A Class of Operators and
Similarity to Contractions

JAMES D. STAFNEY

1. Introduction

Let H? denote the usual Hardy space on the disk in the complex plane. Let
S denote the shift operator on H?, S* the adjoint of S and let Q be an ele-
ment in £(H?), the set of all bounded linear operators on H2 Let R denote
thsq cQorresponding operator on H*@ H? defined by the matrix of operators
( OLest T, f=P(ef), where f(z) = f(Z) for |z|=1 and P is the orthogonal
projection of L? onto H> (T, is defined precisely in Section 2.)

In the case where Q =T, Peller [Pel] shows that if ¢’'e BMOA then R
is polynomially bounded, and Bourgain [Bo] shows that with the same as-
sumption R is similar to a contraction. The Bourgain result contains the
Peller result because a bounded operator on a Hilbert space which is similar
to a contraction is also polynomially bounded.

A major objective of this paper is to obtain a stronger conclusion than
the one in the Bourgain theorem from the same hypothesis, and then show
that the converse of the stronger implication holds. These results are Theo-
rems 3.1 and 3.2.

Bourgain obtains the conclusion of his result by showing that R is com-
pletely polynomially bounded; he then uses a theorem of Paulsen [Pa]. Our
approach is to decompose R and show that R is similar to S*@®S. This quite
simple decomposition approach can be used to obtain the same conclusion
for quite general Q, which is the content of Theorem 5.4.

Roughly speaking, our converse result, Theorem 3.2, states that if R (with
Q =T,) is similar to $*®S and ¢’e H?, then ¢’e BMOA. The key to the
proof of the converse result is Theorem 4.1, which is of independent inter-
est. That theorem states that if ¢’e H?, then the domain of the operator
Gf =T, f"is a space of the form Hp, if and only if G is bounded. The space
HZ (W = C > 0) is the space of functions f in H? such that | f|>W is inte-
grable on the circle.

Section 6 is devoted to some key lemmas that are used in Sections 3 and 4.

Operators of the form R seem to have first arisen in [Fo] (see also [H1])
where it is shown that, for a certain Q, R is power bounded (|R"|| = C,n=1)
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but R is not similar to a contraction. An operator 7 on a Hilbert space is
polynomially bounded if

| p(T)|| = C max{| p(z)|: |z| = 1}

for all complex polynomials p. Lebow [Le] showed that the operator defined
by Foquel [Fo] is not polynomially bounded. The question (see [H2, Prob.
6]) of whether every polynomially bounded operator on Hilbert space is
similar to a contraction is well-known and unanswered.

The above references and our results suggest a similar question. Is every
polynomially bounded operator of the form R, for a general Q or for Q@
equal to some I, similar to a contraction?

2. Notation

Normalized Lebesgue measure on the circle {z:|z| =1} in the complex plane
will be denoted dm. For 1 < p < oo, L” will denote LP(m) and || ||, its usual
norm. The set {z:|z| < 1} in the complex plane will be referred to as the disc
and H?, for 1 = p < oo, will denote the usual Hardy spaces over the disc.
The functions in H” will frequently be identified with their boundary values
and, correspondingly, H” will be identified with a subspace of L”. The norm
of H” will also be denoted by || || ,. If W is a real measurable function on the
circle and W = C where C is a positive constant, then Hj is the space of
functions f such that | f|>W is integrable with respect to m on the circle and
the norm of f is ([|f|> dm)V%
We denote by BMOA the space of functions g in H! for which

[ raam

el = sup retfh=1)

is finite. The rather deep fact that the functions in BMOA can be charac-
terized in terms of “bounded mean oscillation” will not be used in this paper.
The orthogonal projection of L2 onto H? will be denoted by P. If f is ana-
Iytic on the disc, then f” denotes its derivative and [ f denotes its antideriva-
tive that vanishes at z = 0.

If X is a B space, £(X) will denote the space of all bounded linear oper-
ators on X and B(X) will denote the unit ball of X. If K| and K, are subspaces
of a Hilbert space K, then K = K,@® K, will denote a direct sum for which
the corresponding projections are bounded; in particular, it need not in-
dicate an orthogonal direct sum. Similarity of operators will be denoted
by =.

The following special notation defines the main objects of interest in the
paper. The Hilbert space H>@ H?, the usual orthogonal direct sum of H?
with itself, will be denoted by H. The shift operator S on H? is defined by
Sf(z) = zf(z) and its adjoint is denoted by S*. For any Q in £(H?), the
corresponding operator R on H = H*@ H? is defined by the operator matrix
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S* Q
R = .
(o 5)
The subspaces H, and H, of H*@ H? are defined as follows: H, = {(f, 0):
fe H?} and H, is the closed linear span of the set {R"v: n =0} in H>*@® H?

where v = (0, 1). The operator M is defined to be R | H,, the restriction of R
to H,. For k=0,1,2, ..., the operator Qy is defined by the equation

Rk _ S*k Qk .
0 S*
For each polynomial p(z) =X ¢, z*, we define Gy by Gop = 3 ¢, Ol and
regard G, as an operator with domain in A2 and values in H 2, Note that

G
S e R*v =( ;p).

When G, is closable, its closure will be denoted by G, H(G) will denote the
domain of G, and the norm of D(G) will be the usual domain norm

1o = 1A I+ NGl

For ¢ € BMOA, T, is defined by T, f = P(¢f) for fe H?, where f(z) = f(2)
for [z] =1.

ProposiTION. T, || =||¢

-

This is easily proved by considering (T, f, g) with f,g in H 2 and using the
factorization theorem.

3. 0=T,

This section is devoted to the proofs of the following two theorems with
converse implications.

Tueorem 3.1. IfQ =T, and '€ BMOA, then H = H® H,, where the cor-
responding projections are bounded, M = Sand R = S*® S, where S*®S is
the orthogonal direct sum of the operator S* and S defined on H = H*@® H".

THEOREM 3.2. If Q=T,, o’e H> and M = S, then ¢’e BMOA.

For convenience, we state the six results from Sections 4, 5, and 6 which we
use in the proofs of Theorems 3.1 and 3.2.

THEOREM 4.1. Suppose that Q =T, and ¢'e H?. Then D(G) = Hf, for
some W = C> 0, and the norms of these two spaces are equivalent if and
only if G is bounded.
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LEMMA 5.2. Suppose G is closable. Then D(G) is invariant under multi-
plication by the independent variable 7 and M is unitarily equivalent to mul-
tiplication by z on H(G).

THEOREM 5.4. If Gy is bounded, then H = Hi® H, (in particular, the pro-
Jections are bounded), M is similar to S, and R is similar to S*®S.

LEMMA 6C.1. There is a constant C such that
1T, f"ll2 = CAe @)+’ f1l2
Jor any o’e BMOA and f a polynomial.
LemMA 6C.2. If Q =T, and G, is bounded, then ¢'c BMOA and
l2(0)|+]l¢’ |Gl.

LeEMMA 6C.4. If ¢ is analytic on the open disk and ¢’e H?, then (in case
Q =T,) Gy is closable.

P35

Proof of Theorem 3.1. 1If ¢’e BMOA, then Lemma 6C.1 asserts that

IT, £l = C(e ()] + ¢ [l)]|f 112

for each polynomial f. Thus, G, is bounded and the conclusion of the theo-
rem follows from Theorem 5.4. C

Proof of Theorem 3.2. By Lemma 6C.4, the operator G, is closable and
therefore G is defined and closed. Let 7f(z) = zf(z) for f € D(G). By Lemma
5.2, T is unitarily equivalent to M, which by hypothesis is similar to S.
Hence there is a map V: D(G) — H? which is linear, one-to-one, onto, and
bicontinuous such that VT = SV. Let f, = V~!(1). Then

(1) ¥(pfo) =p and _ .
(2) Clirllaz = pfHllowc) = Callplla2> where p is any polynomial and
C,, C, are positive constants independent of p.

Let W= |1/f0|2. We will show that from (1) and (2) the following obtain:

(3) W=C for some C>0, and
4) BG) = H[,?i/ and the norms of these two spaces are equivalent.

Since ¢’e H? and (3) and (4) hold, it follows from Theorem 4.1 that G is
bounded. Thus, by Lemma 6C.2, ¢’e BMOA and the proof of Theorem 3.2
is complete once we establish (3) and (4).

From the inequalities (recall V(pfy) = p)

| 2foll sz < | folloey = Cll Plla2
it follows that
(5) f,is bounded.
We also need
(6) f,is an outer function.
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Since V: D(G) — H? is onto and bicontinuous, V(pf,) = p for any poly-
nomial p, and the polynomials are dense in H?, it follows that the set ¥ =
{pfo: p a polynomimal} is dense in $(G). Since G is the closure of G, and
the domain of G, contains the polynomials, it follows that Y is dense in H>
Thus, fyis an outer function (see e.g. [Ho, Chap. 5]) and (6) is established.

We now prove (3) and (4). Clearly, (3) follows from (5). Let fe D(G). Let
D, be a sequence of polynomials such that p, converges to Vf =g in H>
Then p, fo =V~ (p,) converges to V- !(Vf) = f in D(G). In particular, p, f,
converges to f in H? by definition of the norm of D(G). Since f; is bounded,
P foalso converges to g fyin H2. Thus, gf, = f as functions in A and hence
as functions in D(G). Furthermore, from the properties of V,

C, ”pn"HZ = "pnfonﬂ)(G) = CZ“ pn”:’-l2

for some ChC2> 0. AlSO, ”pnf()lliD(G)_’“gfo”g)(G) and "pn"Hz—)“g”Hz =
([|efol*W dm)"% Thus, fe Hj and

172

1/2
Cl(f|f|2de> < /oo =< Cz(f|f|2de)

So to prove (4) it remains to show that H3 C D(G).

Let fe H}. Then (i) fe H?; (ii) [|f/fo]> dm < oo; and (iii) fy is an outer
function. Note that (i) follows from the fact that W = C for some C > 0,
(ii) from the fact that W = |1/f,|%, and (iii) from (6). Therefore, g = f/f, € H?
(see e.g. [Ho, Chap. 5]). Thus, f = gf, for some g in H2 Choose polyno-
mials p, such that p,— g in H% Then p, fo =V " (p,) =V (g) in D(G).
Thus, p,fo—VYg) in H? and G(p,fo)— G(V(g)) in H? Since f, is
bounded, p, f; — gf, in H? Thus, since G is closed, f = gf, € D(G), which
completes the proof of (4) and therefore the proof of Theorem 3.2. W

4. Comparison of D(G) and H}

In this section the following theorem is proved.

THEOREM 4.1.  Suppose that Q =T, and p’e H*. Then D(G) = Hf, for some

W = C >0, and the norms of these two spaces are equivalent if and only
if G is bounded.

Proof. If G is bounded, then D(G) = H? = Hj for W = 1. Now consider
the converse. Suppose G is not bounded. We will show it is not possible
for the spaces D(G) and HE to be the same and have equivalent norms.
Since D(G) = H?, and H} = H?if W is bounded, we may assume that W is
unbounded. So it suffices to show that given M > 0 there is an f in D(G)
such that

M) |fIP+IGf|? <1and
Q) J|fI2Wdm > M.
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Because W is bounded, we can choose C > 0 and a complex with |a| > 1
such that the function F(z) = C/(z— a) satisfies

3) [|F|*dm =1and
@) [|F|*Wdm> M.

Since ¢’e H?, we can choose a function ¢, of the form

_ ak
‘PO(Z) - 2 bk_zs

where the sum is finite and |b;| > 1, such that

(5) |(0) —@o(0)|+ (¢ — ¢0)’|| 12 < 1/C||F || 1=, where C is the constant in
Lemma 6C.3.

Let B denote the finite Blaschke product

B(z) = [18k(2)

where B;(z) = (z— (1/by))/(1 —(1/b;)z) and where by, is as in the definition
of ¢,. Let f = B%F.

In view of (3) and (4), to complete the proof of (1) and (2) it suffices to
show, with appropriate adjustments of constants, that

(6) fedD(G) and

(7 |Gf| =1

For (7), we use
Gf = P((¢— o) /") + Ploo f).
We first show that
(8) P(eof")=0.

Now f’=2BB’F+ B*F’= BF, and F, is analytic on the closed disc. Heﬁce
0o(2) f'(2) = ¢o(2) B(1/2) F1(1/2). A simple computation shows that

% (1)_ 1% !
bi—z \z) z by 1=(1/b)(1/z)
Thus, ¢/ has the form

~ 1
00(2)J(2) = %Fz('zj),

where F, is an analytic function on the closed disc, and (8) follows.
From Lemma 6C.3, we conclude that

O) 1Pte —20) /)Nl = C(l9(0) = 0o O)|+ [l(¢ — 20) llr2) |f [l 22=-

Now (7) follows from (5), (8), and (9).

Recall that G is the closure of Gy and that Gop =T, p’ for p a polyno-
mial. Since f is analytic on the closed disc, a routine closure argument es-
tablishes (6).
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5. Case of General Q0

This section is devoted to the proof of Theorem 5.4. We consider the case
of a general operator Q in £(H?). The corresponding operators Gy, G, R,
and M are defined in Section 2.

LEMMA 5.1. If Gy is closable, then

[ reo)

Proof. Let (i) € H,. Then there is a sequence of polynomials p,, such that

(G°p")=pn(R)v~(g)
Dn h

in H=H*®H? Since G, is closed and G is the closure of Gy, it follows
that A€ H(G) and g = Gh. Thus,

H,C {(if>:fe ZD(G)}.

The opposite inclusion is proved in a similar manner. [l

LEMMA 5.2. Suppose G is closable. Then D(G) is invariant under mulii-
plication by the independent variable z and M is unitarily equivalent to mul-
tiplication by z on D(G).

Proof. Since G, is closable, G is defined and D(G) is a Hilbert space. De-
fine V by

Vf = <erf>, SeD(G).

From the definition of D(G) and Lemma 5.1, it follows that the map V:
D(G) —» H, s linear, isometric, and onto. To complete the proof we will show

(1) zD(G) C D(G) and
(2) Vzf = MVf when fe D(G).

Let p(z) = Eckzk be a polynomial. By the definition of Gy, Gyp =
> ¢, Ok 1 where Qy is defined by the equation

S*k Q
k _ k —
R _( . s’f)’ k=0,1,....

Recall that v = (?) A simple computation shows that

p(R)v=(Gp).
p

Let fe D(G). Choose a sequence of polynomials p, such that p,— f and
Gp,— Gf in H% Note that
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G
Vap, = ( z;p") =Rp,(Ryv = R(Gp”)

n n

R(Gp”>—>R(C;f)=RVf in H.

and

Pn

In particular, zp, — zf in H* and Gzp, converges in H?; consequently, zf e
D(G). Furthermore, Vzp, — Vzf and therefore Vzf = RVf = MVf (recall
that M = R| H,), which completes the proof. O

LeEMMA 5.3. If Gy is bounded, then H= H,® H, (with bounded projec-
tion).

Proof. Since G, is bounded, D(G) = H? and Gy is closable. Thus, by Lem-

ma 5.1,
G
= ff)’fEHz}‘

(5)=(0")+(F)
S 0 £/
Suppose ( ) € H;N H,. Then f = 0, and therefore g = 0. Thus, H = H,® H,

and since G is bounded, the corresponding projections onto A, and H, are
bounded. Ll

THEOREM 5.4. If Gqis bounded, then H = H\® H, (in particular, the pro-
Jections are bounded), M is similar to S, and R is similar to S*® S.

Let (f,) € H. Then

Proof. From Lemma 5.3, we have H = H;® H,. Since G, is bounded, G, is
closable, D(G) = H? and these two spaces have equivalent norms; thus, by
Lemma 5.2, M = R| H, is similar to S. Clearly, R | H, is similar to S*. Thus,
R is similar to S*® S, completing the proof. C

6. The Lemmas

For purposes of keeping track of the interconnections of the several lemmas,
we have divided this section into three subsections. In Section 6A we state
three known results with references. The lemmas in 6B follow from those
in 6A, and Section 6C contains the lemmas used in Sections 3 and 4. The
lemmas in 6C follow from those in 6B.

The idea for the proof of (i) in Lemma 6B.1 is quite ingenious; we learned
this idea from [Pel, p. 202] and [Bo, Lemma 1].

6A. Known Results

Fix a, 0 < a < 1. Let (6) denote the interior of the smallest convex set
in the plane containing the disc |z| < « and the point e”®. For an analytic
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function f on the disc (|z| < 1), the nontangential maximal function Nf is

defined by
Nf(e") = sup{| f(z)|: ze Q(6)}

and the square function sf is defined by

_ 1/2
sf(e”) = ( [ ror dA) |

where dA denotes integration with respect to area.
The following results are known. In each lemma, C or C, denotes a con-
stant which depends only on «.

Lemma 6A.1. || £ = C(fO)|+|s(D), feH.
LEMMA 6A.2. ||Nf|,= C|fl2, fe H
LemMma 6A.3. Gyl fll2 = |/ O)|+|Is(H. = Cll flls fe HA

Lemma 6A.1 is proved in [FS]. A closely related result is proved in [BGS].
These issues are discussed in [Fe] and [Pet]. For a proof of Lemma 6A.2,
see [Zy, Vol. 1, Chap. 7, Thm. 7.36]. For a proof of Lemma 6A.3, see [Zy,
Vol. 2, Chap. 14, Lemma 2.3].

6B. Consequences
The following three lemmas follow from those in Section 6A, and are used
in Section 6C.

LEMMA 6B.1. There is a constant C > 0 such that for any polynomials f, g, h,

() |f fglli = Cllf|l2llgl2 and
(i) |J(J f'@)hdm| =< C||f||2lglllA -

Proof. Clearly, (ii) follows from (i) and the definition of the norm | |;,
and the constant C is the same in (i) and (ii).
The first assertion follows from Lemma 6A.1, Schwarz’s inequality, and
Lemmas 6A.2 and 6A.3 as follows:
I,

Cl”ff’g S(ff’g>
:f(L(B)]f’g|2 dA)l/2 dm

< f N(g)s(f) dm < [N@)LJIs()]2

=
1

= Gollgll2[lA 1la- O
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The next lemma gives the converse of the previous lemma.

LeEmMA 6B.2. If his a polynomial and h(0) =0, then

f(ff’g)ﬁ dml: f.g€e B(H"')z,

where B(H?) denotes the 1-ball of H>.

Al < 4sup{

Proof. Let E={[ f'g: f, g€ B(H?)}. The set E is bounded in H' by Lemma
6B.1. Let ke B(H') and k; = k—k(0). Since #(0) =0, [khdm = [k hdm.
Since k; € 2B(H"), k,/2 = fg for f, g e B(H?) by the factorization theorem.
Thus, since k7(0) =0,

k,=fkl’=fo’g=2<ff’g+ffg’>62(E+E).

Therefore ky = 2(k, + k3) for some k,, k3 in E. Thus,

kazdm

_ |2f(k2+k3)ﬁdm|

< 4sup{Ukﬁdm': keE}
and the conclusion follows. ' O
Lemma 6B.3. ||f fgl> = Clfll< gl for any polynomials f and g.
Proof. Let F={[ f'g and G = [ fg'. Note that F(0) = 0 = G(0). Thus,
- 1 . .
F(e") =f if(re"”)g(re’”) dr.
0 dr
Integrating by parts gives (for z = e‘)

F(z) = f(2)g(z) - f(0)g(0) — G(z).

From Lemma 6A.3,

Ci||Gl5 = f(sufg'))z dm

= f f 1/(2)g"(2)* dAdm
=< (| fllo) s = (Ci]| f I gll2)%

and the conclusion follows. O

6C. Key Lemmas
The following lemmas are used in Sections 3 and 4.
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LeEMMA 6C.1. There is a constant C such that

IT, /1l = C(le(O)]+][#’[l1r)
Jfor any ¢’e BMOA and f a polynomial.

| /1l2

Proof. Let g be any polynomial. It suffices to show that

(1) [T,/ &) = C(e0)|+{le )] fl2[lg]--
Let g,(z) = g(z) —g(0); hence g = g, +g(0). A computation shows that

T,/ 81) = fw’m dm,

where f*(2) = f(2), and g,(z) = g/(z)/z. From Lemma 6B.1, it follows that

(2) [T S g0l = Cllelle 1S 112l gl

Next consider (T, f’, g(0)). Using ordinary integration by parts with re-
spect to the variable 8, it follows that

(3) (T, 77 20) = g(O)[— [rremeto@® S+ [ 1) ee™ g]

A routine argument shows that
@ el =20 +2]e"|-
From (3) and (4) it follows that
(5) (T, 1% 8(0)] = (Jo(O)|+ 3]l Il f 12Nl & -
Finally, (1) follows from (2) and (5), which completes the proof. O

The following lemma shows that the reverse of the inequality in Lemma
6C.11is also true. Recall that when Q =T, G, f'=T, f’ for any polynomial
S and G is the closure of G,.

LemMA 6C.2. If Q =T, and G, is bounded, then ¢’ BMOA and
le(O)]+l¢’[lr = 5|IG].
Proof. Let f, g be polynomials in the 1-ball of H? with g(0) =0. Then

fz@(ff*’g) dml.
z
From Lemma 6B.2 we conclude that

G = 2lize’ll- = 2l #”llr--
If f(z) = z, then Gy f = ¢. Thus, |G| = |¢(0)]. O

Gl = (T, /" &) =

The proof of the following lemma is similar to the proof of Lemma 6C.],
except that Lemma 6B.3 is used instead of Lemma 6B.1; therefore, the proof
is omitted.
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LEMMA 6C.3. If ¢ is analytic on the open disk and ¢’e H?, then

ITe fll2 = C( (O] + [ " [[] f |oo
Jfor any polynomial f.

LemMA 6C.4. If ¢ is analytic on the open disk and ¢’'e H?, then (in case
Q =T,) Gy is closable.

Proof. In case Q =T, the domain of Gy is the polynomials and G, f =
I, f' for f a polynomial. To show that G is closable it suffices to show that
if f, is a sequence of polynomials such that f,—0 and G,f,—g in H?
then g = 0.

Let 4 be any polynomial. An easy computation shows that (G, f,, k) =
[ f,(e®)yw(e®)db/2x, where

w(eif)) — _q_ieiﬂtp(eie)h(eiﬂ).

df
Since ¢’e H?, it follows that (G, f,, h) = 0. Hence (g, #) =0. Thus g =0,
and so Gy is closable. [
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