4. If u(z) = V/z+ ZfZiarz¥+a,z", |a,| =1, ay_x_1 = a,d for
l<k=<n-2,and p*€R,, then p€ R, and p* is univalent.

Proof. Without loss of generality, we may assume a,, = 1. By the coefficient
relation, A, u(z) is self-inversive and, as in Theorem 1,

Re[Z(Akﬂ) (Z)] _n—1
App(2) 2
where |z| =1 and Az u(z) # 0. If Axp has a zero in {|z| < 1}, it follows that

Z(Axp)'(z)/Arpn(z) assumes every value that is not on the line {w: Re(w) =
(n—1)/2}. That is, it assumes every value in a neighborhood of infinity, and
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the image of the circle—namely, the above line—separates the plane into
components in which every value is assumed the same number of times.
This means that z(A;p')(2)/Axp(z) =n—1 for some z, with |zo| <1, and
hence A, u*(zo) = 0. This contradiction proves that p*e R, implies p e R,
when |a,| = 1. The exceptional case n =1 is easily handled. To prove u* is
univalent, proceed as follows. By methods used earlier, it is clear that for
O0<r«i,

p(2) = [n(rz)+z" 'u(r/z)1 € R,.

W

If r — 0 this function becomes uy(z) =1/z2+2", so py(z) =1/2—(1/n)z" is
univalent. As r — 1, u,(z) tends to u(z). If u7 = p* is not univalent, then for
some rg (0 < ro<1), uris univalent when 0 < r < ry but uj is not univalent
when ro <r<ry+e for some e > 0. Either (u;)(z) =0 for some z =2z(r)
with |z| <1 when ro<r<ro+e, or ui(z;) = py(z) with |z;| =|z,| <1 and
71 # Z,. Consider the first case. The zeros of the polynomial vary continu-
ously with the coefficients. Because of the coefficient relation, if (u})'(z) =
then (u})’(1/Z) = 0; that is, the zeros off |z] = 1 occur in pairs that are inverse
points with respect to the unit circle. Thus we conclude (u7)" has a double
zero on |z| = 1. This contradicts the univalence of u7 .

In the second case, pr (z)) = M.,-O(Zz) for some z1 and z,, with z; # 2, and
|z1| = |z2| =1. By Theorem 1, since the curve uj ({|z| =1}) has a common
tangent line at p} (z;) and p} (z5), we must have z, = z,"*'™"~D for some
! with 0 < /< n—1. For ry < r <ry+e, a contradiction to the fact that uye
R, is obtained by noting that there are arcs I, = {e?®: 0, <0< 6,} and I, =
1e"’ 0; < 0 < 6,] with u,(I) C pi({|z] < 1)) for j=1,2 and with pi(e®) =

pi(e’®) and pX(e’?) = p,(e‘ 3). Therefore the curves p}(1;) and u;(1,) have
parallel tangents at appropriate points. This implies that p*(ze™" =) =
pr(ze~ ™=y for some z with |z|<1 and / with 0</<n—1, a contra-
diction. O

THEOREM 5. If pu(2) =1/z+2ft arz¥+a,z", |a,| =1, and a,_;_, = a,a;
forl<k=<n-2,then neR,if and only if u* € U,. In this case, if 0, < 0, <
0,427 and p*(e?) = p*(e™), then 0,—0,=2kn/(n—1) for some k with
O0<k<n-—1; with0=(0,+0,)/2, App(z) has a double zero of multiplicity
at least 2 at e".

Proof. The first part of the theorem follows from Lemma 1 and Theorem
4. The equality 6,—6, = 2kx/(n—1) follows from Theorem 1 and the fact
that the curve u*({|z| = 1}) has a common tangent line at p*(e™) and p*(e™?).

O
LEMMA 2. Suppose {u, (2)} is a sequence such that ny is a strictly increas-
ing sequence of positive integers and p., € R, for each k. Then p, — p uni-
Sformly on compact subsets of {|z| <1} if and only if B, — i uniformly on
compact subsets of {|z| < 1}.
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Proof. Note that, by assumption, if {u,} converges to p then Bn,— K 1S
analytic (not just meromorphic) in the unit disk. The lemma easily follows
from the fact that (1/n;)|zpup, (z)+1/z|— 0 uniformly on compact subsets
of {|z]| < 1}. O

THEOREM 6. The family U - {u*€ U,: pe R, and a, = 1} is dense in U.

Proof. 1t is sufficient to show that given fe U there exists {u, } such that
Bn € Ry, , np— o0 as k— oo, and p, — f uniformly on compact subsets of
{|z| <1}. Hence u;, — f uniformly on compact subsets of {|z| < 1}. By taking
an increasing sequence {r;} with 7, — 1 and forming r, f(r,z), we may find a se-
quence of univalent functions of the form S,(z) =1/z+b,z2+:--+b,z" €R,
that converges to f. Then

tan+1(2) = Sp(2) +22"S,(1/Z) € Ryp s

is the required sequence. |

Concerning the extreme points of R,, Mansour proved the following [7,
Thm. 1.16].

THEOREM 7.  If p is an extreme point of R, for n = 3, then |a,| =1 and the
curve {p*(e”): 0 < 0 < 2x} has n—2 points of self-tangency.

COROLLARY. If pt*. is an extreme point of {u*e U,: all zeros of (u*)’ lie on
|z| =1}, then {p*(e): 0 < 0 < 27} has n—2 points of self-tangency.

The proof is similar to [12, Thm. 6] for polynomials and to our Theorem 8
for the real-coefficient case.

REMARK 3. In studying the extreme points of R, or the subset of U, con-
sisting of p* for which all zeros of (p*)’ lie on {|z| = 1}, we may assume with-
out loss of generality that a,, = 1. Thus, for n =1, 2, the extreme points of
R, are 1/z+z and 1/z+ z2, respectively. The corresponding extreme points
in the univalent class are 1/z—z and 1/z—$z2

APPLICATION OF THEOREM 7. We illustrate the application of Theorem 7 by
finding the extreme points of R4. By the theorem, p*(e®) should have two
self-tangencies that arise from p*(e’) = p*(e™2) with 8, — 6, = 2x/3 or 4x/3.
Clearly, we may assume 6, —0, = 2«/3. Thus A;u has two double roots on
{|z| = 1}. That is,

—zAp(2) =1 —a 2% — @23+ 2°
=(1-2te"z+e*¥z3)2(1+e 4¥z).
We conclude that e~*¥ —4te’¥ = 0 so that e~>¥ = 41 is real. Since the rota-
tion e*2/™3,(e*2/™/37) preserves the property as = 1, it is clear that we may

take ¥ = 0 and &, real so that ¢ = 7. Thus, @, = —7 and the extreme points of
R, are (1/z—3ei%kn/57 3 p=i8kn/572 4 74: k =0, 1, +2]}.



A Family of Meromorphic Univalent Functions 43

By similar arguments, we may show that {1/z+2z+z3} are the extreme
points in R; and that

{-21?+\/§z2+z5, %—z+£’%—1z2—z3+z5, %+i\/6\/§—9z—i\/6\/§—9z3+z5},

together with rotations by 24#/3 and conjugation of coefficients, are the
extreme points in Rs. In the latter case (n = 5) one shows that the above
polynomials are the only possible extreme points. Then, using the fact that
for every linear functional F on U, there must be an extreme point that max-
imizes Re F(u) over U,, each one of the above polynomials must be an ex-
treme point. We use F(u) = a,, Fr(p) = —a,, and F3(u) = —ia, to arrive at
that conclusion.

3. Typically Real Meromorphic Functions

A meromorphic function u(z) =1/z2+ X7=0o ayz* is typically real, pro-
vided p is analytic in {0 <|z| <1} and u(z) is real, if and only if z is real
for all z, 0 <|z|<1. Note that the coefficients a, a,, ... must all be real.
Also, if r > 0 is small then Im p(re®®) = —(1/r)sin 8+ O(r), so we conclude
(Im p(re’®)) - Im(re’®) < 0. Set

n—2

S axzf 4z g =ap_y,

RS = futut) = £ +
2 k=l

2<k=<n-—1, and p* given by (5) is typically real}

and
- . 1 n2 k n
TR, = {p: p(z) =§+ >z =z ay_ = —ay_y,
k=1

2 < k<n-—1, and p* given by (5) is typically real}.

Finally, TR, = TR,y UTR,;,. Note that TR,, contains {u € R,,: u has real coeffi-
cients and all zeros of p*' lie on {|z| =1}}. Further, for n=1and 2, TR, is
rather small; that is, TR, = {1/z+z"} whenn =1, 2.

For n> 2, let ¥V, be the vector space over the reals spanned by the functions

l+z" 2t "2 {z"/z'l+z”/2 if niseven,
’ g oeey

z Zn—hz if 7 isodd,
and let V,,” be the vector space over the reals spanned by the functions
. —zz=2"7% ., {z:'ﬁ;’/z—z"/(iﬂ)/z %f " is sver
Z -z if nisodd.

Then TR} C V,;', TR, C V, , and the dimensions of V,;* and ¥, are [(n+1)/2]
and [n/2] respectively, where [-] is the greatest integer function. We will
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produce a basis for ¥* and V'~ that will allow a quite complete description
of TR, in geometric terms.
Set pi(z) = (1/z2+2)(1+2z"" 1) and py(z) = (1/2+2)(1—2z" ). Then

Agp(2) = -(in>(1 —(~D**zn

for j=1,2 and 1 < k < n—2. Clearly, all zeros of Ayp;(z) are on {|z| =1},
so pj is univalent and has all zeros of (x})’ on {|z| =1}, j =1, 2. Therefore,
p1€ TR, and pr e TR;,. Also, Axp;(z) has a double zero at z =1 when k+
is even. This means that the curve u}(e’), 0 < 6 < =, is tangent to the real
axis when 6 = kw/(n—1) and k is odd, and that p}(e’), 0 < 0 < =, is tangent
to the real axis when § = kn/(n—1) and £ is even. Figure 2 shows the image
of the circle under the mapping u;(z) when n =5 and j =1, 2.
Now consider the functions
zZ(1—(—1)Pz"*1)

Op(z; 1) = 1—2zcos(pwn/(n+1))+z2’ I=p=n, 7

that were defined in [12, p. 226]. We wish to show Q,(z; n—2) e ¥,;* when p
is odd and Q,(z; n —2)el, when p is even. This follows from the fact that
the coefficient of z/ in the expansion of Q,(z, n—2) is

_sin(jpn/(n—1))

;= — , 1=j=<n-2,
I sin(pa/(n—1)) J
SO
a_=(-1)*"a,_;, 2<j=<n-1.
n=>5
1 3z ¢ Z° -1 1
2755 T
n=>5
1 3z ¢} Z° -1 1
P S

Figure 2
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Note that the polynomials
. n+1 1 ,
Pzin, ) =— —Qjzin)——2Qj(z; n) (8)

are the univalent polynomials defined in [11]. It is easy to check that

Ay Qp(l;n—2)=0 if l1=sk=n-2, k#p
and
n—1

ApQpllin—2)= 2sin2pr/(n—1)°

This shows that {Q,(z,n—2):1< p=<n-—2]is a linearly independent set

because 2521 1,0,(z, n—2) = 0 implies $727 1,4, Q,(1,n—2) = 0; hence
tkAka(l, n—2) =0 and = 0

when 1 < k < n—2. We note also that A, Q,(z; n—2) has a double zero at 1

when k+ p is even and k # p.

Now {u(2)}U{Q,(z;n—2): pisodd and 1 < p < n—2} is a linearly inde-
pendent subset of 7R;" that has [(n+1)/2] members. It is therefore a basis
for TR,f. Similarly, {u,(z)}U {Qp(z;n—2):pisevenand2<p=<n-2}isa
basis for TR;,. Now assume p € TR;'. Then

p=pm— 2 5L,04(z;n-2).

podd
l<=p=n-2
We know
wr=pi— X t,P(z;n—2,p) and Imp*(e®*™" D)<
podd
l=sp<sn-2

when & is odd and 1 < k£ < n—2. Since Ay Qp(z; n—2) has a double zero at
z=1when k+ p is even and k # p, it follows that Im{P(z; n—2, p)] =0 when
z=e**=D kisodd, k # p,and 1<k <n—2. Also, Im A, p}(e’*™ "Dy =0
when k is odd. Hence 0 = Im p*(e”*™”" D) = —¢, Im(P(e™*™"—V: n—2, k),
so that #, = 0. On the other hand,

Im[y’f(re”’) - ) tpP(reie; n—2,p)] sinf <0

podd
l=p=n-2

for 0 <r<1and 0 <6< 7 when each ¢, > 0. Thus we have proved the fol-
lowing theorem.

THEOREM 8.
TR = {#1(2)— Y 50Qu(z;n—=2):t,=0 foreach p}.
dd
ls;:)(;n—z
Similarly,
TR, = {M(z)— Y 5p,0u(z;n—=2):t,=0 foreach p}.
peven
2<p=<n-2

The representation of p € TR} given above is unique.
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It is also clear from the preceding arguments that if x € ¥,;* and u has a pole
at 0 of residue 1, then pe TR} if and only if Im p*(e’*™*~D) <0 when k
is odd and 1 =<k <n—2. The corresponding condition for u e TR;; is, of
course, that Im p*(e”*™"~1) < 0 when k is even and 2 < k < n—2. Actu-
ally, the typically real meromorphic functions that are analytic in 0 < |z| < 1
with a simple pole of residue 1 at z = 0 are the functions that are limits of
sequences {u, } such that ny — oo as k —oo0 and p,, € TR,‘; (or TR;,). We re-
quire the following result, which was proved by Goodman [5, Thm. 10] in
somewhat more generality. There he considered meromorphic typically real
functions that may have more than one pole.

THEOREM 9. Suppose u(z) =1/z+ X, axz" is analytic in 0 < |z| <1 and
typically real. Then a, < 1 with equality if and only if u(z) =1/z+z. If a; < 1
then there is a typically real analytic function g(z) = z+ b,z + -+ such that
w(z) =1/z2+z—(1—a,)g(z). Finally, if g(z) = z+byz?+ -+ is typically real
and ¢ > 0, then 1/z+z—cg(z) is typically real.

Proof. Consider the function h(z) =1/z+z—pu(z) wherez =re®, 0 < r <1,
and 0 < 6 < «. Suppose, for some rgand 8y, that 0 <ry<1, 0 <8y < 7, and
Imh(z) = —t < 0. Choose r so that r—1/r > —t/2 and 1 > r > ry. Because
a harmonic function cannot assume a minimum at an interior point and
Im #(z) = 0 when z is real, thereis a 6 (0 < 8 < w) such that

—t = Imh(re”) = (r - %) sin 6 —Im p(re’);
hence
Im;u(re"a) > (r—-%—) sinf+t¢ = —;— > 0.

This contradicts the fact that u is typically real. We have proved that the
analytic function 1/z+z— u(z) = h(z) satisfies ImA4(z) =0 when 0 <r<1
and 0 < @ < . Since A is harmonic, either Im 4(z) > 0 in the upper half-
disk or A(z) = 0. If #(z) = 0 then u(z) =1/z2+ 2, so a; = 1. Otherwise, h(z) =
(1—a;)z+ --- is typically real. This is not possible unless 1 —a; > 0. The last
statement is clear. That is, Im(1/z+z—cg(z))sinf <0 when 0 < |z| < 1, so
that u(z) = 1/z2+z—g(z) maps the upper half-disk into the lower half-plane
and the lower half-disk into the upper half-plane. Using the minimum or
maximum principle for harmonic functions applied to the upper or lower
half of the disk yields the conclusion that u is typically real. Note that this
result shows that @, does not have a lower bound and that the other coeffi-
cients do not have uniform bounds. For each «,, the other coefficients satisfy
the sharp bound |a,| < n(1—ay). W

THEOREM 10. Let p(z) = 1/2+ X5 axz* be analytic in {0 <|z| < 1}. Then
p is typically real if and only if there is a sequence {p,, } such that p, € T. R,fk,
ng— as k -, and p, — p uniformly on compact subsets of the disk.
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Proof. Assume that p, € TR,J{k and p, — p uniformly on compact subsets.
Then p}, is typically real for each k, and pj, — p uniformly on compact sub-
sets; that is, p,, —py, = (1/n)(pp, +2uy,) tends to zero uniformly on com-
pact sets under the given assumptions. Therefore u is typically real.

On the other hand, suppose p is typically real. Then u(z) =1/2+z2—cg(z)
for some ¢ = 0, where g is typically real and g(z) = z+b,z*+---. If ¢ =0,
we are done. Otherwise, by a result of Robertson [9],

s Z
= dF(?),
8(2) fo 1—2zcost+2z2 ()

where F is monotone increasing and F(w) —F(0) = 1. Then g(z) can be ap-
proximated uniformly on compact sets by functions of the form

" V4
lF(n_l)—F(O)] 1—2zcos 'Afr/(n—-l)-i-z2

37 T Z
+[F(n—1> F(n—l)] 1—2zcos3n/(n—1)+2z2

(I-2)« 2
+---+[F(W)“F( n—1 )]I—ZZCOSIW/(H—I)“'ZZ,

where / is the largest odd integer < n—2. Since

z(1+2"7) z
1—2zcosf0+z2 1—2zcosf+z2

"l "l

_ |z |z
|[1-2zcos0+2z2 ~ (1—|z|)?
can be made arbitrarily small (by choosing n large) on compact subsets of

the disk, u can be uniformly approximated on compact subsets by functions
of the form

(%+z>(l+z""')— > 1,0p(z;n—2) where £,=0
podd
l=p<sn-2

for each p. These are functions of TR;f. The proof is now complete. O

Notice that there are meromorphic typically real functions that assume every
value in the extended plane. For example, let

¥4 (1-2)2  (1+42)?

Then f is rational of degree 6. Also, f(1/z) = f(z). Since f assumes every
value six times (counting multiplicities) and the image of the interior is the
same as the image of the exterior (including the point at o), we need only
examine the boundary values. It is easy to check that f is real on {|z]| =1}
and that it assumes every real value exactly twice (and the value o« twice with
multiplicity 2 each time). Therefore f assumes every nonreal complex value
exactly three times, every real value twice, and the value o one time in the
open disk.

f(z)=l+z—c[ £t 42 ] c>0.
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It was conjectured by Kirwan and Schober [6, p. 37] that for functions
in the family ¥ (and therefore in U) that Re(ka, —a;) < k where u(z)=
1/z+ X2, a,;z' € U. We prove that the inequality holds for typically real mero-
morphic functions, which proves the result for U and X in the restricted
class of functions with real coefficients.

THEOREM 11.  If u(z) =1/2+ 272 ;2 is analytic in {0 < |z| < 1} and typi-
cally real, then ka;—a;, < k.

Proof. By Theorem 10, it is sufficient to prove the inequality for functions
in TR;. If pe TR;} then
pR)=m@R)— X 1,Qp(z;n),

podd
l=sp=<n-2

where each ¢, = 0. Then

i —1
a=1-x1, and a,=X1¢, sin(kp/(n—1))

sin(pr/(n—1))

Therefore

kal—ak=k—2tp<k+

because |sin(kpn/(n—1))/sin(pw/(n+1))| < k. The last inequality follows
by induction using the fact that

i in(k—1
Slfl k6 =cos(k—1)0+cos@ Eu
sinf sin @

sin(kp'fr/(n—l)))< k
sin(pr/(n—1)) /]~

O

4. Extreme Points in o,

Let g, denote the subclass of the family R,, consisting of those members of
R, that have real coefficients, and let a,, = +1. Let ;" be the family of u € g,
such that a, = 1 and o, the family of u € g, such that a, = —1. If u € o) then

) n—k—1_ . 1,
_+ —_—— s
p(z) = 2 TR

and if u € g, then

n—k—1 1
p*(z) = ——+E " kzk+;z".

That is, the last coefficient of u* has the opposite sign to that of . We now
prove some lemmas that lead to a necessary condition for a function to be
an extreme point in o} or o;,.

LemMA 3. The functions
mz) = 1/z2+2)A+2" Y and p(z)=1/z+2)(1—-z""H

are extreme points in o, and o, respectively.
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Proof. Since o C TR, Theorem 8 is applicable. Since the numbers t, given
in Theorem 8 are nonnegative, the lemma clearly follows. O

LEMMA 4. Suppose p = p;—1Qy(z; n—2) where j=1o0r 2 and k—j is even,
l<k=<n-2. Then

(@) ne€a,if and only if

. km . r \
0<t=<|(2sin sin ;
n—1 n—1

(b) u is an extreme point of o, if and only if equality holds on either side
in (a); and
(c) in case equality holds on the right in (a), A;p has a double zero for

some nonreal z, |z| = 1, and hence the curve u*(e™) has a self-tangency
in both the upper and lower half-planes.

Proof. By elementary algebra,

—2Ap(z) = [1+(=1)/ "z 1[1—2z2](1 + tP(2))

where
P(z)= zz/[(l —2zcos ili-i_—l)ir—+zf.2)(l—2z cos M+z2>],
n—1 n—1
SO
~ = i1+l n=tyr1 _ 2y L
zZA,u(z) = P(2)[1+(—1)/ z" 71 Z]<P(z)+t)' 9)

It is sufficient to show that for 1 </ =< n—2, the function given by (9) has
n+1 zeros on {|z| =1} if and only if ¢ satisfies the inequality in (a). Clear-
ly, P(z)(1+(—1)/~1*/z"=1y(1—2z?%) has n—3 zeros on the circle. It remains
to show that 1/P(z)+ ¢ has four zeros on the circle if and only if 0 < <
4(sin kw/(n—1) sin 7/(n—1))% Let z = e". The expression 1/P(z) + ¢ becomes

[4 (cos 6 —cos (_kil_l)z) (cos 6 —cos (k——?ﬂ-) + t] .

n—.

For positive ¢, this expression is positive when 8 =0 or € = 7. Set cosf =
cos kn/(n—1)coslnx/(n—1). The expression 1/P(z) + ¢ is now

2 2
—4( sin km sin {z +t<—4{sin kw sin —~ +t.
n—1 n—1 n—1 n—1

Thus, 1/P(z) + ¢ has two zeros on the upper semicircle and two on the
lower semicircle when ¢ < 4(sin k«/(n—1)sin 7/(n—1))® (counting multi-
plicities), with a double zero at cosf = coskn/(n—1)cosn/(n—1) when
equality holds and / = 1. This proves (c). On the other hand, if

.k . w V
t > 4{sin sin ,
n—1 n—1

the expression becomes
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kx x| . kr . o1\
4| cos @ —cos coSs +t—4{ sin sin >0
n—1 n—1 n—1 n—1
for all 6. Therefore u & 0,. This proves (a).
To prove (b), using Theorem 8 we choose ¢ as large as possible to obtain
equality on the right in (a). Then 0 < s <1and u = sy;+ (1 —s)y¥, for ¢, and
¥, in o, imply ¥, = ¢, = p, and we are done. O

REMARK 4. The functions uj, u3, and u*, where p is given in Lemma 4 with
equality on the right in (a), were introduced by Schnack [10].

THEOREM 12. Let p = p;j— 2 4, Q,_2(2, k), where j =1 or 2 and the sum is
taken over all k (1 < k < n—2) for which k—j is even (such k are said to be
allowable). If u is an extreme point of ¢, then the following hold.

(a) If t, > 0 for each allowable k, then among the zeros of —zA,u(2) for
1<l<(n—1)/2 there are [(n—1)/2] double zeros, z=e” with 0 <0 < 7,
and an equal number with 0 > 0 > —mx. This yields n—2 self-tangencies on
the curve p*(e™), 0 <0 <2x. If n is odd, then —zA,_y,21(2) is an even
Sfunction and the double zeros occur in pairs that account for only one selj-
tangency of the curve p*(e').

(b) For each allowable k such that t, =0, the curve p*(e), 0 <0<, is
tangent to the real axis at 0 = kw/(n—1). If at least one t, is zero for an
allowable k, then for each nonzero t thereis anl, 1 =l <(n—1)/2, such
that —zA;u(2) has a double zero at z = e’ for some 0, 0 <6 < w. Thus,
if t, =0 for p allowable values of k and [(n—j)/2]—p of the t, are non-
zero, then the curve p*(e”’), 0=<6=<2w, has 2 [(n—j)/2]— p self-tangencies
unless j =1and p = 0.

Note that the exceptional case, j =1 and p = 0, was described in (a).

Proof. It is sufficient to show that for an extreme point in o, given by g =
-2 4.0, _2(z, k), if there are p allowable # that are not zero, among
zeros of the polynomials —zA,;u(z), 1 =/ =< (n—1)/2, then there are p dou-
ble zeros z = e’® with 0 < 8 < 7. The basic idea is as follows. The zeros of
—zA,;p(z) vary continuously with the numbers #;. If each #, is nonnegative
then p* maps the upper half-disk into the lower half-plane and the lower half-
disk into the upper half-plane. Starting from a u € g,, (¢.g. with all 7, = 0),
if we vary the #; then p will remain in o, unless two zeros of some —zA,;u(z)
coalesce on {|z| = 1}; then one goes outside the disk and one inside as inverse
points relative to the unit circle (i.e., if the relevant zeros are z; and z, then
212, = 1). This holds because of the coefficient relation. Now suppose p of
the allowable #; are positive and the remaining #; are zero. Assume u € o, and
assume there are fewer than p double roots among the roots of —zA;u(z) =
1<l<(n-1)/2,z=e" 0 < 0 < . We view the nonzero ¢, as variables, and
we wish to construct S(z) = X, 205k Qn-2(2, k) #0 so that p+eSeg, for
some € > 0. Then g =3(u+eS)+3(n—eS), so p is not an extreme point.
We determine the p real numbers s; with ¢, # 0 as follows. If —zA;u(z) has
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a double zero at z = e”, we require that A;S(z) have a zero at z = ™. Since
A;S(z) = e"=D/20R () where R is real, this yields a real linear equation in
the p variables, s; for each double zero of some —zA,;u(z). To obtain p
equations, require that A;S(1) = K (/ =1, 2, ...) for sufficiently many values
of /, so that the total number of linear equations in the p values of s; is p.
Here K = 0 if the determinant of coefficients of the s; is 0; K =1 otherwise,
In any case, there is a nontrivial solution for the s;,. Now, for sufficiently
small e > 0, n+ €S is typically real. Also, for1 </ =< (n—1)/2, for each dou-
ble zero of —zA;u(2) on {|z| =1} there is a simple zero of —zA;(u +eS)(2).
The double zero cannot move off {|z| =1} because it would become a pair
of zeros that are inverse points with respect to the unit circle. However, S
was constructed so that one of these zeros will remain on the circle. This
completes the proof. 1

From Lemmas 3 and 4, the extreme points of o;f (1=n=<4)ande, (I=n=<53)
are determined. Denoting the extreme points of o;7 and ¢, by Eg;" and Eo;,,
respectively, we have

Eoy ={m(2)}, n=1,2;

Eo;f ={p(2), p(z) —4(sinw/(n—1))*Q, _»(z, 1)}, n=3,4;

Eo; ={uy(2)}, n=1,2,3; and

Eoy = {py(2), pa(2) —4(sin(2n/(n—1)) sin(7/(n—=1))>Q,_»(z,2)}, n=4,5.
For n =5, peoi is given by

p(z) = p1(2) —1,03(z, 1) = 13 05(z, 3)
=1/z24+ (1=t —85)2+ (- t)0V222+ (1 -t — 1)z + Z°.

For extreme points, either u = u; or u is given by Lemma 4 (in this case
—zAp(z) has three double roots and it follows that #;, =1 and #; = 0 or that
t, =0and ; = 1), or —zA, u has two double roots and —zA, u has two double
roots. In the latter case,

l1—ayz2—aV2z2° —ay 24+ 28
and
l—a 224 a;z24 28 = (1—-z5) A+ (1 —a)z2+2zY
both have double roots: a;=1—#—t; and a, = (3 —#)V2. We conclude
that @, = —1 because (1+ (1 —a,)z%+z*) must be a square and

az\[i _
> —

cos 36 +cosf — 0

has a double root, 0 < 8 < = (writing the first condition in trigonometric
form using a; = —1). This means 3sin360+sin@ =0, so 12 cos20—2 =,
cos? @ =1/6, and a, = +4V3/9. Thus, we have the following theorem.
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THEOREM 13. For n =3,4,5, the extreme points of o, are as follows.

(@) If n=3, then u(z) = 1/z+a,z+z3 for ay==+2 and p(z) =1/72—2°
are extreme points in o and o3, respectively

(b) If n=4, then u(z) =1/z4+ayz+a,z22+z* for a, =1, —5/4 are the ex-
treme points in af. In oy, the extreme points are —u(—z), where p is
an extreme point of a3 .

(c) If n=5, then p(z) =1/z+a1z+a,z*+a123+2° for (a;,a,) = (1, 0)
or (0, £V2) or (—1, £4V3/9) when p is an extreme point of of. The
extreme points of o5 are u(z) =1/z+a,2—a,z> —z° where a, = *1.

Of course, these results yield bounds on the coefficients of univalent mero-
morphic polynomials u, with real coefficients and all zeros of p’ on {|z| =1}
for 3 < n < 5. The sharp bounds are

—2/3<a;<2/3 for n=3,

—5/8=<a;<1/2 for n=4,
and
—3/5<a;=<3/5 and |ay|<2V2/5 for n=5

(see [10]), with u(z) = 1/z+ayz+a, 2%+ 314123 —12°.

Now consider n = 6. Since p € o if and only if —u(—z) € o5, we need only
consider of. Write u(z) = 1/z+a,z+ a,z2>+ a5z +a,z* + z5 We know that
p is an extreme point when (a;, a,) = (1, 0),

5V5—7  5(V5-1) 1 5(V5-1)
(al,az)=( . S ), and (ahaz)=(—z,-T“,

by Lemmas 3 and 4. The remaining extreme points in of occur when both
~zA;u(z) and —zA, u(z) have two double roots. That is,

» V541 3 V5+1

1—a,z%— a a7t —ay 7’ + 7’
1< ) 22 5 2% 12" T2
= (1-21z+2z%)2(1 + 41z + 4122+ 7%)
and
V5— —1
l1—a;z2— > lar22:3+\/§2 a7t +a,z° 277

=(1-25z+2%)*(1+4s7—4s7*—z7°)

where —1<f<1and —1<s<1. We have a; =12t —4¢—2 = 125>+ 452
and

4y =— ‘FZ L 1631612+ 41+1) = —

‘52“ (165° + 1652+ 4s+1).

From a, we get 12(¢2—s2)—4(t+5s) =0 and 4(¢+5)(3(t—s)—1) = 0. Then,
t=—sort=s+3+. If t = —s, we observe that @, = 050 16¢° — 1612 +41+1 =
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n==6

—0.7605206751
0
0
—0.1901301688

a AN 4

—0.3098299566
—0.2065533044
—0.142272304

n==6
—0.5690892159

o

Figure 3

0. In case ¢ =s+3, we also obtain a cubic equation in . In each case, we
obtain exactly one value of ¢ for which the resulting m is in the family
g¢. The values are approximately, (a,, a;) = (—1.1408,0) and (a;, a;) =
(—.8536, —.6197). Figure 3 shows roughly the image of the disk under the
mapping p* in each case.
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n==_§

(0.75 ) .
0
0 = ;
0

0
0.125 J

n=2_8

N

[ 0.643680053 )

—0.1596516038 /\ \
~0.1592658349 S~ ; =
—0.1194493762

- 1\/
—0.0638606415

0.1072800088 y

—

n=38 1
(" 0.2131993762 )
—0.1990822936 AN
0.2869871179 2 i
0.2152403384 VTN
—~0.0796329174
| 0.0355332294 | "
V <

n=2_8

(" 0.4047813007 )
0.3587338974
~0.127721283
—0.0957909623
0.143493559
| 0.0674735501

-1

Figure 4a

We summarize the results for n = 6 in the following theorem.

THEOREM 14. The extreme points in a¢ are the functions

w(z) =1/z+az+az2° + a2’ +ayz* +z°
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n=2_§

(" 0.0668081443 )

—0.5017028103
—0.0811399951 xvl

—0.0608549963
—0.2006811241
[ 0.0111346907 J

n=8§8 1

(" —0.066759068 )

—0.5017131476 /}
0.0792946228 »

0.0594709671
—0.200685259
_—0.0111265113 J

0.2289690847
0.1717268135
0.0839847602
\_—0.0792898702 )

n=_§ !
(—0.475739221 )
0.2099619006
zl

Figure 4b
where
(als aZ) € {(la O)s (‘/—5—;7 s S(VZ—I))’ (—1/4, é%—;l)')s (Cl, 0)’ (B’ r)}:

where o = —1.1408, 8 = —.8536, and v = —.6197.
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n=3_§
(-0.4331521273 )
0.3625734659
0.1184257464
0.0888193098
0.1450293864

_—0.0721920212 J

n=2_§

(" 0.2843468157 )
0.1958185529

—0.3001698035

—0.2251273526
0.0783274212

_ 0.0473911359 J

n=2_§

(-0.506627872 )
~0.2997798241
—0.2146979248
—0.1610234436
—0.1199119297

| —0.0844379787 J

Figure 4c
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—0.07303584
—0.05477688
—0.1270357918
L—0.1070528479 )

n=3_§8
(" —0.6423170874 )
—0.3175894794

AN

n=3§8

(—0.8236494327
0
0
0
0
_—0.1372749054

N

A

Figure 4d

57
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AL

n=2_§

(—0.7674121895 )
0.1338254826
—0.1015690693
—0.076176802
0.053530193
_—0.1279020316 |

AN

A\

7

n=2_§8

(" —0.5305095812 )
0.0073972263
—0.289787091
—0.2173403182
0.0029588905
_—0.0884182635 |

.

Figure 4e

Again, using the connection between univalent meromorphic polynomials
and o, we have the following theorem.

THEOREM 15. If u(z) =1/z+a;z+ayz%+%a,z3 +3a,2* — 128 is univalent
in 0<|z| <1 and all zeros of p’ lie on {|z| =1}, then a, and a, satisfy the
sharp inequalities



A Family of Meromorphic Univalent Functions 59

zc<a <-2— and —————5(\5—1) <a <————————5(\/§_1)
3~ 173 6 ~ = 16

where —1.1408 = ¢ = 12t> — 4t — 2 and t is the real root of the equation
16 —1612+41+1=0.

Figure 4 shows the variety of possible image domains for p* when u is an
extreme point in og.
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