Complements of Runge Domains
and Holomorphic Hulls
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0. Introduction

A compact subset A of a Stein manifold X is said to be holomorphically
convex if for every z € X\ A there is a holomorphic function f on X such
that | f(z)| > sup4| f]. The holomorphic hull A of a compact set AC X is the
smallest holomorphically convex set containing A4, given by

A={ze X:|f(z)|=supy|f| forall feO(X))}.

When X = C", A is the polynomially convex hull of A.

Holomorphically convex sets play an extremely important role in complex
analysis; we refer the reader to Hormander [7]. It is usually a difficult prob-
lem to decide whether a given set is holomorphically convex, or to deter-
mine its holomorphic hull. Therefore, the results that provide obstructions
to holomorphic convexity, or that give estimates on the size and shape of the
hull, are of interest to complex analysts.

Recently Alexander [1] applied the notion of /inking to this problem. If a
compact set K C C”" is linked by an orientable closed manifold YC C"\K of
real dimension g <n—1, in the sense that Y is not homologous to zero in
C"\ K, then Y must intersect the polynomial hull K [1, Thm. 1]. Alexander
established a similar result for sets in Stein manifolds. His proof uses dif-
ferential forms (via de Rham’s theorem) and the Poincaré duality. This ap-
proach necessitates the use of homology and cohomology with real (or com-
plex) coefficients. Specifically, the assumption that Y is not homologous to
zero in C"\ K means that there exists a differential g-form « on C"\ K such
that fy w#0.

In the present paper we obtain more general topological properties of
complements of holomorphically convex subsets AC X in Stein manifolds
X of dimension n=2. We show that the inclusion X\ A< X induces iso-
morphism of low dimensional homology groups (up to dimension n—2),
with coefficients in an arbitrary abelian coefficient group G. If X is con-
tractible, the groups H; (X \ A; G) vanish in dimensions 1 <k <n—1. When
X =C", the homotopy groups of C"\ A4 in the same dimensions vanish as
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well. The results also hold if A= is the closure of a pseudoconvex Runge
domain Q CC X with C! boundary (or, more generally, if the boundary bA
has a collar in X'). Recall [7] that a pseudoconvex domain 2 C X is Runge in
X if holomorphic functions in @ can be approximated, uniformly on com-
pacts in Q, by functions holomorphic in X.

In Section 2 we obtain the analogous result for hulls of compact sets in
boundaries of strongly pseudoconvex domains (Theorem 4). We apply these
results to the problem of detecting the holomorphic hull of a compact set
K C X by low-dimensional cycles in X \ K that link K, thereby extending the
results of Alexander [1]. Our method works in particular when the cycles are
defined by closed manifolds, orientable or non-orientable, since we can use
homology with coefficients Z,=Z/2Z.

In the proof we use strongly plurisubharmonic functions and Morse theory
in a similar way as Andreotti and Narasimhan in [4] (see also [3]), where
they obtained topological properties of pseudoconvex Runge domains in
Stein manifolds. The proof depends on two well-known facts:

(1) Every holomorphically convex set in a Stein manifold can be approxi-
mated from outside by sublevel sets of a strongly plurisubharmonic ex-
haustion function p on X with nondegenerate critical points (a Morse
function).

(2) The Morse index of a strongly plurisubharmonic Morse function on
an n-dimensional complex manifold at any of its critical points is at
most zn. This was first observed by Lefschetz; see [3].

In Section 1 we state and prove the result for C”, using the additional in-
formation on the behavior of p near infinity. We then state the results for
arbitrary Stein manifolds (Theorem 2), but the proof is postponed to Sec-
tion 3. Instead of merely adapting the proof for C”, we give a proof of
Theorem 2 that uses only the homological properties of Runge domains
from Andreotti and Narasimhan [4], thereby extending the result to a larger
class of sets in Stein manifolds.

I thank Edward Fadell for having pointed out to me the relevance of the
Alexander duality theorem in this problem. I thank JozZe Vrabec for his con-
structive criticism, and for pointing out several mistakes in a preliminary
version of the paper. Finally, I thank Julien Duval, whose idea helped me
strengthen the main result for X' = C".

1. Topology of Complements of Holomorphically
Convex Sets

TueEoREM 1. If AC C" (n=2) is either a polynomially convex subset of C"
or the closure A= Q of a bounded pseudoconvex Runge domain Q C C”" with
@! boundary, then the complement of A is (n—1)-connected:

T (C™\A)=0, l<k=n-—I1, Q)
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and for any abelian group G,
H,(C"\A4;G)=0, 1<k=n-—1. 2)

ReEMARK 1. (2) follows immediately from (1). The theorem of Hurewicz [10,
p. 398] also gives the isomorphism H,(C"\ A4; Z) = 7,(C"\ A). Conversely,
if (2) holds for G =Z, and if C"\ A is simply connected (7;(C"\ A) =0), then
(1) follows from Hurewicz’s theorem.

REMARK 2. The hypothesis in the second case, namely that A has C! bound-
ary, can be replaced by the weaker hypothesis that the boundary A4 has a
closed neighborhood ¥V in C” that is homeomorphic to bAX[—1,1]. Such a
neighborhood V is called a collar of bA in C” [10]. The same remark applies
to Theorem 2 below.

Proof of Theorem 1. We first consider the case when A is a compact poly-
nomially convex set in C”. Given an open neighborhood U of A4 in C”, there
exist a smooth, strongly plurisubharmonic exhaustion function p: C*—> R
and a constant R > 0 satisfying

(i) p<O0Oon A and p>0on C"\U;
(ii) p(z)=|z|* for |z|=R; and
(iii) p is a Morse function on C”, with finitely many critical points, each
of them of Morse index at most n.

The construction of such a function is completely standard, and we recall
it only for the sake of completeness. First, we choose a strongly plurisub-
harmonic function p’ on C” satisfying (i) [7, p. 48]. Choose a large R> 0
such that U C B(R/3), where B(R) denotes the ball of radius R, centered at
the origin. Pick a smooth function /#(¢) =0 on R that vanishes for f < R/3,
is strictly convex and increasing for ¢ > R/3, and h(¢) =¢? for ¢ = R. Then
h(|z|) is plurisubharmonic on C” it is strongly plurisubharmonic outside
the closed ball B(R/3), and it vanishes on U. Next we pick a smooth func-
tion 0=<x(¢#)<1on R such that x(¢)=1 for t<R/2 and x(¢)=0 for t=R.
The function

p(z) =h(|z])+ex(|z]) p'(2)

for a sufficiently small e > 0 is strongly plurisubharmonic and satisfies prop-
erties (i) and (ii). Finaly, by a small smooth perturbation of p, supported on
B(R), we may assume that p is a Morse function on C”, thereby satisfying
(iii) as well. We may assume in addition that 0 is a regular value of p.

For 1 € R we set

X, =[{zeC": p(z)=t].

For ¢ = R? the set X, is the complement of the ball B(Vc¢), and therefore it
is homotopically equivalent to the sphere S2”~!. Fix such a c. As ¢ decreases
from ¢ =c to t =0, the sets X, increase from X, to Xj,.

We think of X,={—p = —¢} as a sublevel set of the Morse function —p
whose Morse indices are all =n. Let ¢, <?,< --- <{, be the critical values
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of p, with the corresponding Morse indices 2n—m; < n. Thus, the Morse
index corresponding to the critical value —¢; of —p is m; = n.

By the fundamental result of Morse theory [9], the topological type of X;
changes only at the critical values ¢;, and the change at #; can be described
by noting that the set X, for ¢;_; < <, is obtained from X; for #; <s <{¢;;
by attaching to X a 2n-cell (D™ x.D?*"~™,dD™ x D*"~™) by a map h:
D™ x D*"~" - 3X,. (Here, D™ denotes the closed ball in R™.)

The Morse index k=m;=n is the only dimension in which the relative
homology group H,(X;, X;; Z) does not vanish [11, Chap. 5]. If we further
choose a number u satisfying #;_, <u <?#;_;, we have an exact homology
sequence of the triple X; C X, C X, [10, p. 185]:

= Hi( Xy, X3 Z2) > Hi(Xy, X3 2) > Hp(Xy, X3 2) — -+

When k <rn—1, the outer two terms vanish, and therefore the middle term
vanishes as well. Applying this argument finitely many times, we obtain

Hy(Xy, X3 2)=0, O<k=n-1.
Consider now the exact homology sequence of the pair X, - Xj:
v > Hp(Xe; Z) > Hy(Xo; Z) > Hp(Xo, X3 Z) — -+

When 1 < k£ < n—1, the outer two terms vanish, and therefore H,(X,; Z) =0
as well. Notice that C"\U C X, C C"\ A. By passing to the limit as U shrinks
down to A we get H;,(C"\ A4;Z)=0 for 1<k =<n—1. The universal coeffi-
cient theorem for homology [10] implies the same result for homology with
coefficients in an arbitrary abelian group G.

If we repeat the same argument with the homology groups replaced by the
homotopy groups, we obtain (1) (see [11, Chap. 5]). Alternatively, it suffices
to notice that the sublevel sets X; remain simply connected as ¢ decreases
through a critical value of p, and therefore (1) follows from (2) by the theo-
rem of Hurewicz [10, p. 398].

It remains to deal with the case when A= Q is the closure of a Range do-
main with C! boundary. There is a closed neighborhood V of b4 in C" and
a homeomorphism &: V— bAX[—1,1] such that ®(bA) = ba x {0}. (In fact,
this is the only condition on bA that we need for the proof.) For —1 =<1
we set

A, =(A\VYUPY(bAX[-1, 1]).

With a proper choice of & we have A;C A, when s <¢.
For each 0 < e <1 there exists a homeomorphism O, of C” onto itself that
is the identity outside V" and satisfies

ee(A-e) =A0 =A, ee(A) =Ae'
To construct ©, we choose a homeomorphism y: [—1,1] = [—1, 1] satisfying
Y(—e)=0 and y(0)=¢; we set ¥(x,)=(x,y(?)) for (x,t)ebAxX(—1,1)

and let ©, = ®~!o¥® on V. Clearly ©, can be extended to C" as the identity
outside V.
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For each e > 0 the set A_, is compact and contained in 2 = Int A. Since
is pseudoconvex and Runge in C”, the polynomial hull K= A__ is also com-
pactly contained in Q [7]. By the first part of the proof, the complement
C"\K is (n—1)-connected. The same is then true for 6,(C"\ K) = C"\O,(K).
By construction we have AC 6,(K) C A,. The required result for C"\ A4 fol-
lows by passing to the limit as e - 0 (and A, shrinks down to A). This com-
pletes the proof of Theorem 1. O

If X is an arbitrary Stein manifold of dimension #=2 and AC X is as in
Theorem 1, the same proof gives the isomorphism H; (X \ 4; G) =H;(X; G)
for 0 <k<n-2. However, since we no longer have the information on p
near infinity, we are not able to conclude the same for k= n—1. In fact, Ex-
ample 2 below shows that the result is no longer true for X =n—1, unless we
impose some homology conditions on X. Here is the general result.

THEOREM 2. Let X be a Stein manifold of dimension n=2, and let AC X
be either a compact holomorphically convex subset of X, or A=Q, where
Q CC X is a pseudoconvex Runge domain with @' boundary. Then the in-
clusion X\ A X induces isomorphisms

H, (X\A;G)=H (X;G), 0<k=<n-2, (3)
Jor any abelian group G. If H,(X; R) =0 then we also have
H,_1(X\4;R)=H,_(X;R). C))

If H(X;Z)=H,_(X; Z)=0 then, for any abelian group G,
H,_(X\4;G)=H,_(X;G).

CoroLLARY 1. If X is a contractible Stein manifold of dimension n=2,
and if AC X is as in Theorem 2, then for any abelian group G

H(X\A4;G)=0, 1<k=n—1.

Theorem 2 is proved in Section 3 below. The next result concerns the relative
homology of a pair of holomorphically convex sets.

THEOREM 3. If KC A are compact, holomorphically convex subsets of an
n-dimensional Stein manifold X, with K contained in the interior of A, then
Sfor any abelian group G

H,(X\K, X\A4;G)=0, O0<k=n—l.

Proof. Given open neighborhoods KC U and ACV, with UC Int A4, there
exists a strongly plurisubharmonic Morse function p: X — R satisfying the
following properties:

(i) p<Oon K and p>0on X\U;
(i) p<lonAand p>1on X\V; and
(iii) 0 and 1 are regular values of p.
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The construction of p is similar to the one in the proof of Theorem 1.
We begin by choosing strongly plurisubharmonic functions ¢ and ¢ on X,
satisfying

(@A) p<0on K and ¢ >0 o0n X\U;

(b) y<0onAandy>0o0nX\V; and

(c) 0is aregular value of ¢ and .

(See [7, p. 48].) Next we set ¥ = Cy +1 for some large constant C > 0 such
that ¥ < 0 on U. By composing ¥ with a suitable function on R that vanishes
for t =0 and is strictly convex and increasing for 7 > 0, we get a plurisubhar-
monic function ¥; = 0 on X that vanishes on U, is strongly plurisubharmonic
where positive, and satisfies property (ii). Finally, let 0 <x <1 be a smooth
function that equals 1 on the set {y; =1/3} and has support contained in the
set {Y;=<2/3}CV. The function p =y, +ex¢ for a sufficiently small e > 0 is
strongly plurisubharmonic on X, and satisfies the required properties.
Set ‘

X,={zeX:p(z)>t} for teR.

Then X\UC X, C X\K and X\VC X;C X\ A. Since the Morse indices
of —p are all =n, we have H (X, X;; Z) =0 for 0 < k< n—1 (see the proof
of Theorem 1). Theorem 3 now follows by passing to the limit as U shrinks
down to K and V shrinks to A (thus X, increases to X \ K and X increases
to X'\ A). O

ExaMmpLE 1. There exist compact, polynomially convex sets AC C" such
that

H, (C"\A;Z)+0, n=<k=<2n-1.

To see this, observe that every compact subset of the totally real subspace
R”C C” is polynomially convex since every polynomial on R” extends to a
holomorphic polynomial on C”. If $” C C" = R?"is an m-dimensional sphere
then H,,,_,,_;(C"\S8";Z)=Z, and the other homology groups (in dimen-
sions > 0) vanish {10, p. 198]. Thus, if A4 is a disjoint union of spheres in
R” C C" of various dimensions 0 < m < n—1, then A is polynomially convex,
and the homology groups H;(C"\ 4; Z) for n < k <2n—1 are nonvanishing.

ExampLE 2. The condition H,,(X; R) = 0 is necessary in Theorem 2(4). The
following example to this effect is due to H. Alexander: Take X = Cf,
where C, = C\{0}, and let A = T” be the standard n-dimensional torus.
Then A is holomorphicaly convex in X, H,,_((X;R)=H,,_;(A4; R) =0, but
H, _1(X\ A4;R) # 0. To see this, let D, C N, be a small disc neighborhood of
a point p € A in the normal space N, to A at p. The oriented intersection
number of D, with 4 (in C") equals +1, and hence the sphere SI’,’_l = 0D, is
not homologous to zero in X\ A. _

A more general example is obtained as follows. Let 4 be any closed, ori-
entable, real-analytic manifold of real dimension n such that H,,_;(A4, R) =0
(for instance, we may take the n-sphere). The complexification A of A4 is a
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complex manifold of dimension # that contains A as a maximal totally real
submanifold. A has small Stein neighborhoods X in A such that A is holo-
morphically convex in X, and X is diffeomorphic to a real vector bundle of
rank n over A. It follows that H,,_{(X;R)=H,,_;(A4; R) =0. On the other
hand, if the Euler characteristic of A4 is not equal to *+1, it can be shown that
H,_((X\A4;R)#0.

2. Linking and Holomorphic Hulls

In this section we show that Theorems 1 and 2 immediately imply the results
of Alexander [1]. The main result of [1] is how to detect the (nontrivial)
holomorphic hull of a compact set K in a Stein manifold X by using closed
orientable manifolds YC X\ K, of real dimension at most dim¢ X —1, that
link K. Here we do the same in the more general case where Y is a singular
cycle with coefficients in an arbitrary abelian group G. In practice, the most
interesting cases to consider are G=7Z and G = Z,. The latter group allows
us to use closed non-orientable manifolds as well.

We shall use basic notions of singular homology theory, and we refer the
reader to Spanier [10] for a systematic treatment. Let C,(2; G) be the abelian
group of singular g-chains in an open set  C X, with coefficients in an abe-
lian group G. Every such chain is a finite sum c¢= X «; f;, where fj: A, —Q
is a continuous map from the standard g-dimensional simplex into  and
aj€ G. The support supp ¢ of c¢ is the union of images of the maps f; (with
nonzero coefficients) that define c. The boundary dc, of a g-chain in Q is a
(g —1)-chain in Q. If dc, =0 then ¢, is called a g-cycle. The singular homol-
ogy group H,(£2; G) is the quotient group of g-cycles modulo the boundaries
of (g+1)-chains.

The first result is an immediate corollary of Theorems 1 and 2; it corre-
sponds to Theorem 1 of Alexander [1] in the case of cycles defined by closed
orientable manifolds YC X\ K. G is an arbitrary abelian group unless other-
wise specified.

COROLLARY 2. Let K be a compact subset of an n-dimensional Stein mani-
Jold X (n=2), and let c;e C)(X\K; G) be a g-cycle in X\K that is ho-
mologous to zero in X but not in X\K. Assume that at least one of the
following conditions holds:

(@) 0=sg=n-2;

(b) g=n—-1, G=R, and H,(X;R)=0;

(c) g=n—land H,(X;Z)=H,_(X;Z)=0.
Then supp c, intersects the hull K.

Proof. If ¢, is homologous to zero in X, and if its support does not intersect
the hull of X, then ¢, is homologous to zero in X\ K by Theorem 1 or 2, and
hence it is homologous to zero in the larger set X \ K. 1

Next we consider compact sets in strongly pseudoconvex boundaries.
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THEOREM 4. Suppose that X is a Stein manifold of dimension n=2, D CC
X is a strongly pseudoconvex domain with C? boundary, and K is a compact
subset of bD. Denote by K the O(D)-convex hull of K Then the inclusion
bD\K < D\K induces isomorphisms

H,(bD\K;G)=H(D\K;G), O0<k=<n-2.

ExampPLE 3. Let D be the unit ball in C”, and let
K=bDNR"

Then X is an (n—1)-sphere in bD thAat is polynomially convex, and we have
H,_;(bD\K) # 0 while H,,_{(D\K)=H,,_(D\K) =0. This shows that
Theorem 4 fails in dimension k=n—1.

CoroLLARY 3 (notation as above). If ¢,e€ C,(bD\K;G) is a g-cycle in
bD\K (g <n—2) that is not homologous to zero in bD\K, and zf Co+1i5 @
(q+1)-chain in D satisfying dc q+1=Cgq> then supp ¢, intersects K.

Corollary 3 can be expressed by saying that any cycle of dimension<n—2
that links K in bD\K also links K in D\K. For cycles defined by smooth
orientable manifolds this is Theorem 2 of Alexander [1]. When n =2, Theo-
rem 4 is only applicable for g=0, and it gives the well-known result that
every connected component of D\K contains precisely one connected com-
ponent of bD\K (see [1; 2; 5; 8]).

Proof of Theorem 4. There exists a strongly plurisubharmonic function p
of class @2 in a neighborhood of D such that D={p <0} and dp # 0 near
bD. Replacing X by a suitable sublevel set of p, we may assume that D is
Runge in X and that D is holomorphically convex in X. Then KC D is the
holomorphically convex hull of K in X. Note that KNbD =K by strong
pseudoconvexity.

Let Ey be a small tubular neighborhood of 4D in X, thought of as a neigh-
borhood of the zero section in the normal bundle to oD in X, with convex
fibers. Let n: Ey— bD be the projection onto the zero section. Choose a
small smooth function x =0 on bD that vanishes precisely on K, and let
E={zeEy:|p(z)| < x(m(z))}. Clearly E CC E, is an open neighborhood of
bD\ K, and with a suitable choice of x we have ENK =@. Set U= (D\K)UE
and V= (X\D)UE. Then UUV=X\K and UNV =E.

Set X’=X\K. The definition of E implies that ¥'=(X\D)UE can be
deformed onto X\ D by a homeomorphism of X’. Therefore Hy (X', V) =
H,(X’, X\D) for all k. (We omit the coefficient group G.) This group van-
ishes in dimensions 0 < k < n—1 according to Theorem 3. (To be precise, we
use Theorem 3 with D replaced by larger sublevel sets {p < ¢} and then pass
to the limit as e > 0 decreases to zero.)

Next we observe that the set Y=V \FE is relatively closed in V, and there-
fore is excisive for the singular homology of the pair ¥'C X’ in the sense that
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H. (X, V)=H.(X'\Y,V\Y) [10, p. 189, Cor. 5]. We have X’'\Y=U and
V\Y=E; hence 0=H (X", V)=H, (U, E) for 0<k=<n—1. From this and
the exact homology sequence of the pair £C U we get Hy(E)=H;(U) for
0 <k <n-2. By construction, E is homotopically equivalent to »bD\ K and
U is equivalent to D\ K. This gives the required isomorphisms H;(bD\K) =
H,(D\K) for 0 <k <n—2. Theorem 4 is proved. O

3. Proof of Theorem 2
We begin by recalling some results of Andreotti and Narasimhan [4].

THEOREM 5 (Andreotti and Narasimhan [4]). Let X be an n-dimensional
Stein manifold, and let Q) C X be a pseudoconvex Runge domain. Then:
(@) Hi(X;Z)=0 for k>n, and H,(X; Z) is torsion free.
(b) The natural homomorphism H,(Q; Z) - H,(X; Z) is injective; hence
H”(X; R) - H"(Q; R) is surjective.
() If H,(X;Z)=H,_((X;Z) =0, then H,(Q;Z) =0 for k=n and
H, _(Q; Z) is torsion-free. This holds in particular if X is contractible.

Proof of Theorem 2. We will prove Theorem 2 under the weaker assump-
tion that A= C X, where @ CC X is a domain with C! boundary that satis-
fies the homological properties stated in Theorem 5. We emphasize that no
Jurther analytic information on A is needed. Clearly A and Q have the same
homology and cohomology groups. We shall distinguish three cases.

Case I:c H,(X;Z)=H,_{(X;Z)=0 (e.g., X=C" or X contractible).

According to Theorem 5(c) we have
H.(A;Z)=0, k=n;
H;_i(A; Z) is torsion-free.

The set A is a finite CW-complex and therefore its homology and cohomol-
ogy groups in all dimensions are finitely generated. By [10, p. 244, Cor. 4],
the free parts of H¥(A; Z) and H,(A; Z) are isomorphic, and the torsion
part of H¥(A4; Z) is isomorphic to the torsion part of H,_,(A4;Z). 1t follows

that H*(A; Z) = 0 for k = n. The same is then true for every abelian group G
by the universal coefficient theorem for cohomology [10, p. 246, Thm. 10]:

H*A4;G)=0, k=n. (5)

We now apply the Alexander duality theorem [10, p. 296, Thm. 16] to the
compact subset 4 of the manifold X:

H (X, X\A;G)=H*""%A4;G)=0, 0<k=n. (6)
Consider the exact homology sequence of the pair X\ AC X:
e > Hp (X, X\A4; G)—> H(X\A4; G)
- H (X;G)->Hi(X, X\A4;G)— --
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For 0<k<n—1 we have
0-H,(X\A;G)->Hi(X;G)—-0,

which gives the isomorphisms (3) in Theorem 2. If X is contractible, we get
H; (X \A; G)=0 for 1 <k=<n-—1. This settles case 1.

Case 2: X is an arbitrary Stein manifold. By Theorem 5(a), we have
H;(A;Z)=0 for k>n and H,(A;Z) is torsion-free. Applying (as before)
the universal coefficient theorem for cohomology, we get H¥(A; G) =0 for
k > n. The same proof as in case 1 gives the isomorphisms of Theorem 2 for
k<n-2.

Case 3: H,(X;R) =0. Then H"(X;R) = 0 and therefore H"(A4;R) =
0 by Theorem 5(b). The Alexander duality theorem (6) (with G=R) im-
plies H,(X, X\ 4;R) = H"(A4; R) = 0. The isomorphism H,,_;{(X\ 4;R) =
H, _(X;R) follows in the same way as in case 1 from the exact homology
sequence of the pair X'\ A C X with coefficients R. This concludes the proof
of Theorem 2. [l

ReEMARK 3. The fact that pseudoconvex Runge domains (and polynomially
convex subsets) 4C C” satisfy H¥(A; C)=0 for k=n is well known and
can be found in numerous places in the literature. The stronger result (5),
namely that the same holds for cohomology with arbitrary abelian coefli-
cients G, is curiously absent in most texts. For instance, the vanishing of
the group H"(A4;Z,) for polynomially convex subsets AC C” implies that
no closed, compact, n-dimensional submanifold of C", orientable or non-
orientable, is polynomially convex.

REMARK 4. If we restrict ourselves to homology and cohomology with real
coeflicients, then an alternative proof of all results in this paper can be given
by using differential forms and the Poincaré duality theorem. This approach
was used by Alexander [1]. We refer the reader to [6] for general results on
cohomology with differential forms.

We give an outline of the proof of Theorem 1 for G =R. We want to show
that H (X \A;R)=0 for 1=k=<n—1, where A is the closure of a Runge
domain Q@ cC C” with C! boundary. By de Rham’s theorem this is equivalent
to [y a =0 for every closed orientable submanifold YC C"\ 4 of dimension
k and for every closed k-form o on C"\ A.

Fix YC C"\ A. The integration of closed k-forms o € D*(C"\ A) over Y
defines a linear functional on H¥(C"\ A4; R). By Poincaré duality this func-
tional can be represented by a closed form n =1y of degree 2n—k, with
compact support contained in C"\ A4, in the sense that

S a=S AN
Y ol
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for all closed k-forms oc on C”\ A. Such a form 5 is called a (compact) Poin-
car¢ dual of Y.

Since A= has @! boundary, it suffices to consider k-forms « defined on
C"\ A, for some smaller compact set 4,C 2. Choose a smoothly bounded
domain D CC Q containing 4,. Since H2"~*(C"; R) = 0 for k = 1, there exists
a compactly supported form w of degree 2n—k —1 on C” satisfying dw = 7.
By Stokes’ theorem, applied to the form

ann=ardew=(—1)*d(arw)

with bounded support on C"\ D, we get

Sa=S a/\n=iS d(aAw)=iS AW,
Y cr C™\D bD

The form w is closed on Q since dw =17 is supported on C"\Q. Since Q is
Runge in C”, we have H (Q; R)=0forr=n.If k<n—1then2n—k—1=n,
and hence w =df for some (2n—k —2)-form 8 on 2. Since bD C {2, we get

La= :L-SbDaAdB= iSbD d(anB)=0

by Stokes’ theorem. This shows that the functional associated to Y is zero,
and hence Y is homologous to zero in C"\ A.

ReMARK 5. The referee kindly pointed out the recent work by G. Lupac-
ciolu [8], who obtained topological properties of certain classes of compact
sets in g-complete complex manifolds. There seems to be no overlap be-
tween [8] and the present paper.
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