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1. Introduction

Let A = {z€ C:|z| <1} and let dA denote Lebesgue measure on A. For p =1
let A? denote the Bergman space, that is, the set of functions f which are
analytic in A and satisfy

1 1/p
lo=|L [Ir@rda@)| <o a

More generally, for a nonnegative measure p on A let A?(u) denote the set
of functions analytic in A that satisfy (1) where dA(z) is replaced by du(z). If
the set of point evaluation functionals are locally uniformly bounded, then
there is a reproducing kernel K, (z, w) which is symmetric (i.e., K,(z, w) =
K,(w, z)) and belongs to A”(p). In the case du(z) = dA(z) this kernel is the
usual Bergman kernel given by K(z, w) = (1 — wz) 2. Another important case
is when p is absolutely continuous with respect to Lebesgue measure, and
specifically when du(z) =|¢(2)|*dA(z) and ¢ is a function analytic in A.
For such measures we use the notation K_(z, w; ¢) for the reproducing ker-
nel, and call them weighted reproducing kernels. These kernels are closely
connected with the solutions of many extremal problems on spaces of ana-
lytic functions (see [2], [4], and [8]). For example, the solutions of point
evaluation problems play the role of inner functions as shown in the recently
developed factorization theory in Bergman spaces [2; 4]. Weighted kernels
also play a significant role in the general theory of domination in Bergman
spaces. Two references on this area are [6] and [9]. Thus the analytic prop-
erties of these kernels are very important in the theory of Bergman spaces.

In this paper we consider the case where the weight function ¢ has a finite
number of zeros in A. In the special case where ¢ is a finite Blaschke prod-
uct, we prove that the weighted reproducing kernel is a rational function.
More precisely, our central result is the following theorem.

THEOREM 1. Let B be a finite Blaschke product and let o be a complex
number satisfying Rea > 0. Then there is a weighted reproducing kernel
K, (z,w) = K (z,w; B) having the following properties.
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(i) (1I/7) [, K (2, w)f(2)|B(z)|*dA(z) = f(w) for |w|<1 and for every
feH®,

(ii) K,(z,w) is a rational function of z,w of the same degree as a func-
tion of z or as a function of w. This degree equals n+ 2 where n is the
degree of B.

(iii) If o is real then K ,(z, w) = K (W, 7).

(iv) for each fixed w, the poles of K, (-, w) are at 1/w (a double pole) and
at the points 1/a, where {a;} are the zeros of B.

(v) K, (z,w) depends anti-analytically on «.

In fact, we find a formula for K, (z, w) involving a finite number of constants
depending on « (see (13)). Theorem 1 is used to prove Theorem 2, which is
stated below and characterizes finite Blaschke products in terms of rational
reproducing kernels. We use the notation @ for the disk algebra, which con-
sists of the functions analytic in A and continuous in A.

THEOREM 2. A function fe Q which does not vanish on dA is a constant
multiplied by a finite Blaschke product if and only if the weighted repro-
ducing kernel K, (z,w; f) is a rational function of z,w for all o satisfying
Rea > 0.

We obtain a number of consequences of Theorem 1. Perhaps the most sig-
nificant consequence is that the contractive zero-divisors in A” which have a
finite number of zeros are pseudo-rational functions (that is, a power of a
rational function). We also prove that the solutions of certain integral equa-
tions related to the duality A? < A?(1/p+1/p’ =1) depend anti-analytically
on the parameter. Finally we express the solution of a finite optimal recovery
problem in terms of weighted reproducing kernels.

ACKNOWLEDGMENT. The authors thank Boris Korenblum for useful dis-
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2. Weights Generated by Finite Blaschke Products.
Proof of Theorem 1

Let |ax|<1for k=1,2,...,n and let

B(z) =T Z—%

k=1 1—agz '

It is easily seen that the L2 norm generated by the weighted measure |B|*dA
is equivalent to the usual norm (1) for all positive «. This implies the exis-
tence of the symmetric reproducing kernel K, (z, w) = K,(z, w; B). Our aim
is to find an explicit formula for K (z, w).

Forj=1,2,...,n let

n {—ag
Bi(z) = —.
J /:(I';Il l-akz
k+j
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We first consider the case a; # a; for k # j. Let |[w|<1and let he H*. The
following relation can be obtained through an application of the residue
theorem:

1 B(W)Z —— o Bi(w) 1-|a)?

- B —_—
2wl Jigj=y 1—2w B()h(z)dz=h(w) = E,l—dkw B (ay)

h(ay). 2)

The argument begins by noting that zZ =1 and B(z)B(z) =1 for |z| =1. (In
the case where w coincides with one of the numbers «,, a,, ..., a,, each side
of (2) equals zero.) We can rewrite the left-hand side of (2) as

1 B(w)z

5 — B(2)| B(2)|*h(z) dz.
27i Jjg=1 1-2w

If we apply the complex form of Green’s theorem to this integral and use the
result in (2), we obtain

1 B(z) o ZB'(2) o
fB( )[(1_ (2 +1)1 ]h( )|B(2)|* dA(z)

n NPT
W)= By (w) 1—|a]

k=1 1—axw By(ay)

h(ag). (3]

The right-hand side of (3) also can be expressed as an integral, and since (3)
holds for all A € H® this yields

—| B(2) o zZB'(2)
B(W)[(I—ZW)2+(5+1)1—-ZWJ
n Be(w) 1—|a;|?
=K. (z,w)—

(2, ) 21 1—ayw B(ay)

K (Z, ak)

Hence _
K.(z,w) = B(z)BEw) +<3+1> zB (z)B_(w)

(1—2zw)? 1—zw
N n Be(w) 1—|a)?
k=1 1—aw By (ay)

Ko (z, ap). 4

The substitution z = g, in (4) gives

a;B'(a;)) B(w)
1— a,w

K (a,w)= (% + 1>

n Br(w) 1—|a)?

k=1 1—aw Bi(ay)

K. (a;, ay). (5)

Because of the symmetry of the kernel, this yields

1) a;B’(a;)B(z)
l—d,z

K, (z,aq) = (% +

+§ Bi(z) 1-|af*
=1 1=z By(ay)

Ka(aks a])- (6)
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If we use (6) and (4) and express B’ in terms of By, we find that

_ B)BW) (a ) L Bi@B(w)  zw—|a)

=—"——+{=+1] 3 B - =
(1—zw)? 2 o1 =@ 2)(—aqpw) 1—zw

+ 2”: (A—|a|»A—]a*) Bi(z) By(w)

k=1 =& )1 —aw) By(ay) B)(a))

For every fe H®, the following relation holds:

K. (z,w)

K. (ay,a). (7)

- [ B B@ B0 S B@I B dAE) = f)B().
A

Since the set { fB: fe H™} is the same as the set of functions in H* which
vanish at a; (kK =1, 2, ..., n), this implies that for each fixed w (|w| < 1) there
are constants ¢, (w) such that

Ka+2(za W)B(Z)B(W) = Ka(z’ W) + 2 Ck(w)Ka(zs ak) (8)
[1, p. 421]. k=l
If welet z=a,(l </=<n)in(8), we obtain
Ka(als W) = —kE ck(w)Ka(ah ak)- (9)
=1

It is easy to see that the set {K,(z,a;): k=1,2,...,n} is linearly indepen-
dent. Hence the determinant of the matrix formed from the inner products
(K (z,a;), K, (z,a;))) (k,l=1,2,...,n)is not zero. This inner product equals
K, (a;, a;) and hence the matrix [K,(a,, a;)] is invertible. Thus (9) implies
that

(W) = P ciKol(a,w), (10)

where ¢y, are constants depending only on «. Using (10) in (8), we have
- n
Ko12(2, W)B(2)B(w) = K (2, W)+ 2 Ko (2, ap)Kola,w). (1)
k, =1
We next show the following relations, referred to collectively as (12):

n
Ka(ak’al)+ E Cqua(ak,ap)Ka(aq,a,)_—_() (12&)
p,q=l
a By (ay) n a,B'(a,)
* =7 v Keltra,) =0 12b
(1—|ax|H A —a,w) p%):]c,,q 1—a,w oy, ap) (12b)
% Bi(ar) S a,B'(a,)
¢ —_—Ka ag, a;) =0 12¢
TP —drn) T, 2, P 1=g,; Rel9a @) (12¢)

for k,/=1,2,...,n. Equation (12a) follows from (11) by letting z = a; and
w = q;. By using (5), (6), and (7) in (11) with z = a; and also (12a), we find
that this yields (12b). A similar argument gives (12¢). If (7) is substituted in
(11) and then (12) is used, we obtain a formula for K ,(z, w). With o +2
replaced by « this yields
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_ 1 o n l—lak|zzw
Kl W) =120y —[k=1 T—zm) (1 —a ) —apw)
a2 d ]
+ , 13
2 A=an i =am) (3)

where d, are constants depending only on «. Equation (13) holds for o > 2,
and hence the statements (ii), (iii), and (iv) in Theorem 1 follow for a > 2.
For every fe A? the function ¢, defined by

or(a, w) = f(w)—— f [m

a n 1—|ak|22w
t3 Z a0 =am

is analytic in {a: Rea >0} X A. For k=1, 2, ..., n and Re o > 0, define xlsz by

]f(z)IB(z)I“dA(z)

1 f(z) o
VK(e) = f ZE B[ dA().
Then 1//f is analytic in {: Rea > 0}. Since a; # q;for k # [/, the nXn matrm
[1/(1 —a,a;)] has a nonzero determinant [5]. Therefore a function af is de-
fined through the system of linear equations

nooMa) 2
1 L = Zoia,a) (k=1,2,...,n), (14)
1=11—a;a; 24

and af is analytic in {«: Re o > 0}. For each fixed «, the set of functionals
{l,bf(a) k=1,2,...,n} is linearly independent. To see this, note that other-
wise there are constants ¢, (k=1,2,...,n) such that

n
f [ > 0 ]f(z)]B(z)]“dA(z) 0 forall fe A2
= 1—

In particular, letting f(z) = X% - ¢ /(1 —a,z), this leads to ¢; =0 for k =
1,2, ...,n. The linear independence of the set of functionals implies that to
each fixed « there are functions fi, f5, ..., f, in A2 which are bi-orthogonal
at «. In particular, this shows that the #n X n matrix [ll/}j(a)] (J,k=1,2,...,n)

satisfies
det[¥f(a)] #0 (15)

for the fixed value of «. The determinant in (15) defines an analytic function
in {o: Rea > 0}. Thus, for every / (/=1, 2, ..., n) there are constants dy;
(k=1,2, ..., n) which solve the system of linear equations

2 dfdjle) = gi(e) (J=1.2,...,n). (16)

This provides n systems of equations which determine dj; as meromorphic
functions in {o: Re o > 0}.
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Let J,(z,w) be defined by the right-hand side of (13), where the factor
o /2 is replaced by &/2 and dy, is replaced by df; as determined by (16). Then
J,(z, w) is a meromorphic function of « in {o: Rea > 0}. From (13), (14),
and (16), we see that dy,(a) = df;(«) for all real a > 2 except possibly a dis-
crete set. Also, for fe A% and |w| <1 we have

% f T @ W) f(2)| B(2)|*dA(z) = f(w). (17)
A

Since the integral on the left-hand side of (17) is a meromorphic function of
a, (17) implies that the equality holds for all « where Re o > 0. We also note
that dj;(«) are independent of the choice of f}, f5, ..., f,, (for a > 2 this fol-
lows from (13), (17), and the uniqueness of the kernel). For every « such
that Re o > 0, we can find f}, /5, ..., f,, such that (15) holds at «, and hence
d = dp, () are anti-analytic in «.

In the case of multiple zeros of the Blaschke product, we can obtain the
same conclusion by using the case proved above and taking limits. This com-
pletes the proof of Theorem 1. U

We next obtain a direct consequence of Theorem 1 about the anti-analytic
dependence on « of representing elements. Let o > 0 and let Aj denote the
Hilbert space of functions analytic in A with the norm

2 —_l. 2 o
17 =5 [ |F@FIB@F daG).

For each g € A%, consider the bounded linear functional on A§ defined by

e | reE@da. a3)

By the Riesz representation theorem, there exists g, € A such that (18) is
given by

1 o (~) a
-3 [ roE@IB@rM.

CoroLLARY 1. g,(2) can be extended to an anti-analytic function of « in
fa: Rea > 0}. In other words, there is a function g(o,z) defined on {a:
Re o > 0} X A which is anti-analytic in a and analytic in z and satisfies

[ e DIB@IdA@ = [ f@E@dAR) (19)
A A

Jor fe A3 and Rea > 0.

Proof. Define g(a, 2) = (l/w)fAK,,(z, w)g(w) dA(w), where K, (z,w) is the

kernel constructed in the proof of Theorem 1. By statement (v) of Theorem 1,
g(a, Z) is anti-analytic in «. The equality (19) can be verified directly. O
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3. Weights Generated by Functions in the
Disk Algebra. Proof of Theorem 2

First we prove a preliminary result.

PROPOSITION 1. Suppose that fe H*, ge ®, and g does not vanish in A.
Then

K. (z,w; f)
[g(z)]*"2[g(w)]*/2"

Proof. Let J,(z,w) be defined by the right-hand side of (20) for |z| < 1 and
|w| < 1. Then J, is analytic in z, anti-analytic in w, and symmetric. Hence it

remains to show only that J, has the reproducing property. Suppose that
he H”. Then

K. (z,w; fg) = (20)

% f Jo(z, WYh(2)| f(2)8(2)|* dA(z)
A

B W f K. (z,w; Nig@1*h(2)| f(2)|* dA(2)
A
N fmly]zﬁ'[g(w)]“’zh(w) = h(w). 0

Proof of Theorem 2. Suppose that fe @ and that f does not vanish on JA.
Then f has a finite number of zeros in A. Hence we can write f = BF, where
B is the finite Blaschke product having the same zeros as f and Fe @ and
does not vanish in A. By Proposition 1 we have

K. (z,w; B)
[F(2)]**[F(w)]*"*
Theorem 1 shows that K, (z, w; B) is a rational function (of z and w). There-
fore K, (z, w; f) is rational if and only if F*/2 is rational. Thus K, (z, w; f)

is rational for all « if and only if F*/2 is rational for all «.. This occurs if and
only if F is constant. O

K, (z,w; f)=

4. Contractive Zero-Divisors in A7

Contractive zero-divisors were introduced in [2] and [4]. They are functions
G € A” (p = 1) that satisfy

1
= [16@pP-1h@da@ =0 @y
A
for all he H™. They play the role of inner functions for factorization in

Bergman spaces. It was proved in [2; 4] that if A is a zero set for A” then
there is a unique (up to a constant factor of modulus 1) contractive zero-
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divisor G, € A” whose zero set is A. If A is a finite subset of A then G, is ana-
Iytic in A [2; 4]. In this section we apply Theorem 1 to establish further prop-
erties of G4. Namely, we prove that for a finite zero set the corresponding
zero-divisor is a product of a power of a nonvanishing rational function and
a Blaschke product. First we obtain two propositions that establish a rela-
tion between contractive zero-divisors and weighted reproducing kernels.

ProrosiTION 2. Let Ge Q. Then G is a contractive zero-divisor for A°
(p=1) ifand only if K,(z,0; G) =1 for |z| < 1.

Proof. Suppose that G is a contractive zero-divisor for A”. Then (21) implies

1 1
1 fA |G dAG) =+ fA h(2) dA(2) = h(0)
for all he H*. Also we have

L f K,(z, 0; G)h(2)| G(2)|? dA(z) = h(0),
T JA

and hence
f (K,(z,0,G) —11h(2)|G(2)|?dA(z) =0 for all he H™.
A

Therefore, K,(z,0; G) =1 for |z| < 1.
Conversely, suppose that K,,(z,0; G) =1 for |z| < 1. If he H®, then

w0 p _1 p
ho) =+ fAKp(z, 0; G ()| G(2)|P dA(2) = — fAh(z)lG(z)I dA(2).
Using h(0) = (1/7) [, h(z) dA(z), we obtain (21) for all he H™. O

The following result was proved in [2]. It also can be deduced from a gen-
eral result proved in [7, see Thm. 1], which establishes a connection between
the solutions of point-evaluation-type extremal problems and weighted re-
producing kernels. To make our presentation self-contained, we give a proof
of this proposition which is different from that given in [2].

ProPoSITION 3. Let A be a finite subset of A and let B be the Blaschke
product for which A is its zero set. Then the contractive zero-divisors for
AP are given by

[K,(z,0; B))*PB(2)

GA(Z) =b [Kp(o, 0; B)]l/p ’

(22)

where |b| = 1.

Proof. Define F by G, = B-F. Then Fe @ and F does not vanish in A [2].
By Proposition 1 we have

_ K,(z,w; B)
 [F@PPFw)P?

K,(z,w; Gy) (23)
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Proposition 2 and (23) give

L

Hence K,(z, 0; B) does not vanish in A, and

_ [K,(z,0; B)I*P
F(0)

This yields [F(0)|* = [K,(0, 0; B)]*”” and thus

_ blK,(z,0; B)*”?
Fa) = T¢ 0,0, By

where |b| = 1. This proves (22). O

F(z)

The following result is a direct consequence of Theorem 1 and Proposition 3.

THEOREM 3. If A is a finite subset of A and 1 < p < o, then the contractive
zero-divisor G, in A? is a product of a nonvanishing pseudo-rational func-
tion and the Blaschke product determined by the zero set A.

By combining (22) and (13), we obtain a somewhat explicit expression for
the contractive zero-divisors for A” for a finite zero set. In the case of one
or two zeros there are exact formulas for these zero-divisors [2; 3; 8]. The
arguments yielding such formulas are different from the general approach
developed in this paper.

5. Optimal Recovery in 4”7

Let 1 = p<oo and let ag, ay, ..., a, € A, where a, #a, for k=1,2,...,n
Consider the extremal problem

E(p,A) = irslf ;UEP |f(ao)—S(f(a)), ..., flan)]. (24)
IA1l.ar=1

Here A = {a;}} - and S varies over all complex-valued functions of n com-
plex variables. This problem is called the optimal recovery problem, and the
function S is called an algorithm. An algorithm S, is called optimal if

E(p’ A) = Sup{lf(aO)_S*(f(al): '-':f(an)l:fEAps Ilf"Ap = 1]'
A function f, is called a worst function if
E(p, A) =|fulag) = Su(fil@y), ..., filay))|.

Let B(z) =11¢-1[(z—a)/(1—a,z)]. The following result is a special case of
a general theorem proved in [8] although not explicitly stated there.
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THEOREM A. If K, (2, ay; B) does not vanish in A, then

[K,(z, ao; BYI*”B(z)
[K,(ag, ag; B)]'P

is a worst function for the problem (24) for some optimal algorithm.

Si(z) =

(25)

To apply Theorem A, we must prove that K,(z, ao; B) does not vanish in A.
This was shown in Proposition 3 in the case ay = 0. The following proposi-
tion reduces the general problem to this case.

ProposITION 4. Suppose that |b|<1, ¢(z) =(b—2z2)/(1—bz) for |z|<]1,

and the function f is analytic in A. Then
1-]b?

(1—bz)(1—bw)

2
K,(z,w; fop) =[ ] K,(0(2), o(W); f). (26)

Proof. Note that ¢ is an automorphism of A and ¢! = ¢. Let g = foe.
Suppose that € H® and let kK = hop. Then

J;Kp(z,W;f)k(Z)If(Z)I"dA(Z) = k(w) (27)

for |w| < 1. Under the change of variables z = ¢({), the left-hand side of
(27) becomes

fAKp(QO(s“),W;f)l(s“)so’(s*)lg(s“)l"dA(f),

where / = h-¢’. Hence (27) yields

ftp'(i’)Kp(qo(s”),90(0);f)w’(a)l(é')lg(f)lpdA(s”)=1(0), (28)
A

where ¢ = ¢(w). Since ¢’ is analytic in A and does not vanish there, / is
an arbitrary function in H*. Thus (28) holds for all /e H® and for all ¢
(|]o| < 1). Therefore

K,(§,058) = o' (DK p(e(£), 0(0); f)e'(0)
for |¢| <1 and |g| < 1. This is equivalent to (26). O

The following statement is a consequence of Proposition 4 and the proof of
Proposition 3.

CoROLLARY 2. Let 1< p <. Then K,(z,w;B) # 0 for [z| <1 and |w|<1
and for all finite Blaschke products B.

Thus we can apply Theorem A, and the combination of Theorem 1 and The-
orem A yields the following result.

THEOREM 4. Let A ={a;}}-0C A, 1< p<oo, and
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B(z) = T =%

ks 1—az’

Then the intrinsic error of optimal recovery (24) is given by

1 +£[ é 1—|ao|*|an|’
(1—]ao|®? 2| 42) A —]ao|»)|1—apay|?

n 1/p
> i H |Bao)l,

k=1 (1 —apdr)(1 —aay)

where dy; are defined by (16) and o = p.

E(p, A) ={
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