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0. Introduction

In this paper we study the relationships between the three most fundamen-
tal forms of set convergence. In particular, it is shown that Wijsman and
slice convergence coincide precisely when the weak-star and norm topol-
ogies agree on the dual sphere. Consequently, a weakly compactly generated
Banach space admits a dense set of norms for which Wijsman and slice con-
vergence coincide if and only if it is an Asplund space. We also show that
Wijsman convergence implies Mosco convergence precisely when the weak-
star and Mackey topologies coincide on the dual sphere. A corollary of these
results is that, given a fixed norm on an Asplund space, Wijsman and slice
convergence coincide if and only if Wijsman convergence implies Mosco
convergence.

All Banach spaces considered here are assumed to be real. Let X be an
infinite-dimensional Banach space with a given norm ||-|. When consider-
ing a subspace Y of X, we will always assume it is endowed with the rela-
tive norm unless stated otherwise. The ball and sphere of X are defined
and denoted as follows: By={x:|x||<1} and Sy={x:|x||=1}. We also
use the notation B,={x:|x|<r}. For xe X and A,BCX, let d(x,A)=
inf{||x—a|: ae A} and let d(A, B) =inf{||a—b||:a€ A, be B}. If A=9, the
convention is that d(x, A) = oo; similarly, d(A, B) = if A or B is empty.
We shall consider the following three notions of set convergence. Let C,, and
C be closed convex subsets of X. If lim, d(x, C,)=d(x, C) for all xe X,
then C, is said to converge Wijsman to C. More restrictively, C,, is said to
converge slice to C if lim,d(W, C,) =d(W, C) for all closed bounded con-
vex sets W. We will say C,, converges Mosco to C if the following two condi-
tions are satisfied:

M() if xe C, then d(x, C,) — 0;
M(ii) if x,, € C,, for some subnet is such that {x,,}g is relatively weakly
compact and x,, - x, then x e C.
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Notice that M(i) and M(ii) reduce to the usual definition for Mosco conver-
gence in the case of sequences (for M(ii) we use that a weakly convergent se-
quence is relatively weakly compact). Moreover, this definition is compatible
with the Mosco topology as defined in [B2]. As is the usual practice, we only
consider these notions for closed convex sets. It is also clear that Wijsman,
Mosco, and slice convergence coincide in finite-dimensional spaces, so we
will only consider infinite-dimensional spaces. As a matter of terminology,
we will say that given a fixed norm on X, Wijsman convergence implies
Mosco (slice) convergence if C, converges Mosco (slice) to C whenever C,
converges Wijsman to C with respect to the given norm on X (if C,, con-
verges Mosco (slice) to C whenever C,, converges Wijsman to C, we will say
Wijsman convergence implies Mosco (slice) convergence sequentially).

It is necessary to stipulate which norm is being used on X when speaking
of Wijsman convergence because it depends on the particular norm (see
[B4; BF1; BL]). However, it follows from the definitions that Mosco and
slice convergence do not depend on the norm being used. One can also easily
check, using the definitions, that slice convergence implies Mosco conver-
gence in every space and that they coincide in reflexive spaces. Moreover, if
a net of sets converges slice to some set in a Banach space X, then it is not
hard to check that the convergence is Wijsman with respect to every equiva-
lent norm; Beer { B4] has recently shown that the converse holds.

The notion of Wijsman convergence was introduced by Wijsman in [ Wi],
where it is shown to be a useful tool in finite-dimensional spaces. Mosco'’s
fundamental paper [Mo] introduced what is now known as Mosco conver-
gence; see [At] for a plethora of applications of Mosco convergence in re-
flexive spaces. Unfortunately, it is not well-behaved in nonreflexive spaces;
see [BB1]. However, a recent paper of Beer [B3] shows that many of the nice
properties of Mosco convergence in reflexive spaces are valid for slice con-
vergence in nonreflexive spaces. Because of this and the fact that Wijsman
convergence is simpler to check, it is desirable to know when Wijsman con-
vergence implies slice convergence. It follows from [BF1, Thm. 3.1] that
Wijsman and slice convergence coincide in reflexive spaces if and only if the
weak and norm topologies coincide on the dual sphere; see also [B2, Thm.
2.5]. Our main goal is to extend this theorem to nonreflexive spaces, thus
answering questions posed in [B4] and [BB2].

In the first section we establish some basic technical results. Most notably,
it is shown that the relationship between Wijsman and slice convergence is
sequentially and separably determined. We also mention a few basic proper-
ties of Kadec-Klee norms (which for brevity we call Kadec norms). We will
say a norm on X * is w*-Kadec if x*— x* whenever || x| - || x*|| and x2 % x*
if this holds for sequences we will say the norm is sequentially w*-Kadec.
When studying Mosco convergence it will be useful to consider the Mackey
topology 7 on X * of uniform convergence on weakly compact sets. A norm
will be called w*7-Kadec if x*-% x* whenever ||xX||— || x*| and x*% x*; if
this holds for sequences then |- | is sequentially w*-r-Kadec. Some differ-
ences in these notions will be discussed.
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The second section contains the main results. It is shown that Wijsman and
slice (Mosco) convergence coincide precisely when the dual norm is w*-Kadec
(w*-r-Kadec). Let us mention that wide classes of Banach spaces can be
renormed so that the dual norm is w*-Kadec. A Banach space is said to
be weakly compactly generated (WCQG) if it contains a weakly compact set
whose linear span is norm dense. It is clear (from the definition) that WCG
spaces include all separable and all reflexive spaces. Every WCG Asplund
space, in particular spaces with separable duals, can be renormed so that
the dual norm is w*-Kadec [DGZ, Cor. VII.1.13]. See [DGZ, Chap. VII] for
further renorming results along these lines.

The third section observes some connections between set convergence and
differentiability, while the fourth section contains some further results and
examples. A slightly expanded version of this paper may be found in the
research report [BV].

1. Preliminary Results

We begin by presenting a criterion for checking set convergence which is a
variant of [AB, Thm. 3.1]. Let us also introduce the following intermediate
notion of set convergence. For closed convex sets C, and C, we will say
C, converges weak compact gap to C if d(W, C,) — d(W, C) for all convex
weakly compact subsets W of X.

ProrositioN 1.1.  Let C, and C be closed convex sets in a Banach space X.
Suppose the following two conditions hold.
(i) If xge C, then d(x,, C,)— 0.
(ii) If xg € Sy~ attains its supremum on C, then there exist x} e By such
that x;, converges to x§ in a topology 3 on X* and

lim sup, {sup¢_x,} <supc x;.

If 3 is the norm (resp. Mackey, w*) topology, then C, converges slice (resp.
weak compact gap, Wijsman) to C.

Proof. We prove this only for the weak compact gap case, since the other
proofs are almost identical. Let W be a weakly compact convex set in X.
According to (i),

limsup, d(W, C,) <d(W, C).

So we show that liminf, d(W, C,) =d(W, C). If d(W, C) =0 then there is
nothing more to do, so suppose d(W, C) > 0. Let ¢ > 0 satisfy 2e¢ < d(W, C)
and set r = d(W, C) — 2e. By the separation theorem, there exists A€ S+
such that
sup{{A, x): xe C}<inf{{A,x): xe W+B, .}
=inf{(A,x): xe W+ B,}—e.

By a general vision of the Bishop-Phelps theorem [BP, Thm. 2], there is
an xgj € Sy which attains its supremum on C and strictly separates C and
W+ B,. Thus
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inf x§—sup xg=r.
w C

Let x; be given by (ii) with 3 the Mackey topology, and let o be such that

supx;<supxp+e and infxi=infx;—e for a=q.
C. c w W

From this it follows that

d(C,,W)=infx,—supxi;=r—2e=d(W,C)—4e for a=ay.
w C

a

Since € > 0 was arbitrary, we are done. O
The following theorem will be crucial in our development.

THEOREM 1.2. Suppose C, converges Wijsman but not slice (resp. weak
compact gap, Mosco) to C in some subspace E of X. Then there is a separa-
ble subspace Y of E and a subsequence C,_ such that C, NY converges
Wijsman but not slice (resp. weak compact gap, Mosco) to CNY as subsets
of Y.

Proof. Since C, converges Wijsman to C in E, it follows that
limsup, d(B,C,)<d(B,C) forany BCE.

Thus, because C, does not converge slice to C, by passing to a subnet if nec-
essary, there is a bounded closed convex subset W of E and a 6 > 0 such that

d(W,C,)+é<d(W,C) foralla. (1.1)

Let Z be an arbitrary separable subspace of E and set Z; = Z. Fix a dense
subset {z; ;}7=, of Z; and choose «; such that

d(zl,la C) —-1< d(zl,ls Cal) < d(zl,ls C) +1. (12)

Using (1.1) and (1.2), one can choose w;e W, c,€ C,,, x1,€C,,, and y{ ;,€C
such that:

[wi—ci||=d (W, C)—§;
21,1 —x11|=d(z),1, C)+1;
lzi,1—ryiill=d(zy, C) + 1.

Suppose ;<3< - <a,_, {z,-,j}j?:l, ci, w;, fori<=n—1, and {y,-’fj], {x,{‘j}
fori,j<k, k<n—1, have been chosen. Then set

Z,=5pan((Z, V(3 JUI AV U W) isnj=<n).  (13)
Fix a dense collection {z, ;}7=; C Z, and choose o, = o, 1 such that
d(z; ;, C)—1/n<d(z;;, C,) <d(z;;, C)+1/n whenever i,j=<n. 1.4
Using this, for i, j <n we choose x;’ ;€ C, and y;’ ;€ C such that
|xij—z; jll=d(z;,j, C)+1/n; (1.5)
\¥ii—zi jll=d(z; ;, C)+1/n. (1.6)
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According to (1.1), let w,e W and ¢, € C, be chosen so that
W, — |l < d(W, C)—6é. 1.7)

Finally, let Y be the norm closure of Uy~ Z,.

We now show that C, NY converges Wijsman but not slice to CNY as
subsets of Y. For any z; ; it follows from (1.6) that d(z; ;, C) =d(z;, ;, CNY).
Using (1.4) and (1.5), one has d(z; ;, CNY)=lim,_,d(z;;, C, NY). Be-
cause {z; ;}; ; is dense in Y and distance functions are 1-Lipschitz, we have
d(y,C, NY)—-d(y,CNY) for all yeY. Thus C, NY converges Wijsmarn
to CNY as subsets of Y.

However, for W;=WNY, we have w,e W; and c¢,e C, NY for all n (as
chosen in (1.7); notice that w,, ¢, €Y by (1.3)). Hence, using (1.7),

dW,,CNY)=d(W, C) = |w,—c,||[+6=d(W,, C, ).

So C, NY does not converge slice to CNY in Y.

The weak compact gap convergence proof is similar. For the Mosco case,
it is clear that M(i) holds because of Wijsman convergence. If M(ii) fails
then there is a net yge C, , such that yB—’i ¥, where y ¢ C and {yg}s is con-
tained in a weakly compact set. Now one can strictly separate y from C,
thus, taking a further subnet, we may assume that no subsequence of {yz};
has a limit point in C. Hence, using the above construction and weak se-
quential compactness (Eberlein-Smulian theorem), one can obtain the result
for Mosco convergence. L1

The following proposition, which is based on ideas from [B1], relates dual
Kadec norms to set convergence. If Wijsman convergence of L, to L im-
plies Mosco convergence of L, to L for any net (sequence) of sets L, =
{x:{(x},x)=a} and L={x:{x* x)=a}, where x;, x*€ X* and a€R, then
we will say Wijsman convergence implies Mosco convergence for (sequences
of) level sets of functionals.

ProrosiTiOoN 1.3. () If, in X, Wijsman convergence implies Mosco con-
vergence for (sequences of ) level sets of functionals, then the dual norm on
X* is (sequentially) w*-7-Kadec.

(b) If, in X, Wijsman convergence implies slice convergence for (sequences
of) level sets of functionals, then the dual norm on X* is (sequentially)
w*-Kadec.

Proof. We only prove (a) for nets, since the other part is similar and is es-
sentially in [BF1, Thm. 3.1]. Moreover, (b) may be essentially found in [BI;
B4].

Suppose the dual norm is not w*-7-Kadec; then we can find x}, x*€ Sx-
such that x*¥ x* but x* 7 x*. Let C, = {xe X:(x}, x)=1} and C={xe X:
(x* x)=1}. Since d(x, C,) = (x5, x)—1|, it follows that C, converges Wijs-
man to C.

We now proceed as in the proof of [BF1, Thm. 3.1]: By passing to a sub-
net if necessary, there is a weakly compact set K C By and {x,}, C K such
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that [(x;—x¥, x,)| =€ for some ¢ >0. Let xo e X be such that || x,]| <3 and
(X*, x0)>2. Now (x2, x> —{(x*, x¢) and so, by considering only a tail of
the net, we may assume {x;, xo> =2 for all «. Consider v, = xy+x,. Then
{x%, vy)=1. Since |v, ]| <4, we can choose ; <A, <1 such that (x}, A, v,)=
1. By passing to a subnet we have A, — A where +=<A<landu, Bl". v where
|v|| = 4. Since {x}, xo) = {x* x¢), it follows that

liminf[1—{x* Aq v, = lim inf|(x§ﬂ—x*, A vaﬂ)| =liminf A, e=e/4.
B B

Now, {(x*, )\aﬂvo,ﬁ)—%x*,)\v), and so we have |1 —(x* Av)| = e/4. Conse-
quently, Av ¢ C; noting that {A,v,}, is relatively weakly compact, we sce
that M(ii) fails. (]

We will also need the following known facts (cf. [DS]) about Kadec norms.

ProrosiTION 1.4. (a) If the dual norm on X* is w*-r-Kadec (w*-Kadec),
then for each Y C X, the dual norm on Y* is w*-r-Kadec (w*-Kadec).

(b) Suppose that Bx+ is w*-sequentially compact. If the dual norm on X*
is sequentially w*-7-Kadec (sequentially w*-Kadec), then it is w*-r-Kadec
(w*-Kadec).

Proof. (a) We prove this for the w*-r-Kadec since the other proof is similar.
Suppose Y is a subspace of X and its dual norm |- || is not w*-r-Kadec. Then
there is a weakly compact set K, an e > 0, and a net y*2 y* such that || y*||=
|»*l=1and

supg|ya—y*|>e foralla.

Let x} denote a norm preserving extension of y;. By Alaoglu’s theorem, for
some subnet, one has x%,~> x* for some x*€ By+. Observe that x*|y=y*
and so it follows that || x*||=1 and

supg|xy,—x*[>e forall 8.

Hence the dual norm on X* is not w*-7-Kadec.
For (b), a similar type of argument using w*-sequential compactness works.
0
Recall that a space is said to have the Schur property if weakly convergent
sequences are norm convergent.

REMARK 1.5. (a) If the dual norm on X* is w*-Kadec then X is Asplund;
in particular, By~ is w*-sequentially compact.

(b) If X has the Schur property then every dual norm on X* is w*-r-Kadec.

(c) There are spaces X such that X* has a dual w*-7-Kadec norm, but By
is not w*-sequentially compact.

(d) No dual norm on f is sequentially w*-Kadec, but every dual norm on
(F is w*-r-Kadec.

Proof. For (a), if YC X is separable, then by Proposition 1.4(a) the dual
norm on Y* is w*Kadec. Thus it follows easily that Y* is separable; see
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[DS]. Hence X is Asplund and thus has w*-sequentially compact dual ball;
see [Di, Bo]. To see (b), by the Schur property and Eberlein-Smulian theorem
weakly compact sets are norm compact; thus it is clear that w*-convergence
is the same as 7-convergence. Easily (c) follows from (b) because X = £,(I")
is Schur but By- is not w*-sequentially compact whenever I' is uncountable
(see [Du, p. 48]). Finally, (d) is a direct consequence of (a) and (b). Ol

2. Dual Kadec Norms and Set Convergence

We begin this section with our main result. This theorem with [B4, Thm.
3.1] shows that Wijsman convergence with respect to a given norm |- || on X
implies Wijsman convergence with respect to all other equivalent norms on
X if and only if the dual norm of ||-|| is w*Kadec; this answers a question
from [B4].

THEOREM 2.1. For a Banach space X, the following are equivalent.

(@) The dual norm on X* is w*-Kadec.

(b) For each separable subspace Y of X, the dual norm on Y* is sequen-
tially w*-Kadec. '

(c) Wijsman convergence implies slice convergence sequentially in every
separable subspace of X.

(d) Wijsman and slice convergence coincide in every subspace of X.

Proof. Proposition 1.4(a) shows that (a) implies (b), so we show (b) = (c).
Let Z be any separable subspace of X. Suppose that C, converges Wijsman
to C as subsets of Z. We wish to show that (i) and (ii) with J, the norm to-
pology in Proposition 1.1, hold. Clearly (i) follows from Wijsman conver-
gence, so we show (ii). Let z§ € Sy+ attain its supremum on C, say supc 25 =
{28, 20> where z5e C.

Let ag=¢z4, 20> and let L ={z:(z§,2) = ap+1}. Since Z and hence L are
separable, we can choose a sequence of compact convex sets {K,,} such that
K,CL foreachn, K{CK,CK;C---, d(K,,z0) <1+1/n, and

L is the norm closure of |J K,,. (2.1)

n=1
Since compact sets have finite e-nets and since C,, converges Wijsman to C,
we deduce that
lim d(K,, C;)=d(K,,C) foreachn
Jjooo
(in other words, Wijsman convergence is precisely compact gap conver-
gence). Thus we may choose j; < j, < j3 < --- such that

d(z9,Cj)<1/n and 1-1/n<d(K,,C;)<1+1/n for j=j,. (2.2)

It follows that (1—1/n)B;N (K, —C;) =0 for j = j,. Thus, by the separation
theorem, there exists A, ; € Sz« such that
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sup{A,, j,2>:z2€ (1-1/n)Bz} =inf{(A,, ;,2): z€ K,—C;} for j=j,.
This implies
supA, ;+(1—1/n)<minA, ; for j=j,. (2.3)

J Kn

Now set z7 =0 for j < j; and
zi=A,; for j,<j<jpi1.
Claim: z}‘ﬁ: zo- Assume temporarily that the claim is true. Because

d(zg,K,;) <1+1/n,
it follows that

. 1
min z7 <{zj, z0)+<l +—n—> 2.4)
For j € N, let n; denote the number » such that j, < j < j, ;. Thus, by (2.3)
and (2.4), one has

sup z}‘+(l —L) < minz}

of ni/ K,

1
<{zj, Zo)+<1 +—>'
n;
In other words,

sup zj <<z}, Zo>+ i

lof n;

Since {z}, 2o = (2§, 20) = supc 2§, this immediately yields
lim sup{sup z}} < sup z§.

J C c
Moreover, the dual norm on Z* is sequentially w*-Kadec, so |z} —z3|| —0.
Thus (ii) with J, the norm topology in Proposition 1.1, holds—provided our
claim is true.

Let us now prove the claim by showing every subsequence of {z}} has a
subsequence that converges w* to zg. By abuse of notation, let {z}} denote
an arbitrary subsequence of {z;}. From the w*sequential compactness of
Bz+, by passing to another subsequence if necessary, we have z}‘rﬁA for
some A€ Bz+. We now show that ||A||=1. Again, we use n; to denote the n
such that j, < j < j,4,; because d(zg, C;) <1/n for j = j,, it follows that

1
SUp zj =4z}, Zo) ——-
C; n;

Let me N and z € K, be fixed. Because z € K,, for n= m, the above inequal-
ity yields
(A, z—29)=1im(z}, 220>
i

= liminf <min zj— (sup Z;j+ L))

j K, C, i
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> lim inf(l -1 i) (by (2.3))
J o ny
=1.
Consequently, we have

min A=(A,z¢>+1 forall meN. (2.5)
Ko
Since lim,, d(X,, zo) — 1, it also follows that ||A||=1.

It now suffices to show that A =zg. Let H = {z: (2§, 2) = 0}. We claim that
(A, z)=0for all ze H. So suppose that {A, #) < —6 for some 6 > 0 and some
he H with ||a||<1. Now consider zo+ /; then ag <<z, 20+ h) <1+ and
so d(zo+h, L) <1. Thus, by (2.1), we can find Z € K,,, for some m such that
|Z—(zo+ h)||<1+6/2. Hence it follows that

(A, ZY<||Z— 2o+ h)||+<A, Zo+H) =< (1+8/2) +(A, zo+h) <(A, 2g)+1—8/2.

This contradicts (2.5). Therefore, (A, #)=0 for all 2 H. But since ||A||=
|z§l| =1, this means A = z§. This shows that the claim holds and thus (b) = (c).

Now (c) = (d) follows from Theorem 1.2, and (d) = (a) is a consequence
of Proposition 1.3(b). Ol

Observe that we’ve also proved the following variant of [AB, Thm. 3.1].

REMARK 2.2. Suppose X is a separable Banach space. Then C, converges
Wijsman to C if and only if the following two conditions hold.

(i) If xo € C, then there exist x, € C, such that || x,—x,| — 0.
(ii) If x5 e Sx~ attains its supremum on C, then there exist x, € Bx+ such
that x; %= x§ and lim sup,{supc_x,;} <supc x.

Proof. If (i) and (ii) hold, then Proposition 1.1 shows that C, converges
Wijsman to C. Conversely, (i) follows directly from Wijsman convergence;
moreover, the z;s constructed in the proof of Theorem 2.1 satisfy (ii) with
zZ6= X (the w*Kadec property was used only to go from w* to norm con-
vergence). O

The next theorem is a Wijsman versus weak-compact-gap variant of Theo-
rem 2.1.

THEOREM 2.3. If X is a Banach space then the following are equivalent.

(a) The dual norm on X* is w*-r-Kadec.

(b) For each separable subspace Y C X, the dual norm on Y* is sequen-
tially w*-r-Kadec.

(c) For each subspace Y of X, Wijsman and weak compact gap conver-
gence coincide.

(d) Wijsman convergence implies Mosco convergence in X.

Proof. Proposition 1.4(a) shows (a) implies (b), so we show (b) = (c). Let Y
be a separable subspace of X. Since the dual norm on Y* is w*r-Kadec,
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Remark 2.2 and Proposition 1.1 show that Wijsman and weak compact gap
convergence coincide in Y. Combining this with Theorem 1.2 shows that (c)
holds. To prove (c) = (d), observe first that M(i) clearly holds. We now show
M(ii): Let x3 € Cg for some subnet and suppose {xz]} is relatively weakly com-
pact. If xg *- x and x ¢ C, then there is an open half-space containing x and a
tail of {xg} which is strictly separated from C. Let W be the closed convex hull
of this tail. Then d(W, C)> 0, but limg d(W, Cg) = 0; this contradicts (c).
Hence we have (¢) = (d). Finally, Proposition 1.3(a) shows (d) = (a). 1

In certain spaces it is enough to know that Wijsman convergence implies
Mosco convergence in order to deduce that Wijsman convergence implies
slice convergence as the next result shows. By X 2f;, we mean that X does
not contain an isomorphic copy of £;.

CoOROLLARY 2.4. For a Banach space X, the following are equivalent.

(@) The dual norm on X* is w*-Kadec.

(b) By~ is w*-sequentially compact, and Wijsman convergence implies
slice convergence sequentially.

(c) X is Asplund and Wijsman and slice convergence coincide.

(d) X 2¢, and Wijsman convergence implies Mosco convergence.

(e) X DL, and its dual norm is w*-7-Kadec.

(f) X D¢, and, for every separable subspace YC X, the dual norm on Y*
is sequentially w*-t-Kadec.

Proof. From Theorem 2.1 and Remark 1.5(a) one immediately obtains that
(a) implies (b). If (b) holds, then Proposition 1.3(b) shows the dual norm is
sequentially w*-Kadec. Thus Proposition 1.4(b), Remark 1.5(a), and Theo-
rem 2.1 show that (c) holds. One obtains that (c) implies (d) directly from
the definitions. Proposition 1.3(a) shows (d) = (e), while Proposition 1.4(a)
shows (¢) = (f). Finally, suppose (f) holds and let Y be an arbitrary separa-
ble subspace of X. Since Y 2 ¢;, [Em] shows that every 7-convergent sequence
in Y* is norm convergent (see also [BFa, Thm. 5]). Hence the dual norm on
Y* is sequentially w*-Kadec. Thus Theorem 2.1 shows that (a) holds. O

We need some more terminology before stating the next corollary. For a
Banach space X one can define a metric p on the space P of all equivalent
norms on X as follows. Fix a norm on X with unit ball B;. For p, v€P,
define p(p, v) = supf|r(x) —u(x)|: x€ B;}. It is shown in [DGZ, p. 52] that
(P, p) is a Baire space. We will say a set is residual if it contains a dense G;
set.

COROLLARY 2.5. If X is a WCG Banach space, then the following are
equivalent.
(a) X is Asplund.
(b) There is a residual collection of norms in (P, p) for which Wijsman
convergence implies slice convergence (in any subspace of X).
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(c) X D1y, and there is an equivalent norm on X for which Wijsman con-
vergence implies Mosco convergence sequentially.

Proof. It follows from [DGZ, Cor. VII.1.13, Thm. 11.4.1] that the collec-
tion of norms with dual w*-Kadec norms is residual in (P, p). Invoking The-
orem 2.1 shows (a) = (b). Corollary 2.4 shows (b) = (c). If (c) holds then
By is w*-sequentially compact, because X is WCG (see [Di, p. 228]). Now
Proposition 1.3(a) and Proposition 1.4(b) show that the dual norm on X™* is
w*-r-Kadec, thus (a) follows from Corollary 2.4. Ll

REMARK 2.6. (a) The proof of [DGZ, Thm. I1.4.1] shows for each Banach
space that the set of norms in (P, p) whose duals are w*-Kadec (w*-7-Kadec)
is either empty or residual.

(b) One cannot drop the assumption “X is WCG” in Corollary 2.5, since
C[0, w;] is an Asplund space that even admits a Fréchet differentiable norm
[DGZ, Thm. VII.5.4]; the proof of [DGZ, Thm. VII.5.2] shows that it can-
not admit a dual sequentially w*-Kadec norm.

(c) Corollary 2.4 does not imply that a sequence of sets converges slice if
and only if it converges Mosco and Wijsman (even in Asplund spaces). In-
deed, [BL, Thm. 6] shows that each nonreflexive separable Banach space can
be renormed so that a decreasing sequence of subspaces converges Wijsman
and Mosco but not slice.

(d) There are spaces that are neither Asplund nor Schur which can be
renormed so that the dual norm is w*-7-Kadec. Indeed, for Q@ a o-finite mea-
sure space, [BF2, Thm. 2.4] shows there is a norm on L,(2) whose dual
norm is w*-r-Kadec.

3. Set Convergence and Differentiability

Recall that a function is said to be weak Hadamard differentiable at a point
if its Gateaux derivative exists at the point and is uniform on weakly compact
sets. The following proposition shows that this notion is related to Wijsman
and Mosco convergence in non-Asplund spaces. Indeed, notice that prop-
erty (*) ensures that X contains an isomorphic copy of {,; see [BFa].

ProrosiTION 3.1. Let X be a Banach space. Then the following are equiva-
lent.

(a) For every equivalent norm on X, Wijsman convergence implies Mosco
convergence for sequences of level sets of functionals.
(b) The following property is satisfied:

(X3 x,)—<{x* x) whenever x}% x* and x,% x. (*)

(That is, w*-convergent sequences in X* are t-convergent.)
(c) Weak Hadamard and Gateaux differentiability coincide for contin-
uous convex functions on X.
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Proof. The equivalence of (b) and (c) follows from the results of [BFa]; see
also [BFV].

(a) = (b): Suppose (*) fails. Then we can find x,’,"ﬁrx* and x, - x, but
[<xs X,) —{x* x)| = € for all n and some e >0. We now show that X admits
an equivalent norm whose dual is not sequentially w*-7-Kadec. Notice that
we may assume ||x;||<1 for all n. If ||x*||=1 then |-|| is not sequentially
w*-r-Kadec. So suppose || x*||<1. We may assume x*=0 and that ||x;||<1
for all n. Now let y € X satisfy | y||=1. By replacing y with —y if necessary,
we have (x}, y>=<0 for all jeJ, where J is an infinite subset of N. Now
choose y*e X* satisfying (y* y)>=||y*||=1. Define a convex w*-compact
subset of X™* by

B={AeX*:[(A, »Y|<1}N{AeX*:|A]=<2}.

Let ||-|| denote the dual norm on X* whose unit ball is B. Observe that
ly*+x*||=1 and || y*+x/[|<1 for all jeJ. Hence |||-||| is not sequentially
w*r-Kadec, since y*+x;% y*+x* but {y*+x}, x;) A (y*+x*, x). Thus, by
Proposition 1.3(a), (a) does not hold.

(b) = (a): Let ||-|| be any equivalent norm on X. If C, converges Wijsman
to C, where C,={x:{x;, x)=a} and C={x:{x* x)=«a}, then (by [Bel,
Thm. 4.3]) x;; % x* and || x| - || x*||. Now suppose x; e C; for je JCN and
x; ¥ x. By property (*) we have {x}, x;> = (x*, x), which means (x* x)=«
and x e C. Thus M(ii) holds. Since M(i) always holds in the presence of
Wijsman convergence, we are done. 0

COROLLARY 3.2. Suppose that every separable subspace of X is contained
in a complemented subspace whose dual ball is w*-sequentially compact.
Then the following are equivalent.

(a) For every equivalent norm on X, Wijsman convergence implies Mosco
convergence for sequences of level sets of functionals.
(b) X has the Schur property.

Proof. (a) = (b): This follows from Proposition 3.2 and [BFV, Cor. 3.5].
(b) = (a): This is always true. O

The condition in the preceding corollary is, of course, satisfied in all spaces
whose dual balls are w*-sequentially compact (in particular, WCG spaces)
as well as in much more general cases; see [BFV]. In addition, there are
many Grothendieck C(K) spaces that satisfy property (*) but are not Schur;
see [BFV] and the references therein.

4. Further Examples and Results

Let us first observe that Mosco and slice convergence are preserved in su-
perspaces.
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ProrosiTioN 4.1.  Let Y be a Banach space, and suppose C,, converges slice
(Mosco) to Cin Y. If X is a superspace of Y, then C,, converges slice (Mosco)
toCin X.

Progf. It is clear from the definition that this holds for Mosco convergence.
We will prove that slice convergence is preserved in superspaces. Suppose
that C,, CCY, where Y is a subspace of X, and that C, does not converge
slice to C in X. We will show that C, does not converge slice to C in Y. We
may suppose C, converges Wijsman to C in Y, since otherwise we are done.
Wijsman convergence implies directly that for any BC X, lim supd(B, C,) <
d(B, C). Thus, because C, does not converge slice to C, by passing to a sub-
net if necessary we find a bounded closed convex W C X such that

dW,C,)+36=<d(W,C) foralla and some §>0.
Let
r=d(W, C)—2é.

Then (W+B,)NC,+ 9 for all «, while (W+ B, ;) NC=#. Using the sepa-
ration theorem, we find a A€ Sy such that

sup{{A, x): xe W+ B, s} <inf{(A, x): xe C}.
Let a =sup{{A, x): xe W+ B,}; then

a+o6=sup{{A, x): xe W+B, s} <inf{A, x): xe C} 4.1)
and
W+B,C{x: (A, x)<a]l.

Now let m > 0 be chosen such that W+ B, C B,,,. Because (W+B,)NC,+#9,
there exists y, € C, CY such that

Yo€{yeY: (A, y)<a}lNB,,.

Weset W, ={yeY: (A, y)<a}NB,,. Hence, WiNC, +#d for all «. However,
according to (4.1), d(W;, C) =6 and so C, does not converge slice to C in Y.

]
Proposition 4.1 with Theorem 2.1 shows that for nice norms, Wijsman con-

vergence is preserved in superspaces. In general, however, this can fail dra-
matically.

ExamrLE 4.2. Wijsman convergence in X is not necessarily preserved in
X XR.

Proof. Let X be ¢y endowed with the norm ||| which is defined for x =
(xn)n=0 as follows:

llxll =1%ol v|x1]v (sup| X, +x1]).

n=2
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Let Y={xe€ X: xo=x;} and define f, € X* by

f(x)=x1+x, and fo(x)=x.
Then
mfnl” =Sup{xl+xn: lxl+xn| = 1! |xl,S 1} =1
and
Il Sl = sup {2 | x4, <1, |x|=13=1

Now f,,(x)—» Ffoo(x) forAall X, since x,— 0. It follows directly that f,,"‘(l)
converges V\[ijsman to f.71(1); see [B1, Thm. 4.3].
Let f,=fux|y- Then || 4]l = |l /|| =1, and so similarly it follows that

£ 1(1) converges Wijsman to £,7!(1) in Y.

However, £, (1) does not converge Wijsman to £ (1) in X. Indeed, con-
sider z°=(0,%,0,0,...) and z" = te,+1e,+%e,. Then z" € f,71(1) and

3 =12°=z"|= d(z° £, (1)).

On the other hand, if x = (x;){%¢ € f» (1), then xo = x; =1 and consequently
one has ||x—z°|||=|xo|=1 which means d(z° £.5(1)) = 1. m|

It appears to be unknown if there is a norm whose dual is sequentially w*-
Kadec norm but not w*-Kadec. Moreover, if such a norm exists, we do
not know if Wijsman convergence with respect to it implies slice conver-
gence sequentially. However, for w*-7-Kadec norms we have the following
example (see also [Tr] for connections between w-Kadec and sequentially
w-Kadec norms).

ExamrLE 4.3. There is a norm on {,, whose dual norm is sequentially w*-r-
Kadec but not w*-7-Kadec.

Proof. (a) Since w*-convergent sequences in £& are w-convergent [Di, p.
103] and since {,, has the Dunford-Pettis property [Di, p. 113], it follows
that w*-convergent sequences in {5 are 7-convergent (see Proposition 3.1).
Thus the dual of every norm on £, is sequentially w*-r-Kadec. Let |||
be an equivalent norm on ¢y, whose dual is not sequentially w*-Kadec (see
[BFa]). It follows as in Corollary 2.4 that the dual norm of |||-||| is not se-
quentially w*-7-Kadec. Now let |- ||| denote the second dual of this norm on
fo. Then the dual of |||- ||| is not w*-7-Kadec on £, by the equivalence of (b)
and (a) in Theorem 2.3 (a simple proof of this equivalence can be found in
[BVY, Prop. 1.1]). (1

We now show that, with some restrictions on the limit set, one can deduce
slice convergence from Wijsman convergence in spaces whose duals need
not admit sequentially w*-Kadec norms (by Remark 2.6(a)); see [BV, Thm.
3.12] for a more general result. Recall that a space is said to have the Radon-
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Nikodym property (RNP) if every closed bounded convex set has slices of
arbitrarily small diameter; see [Bo].

ProrosiTION 4.4. (a) Suppose X has the RNP and its norm is Fréchet dif-
ferentiable. If C, converges Wijsman to a closed bounded convex set C,
then C, converges slice to C.

(b) Suppose the norm on X is Fréchet differentiable and C is weakly com-
pact. If C, converges Wijsman to C, then C, converges slice to C.

Proof. (a) Since Fréchet differentiable norms are inherited by subspaces,
Theorem 1.2 implies that it suffices to show this result for sequences of sets.
We show that Proposition 1.1(ii) with 3 the norm topology holds since Wijs-
man convergence implies Proposition 1.1(i).

Let xg attain its supremum on C. Since X has the RNP, the functionals
which simultaneously attain their suprema on By and C are dense in Sy»;
see [Bo, Cor. 3.7.9]. Thus we find functionals ¢, € Sy+ such that ¢, attains
its supremum on C at (say) x,, on By at (say) u,, and

l¢.—x3|<1/n and supc @, =<supcxg+1/n. 4.2)

It follows that 1=¢,(u,)<d(x,+u,, C)<1. Let v,=x,+u, and choose
k, m such that k, ,,,1>k, ,, and

d(v,,Cy)>1-1/m for k=k, ,.

By the separation theorem, for k, ,,<k<k, ,,+1, choose ¢, ;€ Sx+ such
that

1
sup ¢n,k+<1—_)s¢n,k(vn)- (43)
C, m

From here we conclude that lim, ¢,, ,(u,) =1 and since the norm is Fréchet
differentiable, lim||¢, —¢,[|=0 (see [DGZ, Thm. I.1.4]). Thus (4.2) and
(4.3) show

lim sup{sup ¢, ,} <sup xg+ l

k Cy c n

A standard diagonalization argument now produces the desired sequence.
(b) For C weakly compact, the same proof works because the Bishop-

Phelps theorem ensures there is a dense set in Sy« which simultaneously sup-

ports C and By-. U

There are also simple proofs, somewhat like the above argument, showing
that if the dual norm is locally uniformly rotund (which is a much stronger
condition than having a dual w*-Kadec norm), then Wijsman and slice con-
vergence coincide. The definition and properties of locally uniformly rotund
norms can be found in [DGZ].
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