The Minimal Primal Ideal Space
of a Separable C*-Algebra

FERDINAND BECKHOFF

1. Introduction

In this paper, the device of the minimal primal ideal space of a C*-algebra is
used to establish a linearity result for quasistates and quasitraces on a class
of separable liminal C*-algebras. This can be used to describe all lower semi-
continuous dimension functions on such algebras by Borel measures on their
Jacobson spectrum. In another application it is shown that a separable limi-
nal unital C*-algebra can be represented by Borel measurable sections living
on the Gelfand space of its center where the fibres are quotients by minimal
primal ideals.

Let @ be a C*-algebra. On Id(®), the set of closed two-sided ideals of @,
we have at least two important topologies.

(1) The weak topology ,,. This topology is generated by the sets of the
form U;={Ield(®)|I J}, where J runs through Id(®). In general this
topology is not Hausdorff. The restriction of 7,, to Prim(Q®), the space of
primitive ideals, coincides with the Jacobson topology. The set of primal
ideals, denoted by Primal(Q®), then is the 7,,-closure of Prim(Q®) in Id(Q®).
Let PI(®) be Primal(Q®) without the trivial primal ideal @. An application of
Zorn’s lemma shows that each primal ideal contains a minimal primal ideal.
Let MP(Q) denote the space of all minimal primal ideals. A good reference
for all this is [3].

(2) The strong topology or Fell topology 7,. This can be defined as the
weakest topology making all the maps ¢,: Id(@) —» R, ¢,(I) =||x+I|, con-
tinuous where x runs through @. This topology has been introduced by Fell
[16] by describing a topological base; it has also been investigated in [13]. It
is finer than 7,, and Hausdorff. 7,, and 7, coincide when restricted to MP(Q®)
[3, Cor. 4.3].

These ideal spaces will be used in this paper to obtain results about the
linearity of continuous quasistates on certain C*-algebras and about a rep-
resentation of certain C*-algebras by Borel sections living on the Gelfand
space T of cen(Q®), the center of @.

The main device is the map ®: P1(®) — T, which we now define. T, is the
one-point compacitification of 7. For a e cen(Q) let d: Prim(Q®) — C be the
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Dauns-Hofmann transformation of a; that is, d(ker(w)) = w(a), which is a
scalar operator. This is a continuous map vanishing at infinity if Prim(®)
carries the topology 7, [12, 3.3.7]. For any P € Prim(Q®), the map a+~ a(P)is
a homomorphism on cen(®), and hence determines a unique point te T,
such that a(P)=a(t), where the commutative C*-algebra cen(®) is identi-
fied with its Gelfand representation. This ¢ will be denoted by ®(P). By [3,
Prop. 3.8] all continuous bounded maps f: Prim(Q®@) — C may be uniquely
extended to bounded continuous maps f: PI(®) — C, where f(I):= f(P) if
IC PePrim(®). So we may extend ® to a map P1(®) — T,,, which will also
be denoted by &.
If I, converges to I in (PI(®), 7,,), then for any a € cen(®) we have

a(®(1,) = d(1,) —» a(l) = a(®(1)),

and so ®(/,) — (/) by the definition of the Gelfand topology. So ® is con-
tinuous.

An element ¢ € T defines a pure state on cen(®) which can be extended to a
pure state on @, giving an irreducible representation and hence a primitive
ideal P. Obviously ®(P) =t¢. If @ is quasicentral (i.e., no primitive ideal con-
tains the center), then obviously the zero homomorphism is not in the image
of ® and therefore ®(P1(®)) =T. In the non-quasicentral case we will have
®(PI(R)) =T.

By the definition of ® on PI(®) it is easy to see that already ®(MP(Q))D
T. In general & is neither injective nor open.

The above-mentioned results will be achieved by considering certain cross-
sections 7'— MP(Q) of ®. The next section is devoted to an important prop-
erty of these cross-sections. Applications will be given in the subsequent
sections.

2. On a Theorem of Dixmier; Cross-Sections

In [14] Dixmier proved the following theorem: Let @ be a separable and lim-
inal C*-algebra such that Prim(Q) is compact. Then the interior of the set
of separated points is dense in Prim(Q®). First this theorem will be gener-
alized slightly, and then some conclusions concerning cross-sections of the
map $: MP(Q®) — T, will be drawn.

THEOREM 2.1. Let Q@ be a separable liminal and quasicentral C*-algebra.
Then the interior of the set of separated points is dense in Prim(Q).

Proof. From the proof given in [14] we conclude that all open subsets which
are Hausdorff in their relative topology are F,-sets in Prim(Q) if @ is separ-
able and liminal and Prim(®) compact. Now let (u,), be a countable ap-
proximate unit in cen(Q®), which is guaranteed by [4]. Then it is easy to con-
clude that Prim(Q@) is a countable union of closed and compact sets; indeed
the { P e Prim(®) | i, (P) =1/m} may be used. So we can apply the argument
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of Dixmier to these sets separately and obtain that all open Hausdorff sets
of Prim(Q®) are F,. Then go back to the proof given in [14] to establish the
claimed result. 0

Recall that an ideal of a C*-algebra is said to be essential if the correspond-
ing open set in Prim(Q) is dense in the Jacobson topology.

THEOREM 2.2. Let @ be a C*-algebra possessing an essential separable lim-
inal and quasicentral ideal. Let ¢: T— MP(QR) be any cross-section of ®:
MP(Q) —» T... Then ¢(T) is dense in MP(Q).

Proof. Let J be the ideal in the assumption about @, and let U be the in-
terior of the sets of separated points in Prim(J). Since J is essential and
by the theorem above, we conclude that U is 7,-dense in Prim(Q®). Clearly
MP (@)™ = Prim(Q®)", and so the result will follow from UC ¢(T).

(i) First let us prove UC MP(Q®). Let Pe U, Q € Prim(Q®), and let (P,),
be a net in Prim(®) converging to P and Q. By [5, Prop. 3.2] it is enough
to prove P= Q. Assume Q ¢ Prim(J), that is, QO D J. Since J is quasicen-
tral, there is a e cen(J) = cen(®) N J such that @(P)=1. Then 1 =4(P) =
lim, 4(P,) = a(Q) =0, so Q must be in Prim(J). If 0 » P then P and Q are
separated, which is impossible because they belong to a common limit set.
So by liminality of J we conclude P = Q.

(ii) If VC U is 7,~-compact, then V is 7,,-closed in Prim(®). Let Q be in
the closure of V. There is a net (P,), in V converging to Q. By compactness
there is a subnet (Pg)g converging to a point P in V. But then Pg— {P, O}
and by (i) we conclude Q= PeV.

(iii) Let Pe U, Qe PI(®), and ®(P)=P(Q). Then P= Q. (First notice
that this will finish the proof.) Let Q, be any primitive ideal containing Q.
We have to prove P= Q,, so without loss of generality let Q be primitive.
Assume P# Q. Then there is a compact neighbourhood V of P in U such
that Q ¢ V, because U is a locally compact Hausdorff space. Moreover there
is a continuous function f: U — [0, 1] such that f(P)=1 and supp(f)CV.
Let F be the extension of f to Prim(J), where F is defined to be zero outside
U. Let us prove that F is in Cy(Prim(J)). Since the support of F is contained
in V™ which equals V by (ii), we only have to check continuity. To this end
let R,— R in Prim(J). If Re U, then R, €U for large «, and so F(R,) =
S(R,) = f(R)=F(R). If R¢ U then R, € Prim(J)\V for large « by (ii), and
so again F(R,) — F(R). Thus indeed F is continuous. By [10, Prop. 1] there
is a e cen(J) C cen(Q) such that @ = F. Obviously @(P) =1+ 0= ad(Q), con-
tradicting ®(P) = ®(Q). This completes the proof. [l

CoROLLARY 2.3. Let Q@ be a separable liminal and unital C*-algebra. Using
the notation of the above proof, ®: U— ®(U) is a homeomorphism onto an
open and dense subset of T.

Proof. By the preceding proof (especially part (iii)), ®: U— ®(U) is a con-
tinuous bijection. Let ¢, =®(P,) > t=&(P) in 7. By the compactness of
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Prim(Q®), any subnet of (P,), has a convergent subnet Pz — Q in Prim(®).
Then ®(P) =t =limg ®(Pg) = P(Q), hence P = Q by part (iii) of the above
proof. This shows P, — P; hence ®|; is a homeomorphism.

Thus ®(U) must be a locally compact subspace of 7, and so it is an inter-
section of an open and closed subset of 7. Since ®(U) clearly is dense in T
(as U is dense in Prim(Q®)), it must be open. O

3. Quasistates

A quasistate on a C*-algebra @ is a map f: @ — C such that

(i) if BC @ is a commutative sub-C*-algebra, then f |z is a positive lin-
ear functional;
(ii) f(a+ib)= f(a)+if(b) for all self-adjoint elements a, b € Q;
(iii) sup{f(a)|ae®, a=0, |a|<1}=1.

The link to the original definition is given by [1].

It is an important and old problem to determine whether quasistates are
linear. Gleason [18] has shown that this is indeed the case for @ = M,,(C),
n =3, and wrong for n = 2. This has been extended to von Neumann algebras
without central summands of type I, by Christensen [8] and Yeadon [21].

General C*-algebras are also treated in the literature. Aarnes [2] proved
among other things that all continuous quasistates are linear if @ is a liminal
C*-algebra with Hausdorff spectrum which does not possess any irreducible
representations of dimension 2. Christensen [8] has shown that the continu-
ity of the quasistates is automatic if & is a locally trivial field of elementary
C*-algebras.

Also recall the following result of Kaplan [19], which is the starting point
in [19] for treating C*-algebras which are not von Neumann algebras: If @
is a separable unital C*-algebra that possesses an ideal B which is a locally
trivial continuous field of elementary C*-algebras such that Q does not have
any 2-dimensional irreducible representations, then all weakly subadditive
quasistates on Q are linear.

In order to generalize these results (partially), we will show as in [2] that
in some situations an extremal continuous quasistate f on @ induces a con-
tinuous quasistate £ on @/K, where X is a closed two-sided ideal. We will
deduce linearity from this.

THEOREM 3.1. Let @ be a C*-algebra possessing an essential separable quasi-
central and liminal ideal. Let f be a continuous quasistate on Q@ such that

ker(f | cen@y) = (@ € cen(@) | a(#) =0}

for some tyeT,,. Let K:=N\® (¢ty). Then f(a+K):= f(a) defines a con-
tinuous quasistate on @ /K.

ReMARk. Using the proof of [2, Lemma 5.2], it is easily seen that extremal
continuous quasistates of @ satisfy the assumption in the theorem.
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The space Prim(Q) is used in [2] in two ways. First, it serves as a space of
ideals, where an ideal P can be found such that the given extremal quasistate
induces a quasistate on @/P. Second, Prim(Q) is used as a Hausdorff space,
where the elements of the center of the multiplier algebra live as continuous
functions. This multiple use of Prim(Q®) is not possible here. The space of
ideals will be MP(Q®), and the Hausdorff space will be T, the Gelfand space
of the center. This causes some technical difficulties not present in [2], and
we now show how to manage them.

Proof. If @ has no unit, then adjoin one. The situation remains unchanged
if we extend f by f(1)=1 [2, par. 2]. So we assume that @ is unital. The
proof is broken up into several assertions.

Claim I: Let ae@ and teT. Then the map I~ |a+I| restricted to
M ®~1(¢) attains its maximum in a minimal primal ideal.

There is nothing to prove if y: I~ |a+1|| is zero on ®~'(¢). Otherwise
let o > 0 be such that o < sup{||a+1|||7e®~(¢)}. Since {{||a+1|= o} is 7,-
compact in Id(®), hence in Id(®)\{®}, and since ®~(¢) is 7,,- and hence 7,-
closed in PI(@), we see that {I € ®7'(¢)|||a+I||= ] is 7,-compact. But ¢ is
7s-continuous, and so the maximum will be attained in an ideal 1. So the
maximum is attained in any minimal primal ideal contained in 7.

Claim 2: Let ae @. Then there is a cross-section ¢,: T— MP(QR) of &
such that ¢~ ||a+ ¢,(¢)| is upper semicontinuous and bounded by |||

By claim 1, there is a minimal primal ideal ¢,(¢) such that the map 7+~
|a+ I|| attains the maximum value on ®~!(¢) at ¢,(¢). It will be proved now
that ¢, has the required properties. Let 7, — ¢ in 7, and let us prove that
lim sup;||@+ ¢,(4)| < ||a+ ¢,(¢)|. Assuming the contrary, there is A€ R such
that

la+ ¢q(8)]| <A <limsup|la+ o, (t)] = M.
j

There is a subnet (#3) such that A <|la+ ¢,(#3)|| = M. Because {I € Id(Q)
la+1I||=A}is 7,-compact, there is a subnet (. ), of (#5)g such that ¢,(z.) — I
in the strong topology and ||@+7||=A. Since

IePl(®) and @(7)=Ilim®(¢,(¢,)) =1,

we have 7 € 71(¢), and so ||a+ 7| < ||@a+ ¢,(¢)|| <A, which is a contradiction.
So ¢, is upper semicontinuous. The boundedness is obvious.

Claim 3: K= ®71(¢,) Cker(f).

Letae K, a=0, and let e >0 be given. By claim 2 and since ||a+ ¢,(¢p)|| =
0, there exists 7€ C(T) = cen(®;) such that A(¢) = ||a + ¢,(¢)|| on T and
h(f@) <e.

If 7 is any irreducible representation of @ then | (a)| = |la+ ker 7| <
la + ¢,(®(ker m)| < ||A(P(ker 7))|| = w(h), which is a scalar operator. So
w(h—a) =0 for all irreducible representations of @, hence a < h, and there-
fore —h(ty) =a—h(ty) =h—h(ty). Now f can be extended to a quasistate
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on ;. Then the restriction to the commutative C*-algebra generated by
{a, h,1} is linear, hence monotone, and so we get —h(fy) < f(a)—h(ty)<
JS(h)—h(ty) =0 by the assumption about f. Thus 0 < f(a) <e, and this im-
plies a e ker(f). So ker(f) contains all positive elements in K. Since self-
adjoint elements in K can be written as the difference of two positive and
commuting elements in K, we conclude that ker( f) contains all self-adjoint
elements of K. Considering real and imaginary parts separately, we finally
arrive at the claimed result.

As in [2], we cannot deduce directly that f(a) = f(b) if a+ K= b+ K. This
requires an additional argument.

Claim 4: Let hecen(®,) be self-adjoint, h(fy) =1, ae @. Then f(a)=
f(ha).

This can be proved as in [2, Lemma 6.1].

Claim 5: If a,be @ and a+ K= b+ K, then f(a) = f(b).

Let e > 0 be given. Since f is continuous, there is a > 0 such that ||a —c||<
6 implies | f(a) — f(c)| <e. Let ¢,_; be the cross-section constructed in claim
2. The map ¢+~ ||@a—b+¢,_p(?)|| is upper semicontinuous and vanishes at #,
since a—be KC ¢,_p(ty). So there is an open neighbourhood U of ¢, satis-
fying ||a—b+ ¢,_(?)|| <6 on U. Let C C U be a compact neighbourhood of
t3. Choose continuous functions g and # from T to [0, 1] such that A(Zp) =1,
supp(h) C C, and g|o=1, supp(g) C U. Define c:=gb+(1—g)ae @. Then

la—c+¢,—p(t)| = g(t)|a—b+d,_p(1)]| <8,

and so sup;cr||l@a—c+¢,_p(¢)||<6. By Theorem 2.2 and using the 7,-con-
tinuity of the map I~ ||a—c+1I|, we conclude that ||a—c||<é and hence
| f(@)—f(e)|<e. .
Now we may go on as in [2, Lemma 6.3]. We have hc = hgb = hb, and by
claim 4 this means f(c) = f(b). Since ¢ was arbitrary, we have f(a) = f(D).
This clearly finishes the proof of the theorem. a

This section concludes with two applications.

THEOREM 3.2. Let Q be a liminal separable C*-algebra such that

(1) @ does not possess any irreducible representations of dimension 2,
and

(2) if M C Prim(Q) is infinite then there exists an a € cen(Q) such that a
is nonconstant on M.

Then all continuous quasistates are linear.

Proof. Let Z:={PePrim(®)|a(P)=0 for all a e cen(®@)}. By assumption
(2) Z is finite, hence Z,:=int(Z) is a finite set of one-element components
of Prim(®). So @ decomposes as @ =D pc z, &/P@® M Z,. Since & is limi-
nal, by (1) we have @/P = M,(C), where the positive integer n is different
from 2 and where M, stands for the compact operators. So by Gleason’s
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result [18], any continuous quasistate is linear on @ p. z, @/P. Hence we may
assume that Z, is empty.

Let J be the ideal (M Z. Since Z has no interior points, it is an essential
ideal, and is of course also separable and liminal. By definition of J we have
cen(J) = cen(Q) (cf. [11, Lemme 6]), and so J is quasicentral.

As already observed in [2], it is enough to prove that any extremal quasi-
state f is linear. But then @ and f satisfy all the assumptions of Theorem 3.1,
and f gives rise to a continuous quasistate £ on @/®~!(¢,) for some g € T,,.
But &~(¢,) is finite by assumption (2), and by [12, 4.2.5] we conclude that
this quotient C*-algebra is isomorphic to a finite direct sum of matrix alge-
bras. So again by Gleason’s result {18] we conclude that f is linear, and so
must f be. Cl

One of the starting points for treating general C*-algebras is [19, Prop. 3.4],
cited previously. Since weakly subadditive quasistates on unital C*-algebras
are continuous [19, Prop. 2.2], the following theorem generalizes this prop-
osition in the case where the fibres of B in [19, Prop. 3.4] are finite-dimen-
sional.

THEOREM 3.3. Let Q be a separable C*-algebra possessing a liminal quasi-
central ideal J such that:

(1) @ does not possess any irreducible representation of dimension 2;

(2) If M C Prim(J) is infinite then there exists an a € cen(J) such that a
Is nonconstant on M; and

(3) @/J is finite-dimensional.

Then all continuous quasistates of Q are linear.

Proof. We have Prim(Q®) = Prim(J)UPrim(Q®/J), where Prim(Q®/J) is finite
by assumption (3). Using the same arguments as in the proof of Theorem
3.2, we may assume that int(Prim(®/J)) is empty—that is, J is essential.
If f is a pure quasistate on @, the conditions of Theorem 3.1 are fulfilled
and hence f gives rise to a continuous quasistate f on @/®~(¢,) for some
toeT,. By (2) and (3) ®7!(¢,) is finite, and since J is quasicentral all irre-
ducible representations are finite-dimensional. So the above quotient C*-
algebra also is finite-dimensional and all its irreducible representations have

d~imension different from 2 by assumption (1). Again we may conclude that
f, and hence f, is linear. Ol

4. Quasitraces and Dimension Functions
From the preceding section we immediately have this theorem.

THEOREM 4.1. Let @ be a liminal separable C*-algebra such that

(*) if M C Prim(Q) is infinite then there exists an a € cen(Q) such that a is
nonconstant on M.

Then all continuous quasitraces are linear.
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To see this, use the same arguments for quasitraces instead of quasistates.
The only fact that deserves an extra argument is that extremal quasitraces
satisfy the assumptions of Theorem 3.1, but the arguments in [2, Lemma
5.2] will work. Finally, use the fact that continuous quasistates on M,(C)
are linear (there are not so many).

There is an interesting connection between lower semicontinuous dimen-
sion functions and continuous quasitraces. This can be found in [9] or [6].
If D is a lower semicontinuous dimension function then the following con-
struction gives a continuous quasitrace.

Let a € @ be self-adjoint. If U C C is open, choose a continuous function
g: C— R{ such that U= {z € C| g(z) > 0}. Define u,(U) = D(g(a)). This can
be extended to a Borel probability measure on C which is concentrated on
the spectrum of a. Then let 7(a):={-Adp,(A). This defines a continuous
quasitrace on Q.

Conversely, let a continuous quasitrace 7 on @ be given. Define f,: R—R
by f.(t)=0fort=<e/2, f(t)=2t/e—1fore/2<t=<e,and f(¢)=1forf=e.
Then D(x):=lim,_, ¢ 7(f.(|x])) defines a lower semicontinuous rank func-
tion on &. If 7 actually is a trace then we have a dimension function.

The coincidence of traces and quasitraces is a useful piece of information
about a C*-algebra.

The lower semicontinuous dimension functions on a commutative C*-
algebra Cy(T') are described in [6, Prop. 1.2.1]. Let x be a measure on the
o-algebra generated by the o-compact open sets in 7. For x € Cy(T'), define
D,(x):=p({teT| f(¢)#0}). Then D, is a lower semicontinuous dimension
function, and all other lower semicontinuous dimension functions arise in
this way.

The following theorem gives a similar description for a class of noncom-
mutative C*-algebras. Let S(®) denote the set of positive linear functionals
on @ with norm not exceeding 1.

THEOREM 4.2. Let @ be a separable liminal and quasicentral C*-algebra
such that all quasistates are linear.

(1) Let D be a lower semicontinuous dimension function on Q. Let UC
Prim(Q) be open and let I be the corresponding ideal of Q. There ex-
ists an x € I'" such that {¢ € S(®)|ker(my) D1} ={¢ € S(R)| (x) > 0}.
Define p(U):= D(x). This is well-defined and can be extended to a
Borel probability measure pp on Prim(Q).

(2) Let u be a Borel probability measure on Prim(Q). Then

dim(im 7 (x))
Prim(Q®) dim 7

D)= du(m)

(3) The maps D+~ pp and p— D, are inverses of each other.

The proof is broken into a series of lemmata. First notice that the assump-
tions on @ imply that all irreducible representations are finite-dimensional.
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LemMA 4.3. If I is a closed two-sided ideal of Q then there is an element
xelI* such that {¢ € S(Q) | ker(my) DI} ={p€S(Q)| d(x)>0}. If D is a lower
semicontinuous dimension function then D(x) is the same number for all
such x.

Proof. Let (x,), be a countable approximate unit for /, and let (a,), be a
countable dense set in the unit ball of @. Then It contains

xXi=, 2::%1{ an X Q.
n,m
If ¢ € S(®@) and ¢(x) > 0 then clearly my4(x)# 0, hence ker(wy) 5 1. Con-
versely, let ker(wy) 2 1. Define X:=3,,(1/2")x,,. If we had X e ker(m,), it
would contain Xy, x5, ..., and this would imply 7 C ker(w;) which is not the
case. So there exists a £ € H, ||£]|=1, such that {(m4(¥)&]|£)>0. If &, is the
cyclic vector belonging to ¢ then there must be an #» € N such that

(my(R)my(@n)€g | Ty(an)éd >0,

hence ¢(a;xa,) > 0, hence ¢(x) > 0. So the existence of such an x is proved.

Now let y € I'" be another such element. We have to prove D(x) = D().
Let @ C L(H) be given in its universal representation [20, chap. 3.7].

Let us first prove that im(x) and im( y) have the same closure. To this end
let £ € H and n € ker y. Then Kx&|n)|> <(x&|£){xn|n)=0, since {(yq|n)=0
implies {x7n | ) =0 by the properties of x and y. So we have im(x) Cim(y),
and by symmetry im(x) =1im(y).

Since y(y+1/n)~! increases to the projection p onto im(y) in the strong
operator topology, we have ¢(x(1 —y(y+1/n)"Hx)N ¢(x(1 — p)x) =0 for
all ¢ € S(®). By Dini’s theorem we conclude that ||x(1—y(y+1/n)"")x| -0,
hence x < x? < y (notation as in [6] or [9]). This implies D(x) < D(y), and a
symmetry argument establishes the lemma. [l

So for an open subset U of Prim(Q®) we can define up(U) as stated in the
theorem. If it were possible to extend this function to a Borel measure on
Prim(Q®), this extension would clearly be unique. Since Prim(Q®) may be non-
Hausdorff, the existence seems not to be clear.

Let T(®) be the compact convex set of traces on & with norm not exceed-
ing 1. As explained in [15, chap. 2] there is a map O: ex T(®)\{0} —» Prim(Q®)
given by ©(7) = ker ,, where =, is the GNS-representation defined by 7. It is
easy to see that © is continuous when ex T(®) is equipped with the relative
weak*-topology (we don’t need the facial topology here).

Now let D be a lower semicontinuous dimension function. D determines
a quasitrace 7o which by assumption is an element of 7(®). So by Choquet’s
theorem there is a Borel probability measure p, concentrated on ex T(®)
such that 79(X) = [, 7 7(¥) dpo(7) for all x € G. Let py:=poo©~", which is
a Borel probability measure on Prim(Q®).

LEMMA 4.4. If UC Prim(Q) is open then py(U) = pp(U).
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Proof.

pU) = po({r e exT (@) | ker w, D I})
=po(freexT(@R)|7(x)>0}) (wherex is chosen by Lemma 4.3)

—S X{o|#(e) >0} (7) du(7),
ex T(R)

where X(0) := ¢(x); that is, x operates as a continuous function on 7(®). But

up(U) = D(x) = lim 75(£(x)) = lim TG () dpo(7).

e—0 e—*OSexT(Q)
N
So by the monotone convergence theorem we need only prove that f,.(x) in-
creases to X(q|2()>0; as € decreases to zero.

We have £(xX)(r) = (fu(m,(X))£, | £, 7 {PE, | £,), where p is the projection
onto im 7,.(x). Let us show that p is zero or one.

To this end let y € I be a self-adjoint element, 7 € (im 7, (x))*. Let (x,),,,
X, and a, be used (as in the proof of Lemma 4.3) for the construction of x.
Without loss of generality we may assume that q, is a scalar multiple of ¥/2.

Then a scalar multiple of x!/? dominates ¥. For ¢ >0 we have

Yi—e<x,2 %<y %m

for large m. By the construction of x we have x,, <Ax'?and so y2<Ax!?+¢

for some large A. Then |7, (»)n||? < Am (x>0 |9 +e{n|n)=€|n]|>. So we
have proved that (im 7,(x))* C ker 7,(¥) and hence im 7, (y) C im 7, (x) for
all self-adjoint elements y € I, and this implies

im 7 (x)=span U{im = (y)|yel}.

The set on the right clearly is w,(®)-invariant, so p is in the center of =, (®).
Thus p must be one or zero as 7 is an extremal trace; that is, =, is a factor
representation.

Now if X(7) =0 then =.(x) =0, hence p=0. If X(7) >0 then p=20 is im-

—
possible, hence p =1 and hence f,(x)(7) 7"{pé&,|E,)=1. L]

This also finishes the proof of part (1) of the theorem. We now will turn to
part (2).

LeEMMA 4.5. The map

p:Prim(@) >R, p(m)= dim(im 7 (|x|))

dim 7

is Borel measurable for each x € Q. If u is a Borel measure on Prim(Q) then
D, is a lower semicontinuous dimension function on Q.

Proof. By [12, 3.6.3] the map =~ dim 7 is measurable; especially

Prim(Q),,:= {x |dim = = n}
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is a measurable set. By the proof of [12, 4.6.2] there is a measurable cross-
section s: Prim(Q®),, — Irr,,(®), where the latter set stands for the irreducible
representations of @ onto L(H,) for a fixed n-dimensional Hilbert space
H,,, and where this set is endowed with the relative weak operator topology.
The map 7+~ w(|x|) is continuous, and so =+~ dim 7 (]x|) is measurable on
Irr,(®). But then [x]+~ dim(im 7 (|x|)) = dim(im s([#])(|x|)) is measurable
and so is the quotient p on Prim(Q®),,.

This proves the stated measurability; simple computations show that D,
is a lower semicontinuous subadditive rank function and hence a dimension
function [6, 11.3.1]. [l

LEMMA 4.6. DﬂD =D.

Proof. (1) If reexT(@)\{0} then D,(x)=dim(im =, (|x|)/dim 7,. Because
7 is extremal, the corresponding GNS-representation has the image L(H,,)
and hence Teow, =7, where T is the unique normalized trace on H,. Thus
D,(x)=1lim,_, o T(f.(| 7, (x)])) gives the desired formula.

(2) D induces a (quasi)trace 7, on @, so

To(x) = 5 7(x)duo(7) for all xeQ,
ex T(®R)\{0}

where p is some probability measure on ex 7(®). By Lemma 4.4 we have
1p=po° O !; hence

dim(im 7 (|x|))

D, =

. d (w)=§ D,(x) do(r)
Prim(®) dim = #D #o

exT(R)

=lim

S 7(f(x]) o) = lim 7 fi(x)) =D(x). O
e—0 Yex T(QR) e—0

LEMMA 4.7. 1D, = P

Proof. (1) Let UC Prim(Q®) be open, say U={P|Pp 1} for some ideal /.
Let xeI™ be chosen as in Lemma 4.3. Then dim(im w(x)) =dim = if and
only if ker 7 € U, and also dim(im w(x)) =0 if and only if ker = ¢ U.

To see this, let dim(im 7(x)) < dim . Then there is a unit vector £ € H,
such that ¢(x):={(w(x)£|£)=0. By the properties of x we conclude that
ker m =Kker w4 D I and hence ker 7 ¢ U.

If dim(im 7(x)) = dim 7« then w(x) is invertible. So for any unital vector
& e H, we have ¢(x):={(w(x)&|£)>0, and again by Lemma 4.3 we conclude
that ker = € U. This proves claim (1).

(2) For UC Prim(Q) open, let x be as in (1). Then by (1) we have

dim(im 7 (x))

i, (U) =D, x) = | du(m) = (V).

Prim(Q®) dim 7

This finishes the proof of the theorem. ]
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ExaMmpPLE. Let
@ :={x e C([0,1], M,)|x(1/n) =diag(A,(x), A, 1(x)) for all n e N}.

It is easily seen that the irreducible representations of this separable liminal
and unital C*-algebra are (up to unitary equivalence)

my, Where m,(x):=x(¢) for t€]0,11\{1/n|n e N};
A, for neN;
/\0, where /\0(X):=X(O)1,1 =X(O)2'2.

If ¢ approaches 1/n then m, — {A,, A, 41}, hence X()A,) =X(A,,,;) for all
xecen(@)={xe@|x(t) e Cl and x(1/n) = x(0) for all n}.

So M:={A,,|ne NU{0}} is an infinite set of Prim(Q®) such that all central
elements are constant on M.
It is easily seen that @ is the inductive limit of the C*-algebras

@, :={x € @|x|(,1/n is constant}.

Since all continuous quasitraces on @,, are linear by Theorem 4.1, we may
conclude that all continuous quasitraces on @ are linear. So by Theorem 4.2
we may describe all lower semicontinuous dimension functions for & by
Borel measures on Prim(Q®).

Considering this example, it would be interesting to know which C*-
algebras may occur as an inductive limit of C*-algebras satisfying the hy-
pothesis of Theorem 4.1.

5. The Minimal Primal Ideal Space as a Polish Space

By [17], Id(Q) is a continuous lattice with respect to inclusion and 7, is noth-
ing but the Lawson topology, which is the common refinement of the Scott
topology and the lower topology (see [17] for definitions). Let L be a contin-
uous lattice and X C L a Lawson closed subset # @. Let us denote by min(X)
(resp. max(X)) the set of all minimal (resp. maximal) elements of X. By
{17, I11.1.10] and Zorn’s lemma, these sets are nonempty. Another property,
which will be useful in the sequel, is stated in the following theorem.

THEOREM 5.1. Let L be a continuous lattice such that the Lawson topology
is second-countable, and let X C L be a nonempty Lawson-closed set. Then
min(X) and max(X) are Polish spaces in their respective topologies.

Proof. Since L is a compact Hausdorff space [17, III.1.10] and second-
countable by assumption, it must be Polish. So we only have to prove that
min(X') and max(X) are Gj-sets [20, 4.2.2].

The sets Gy:={(x, y)e L?|x < y} and G,:= {(x, y)e L?|x = y} are closed in
L?. (L is meet-continuous by [17, 1.2.2], o(L) is continuous by [17, 11.1.14];
then use [17, I111.2.4].) So G:= X?N G,\ G, is an F,-set and therefore o-com-
pact by the compactness of L2. Hence p,(G) is o-compact and therefore is
an F,-set, where p,: L?> - L denotes the projection onto the first coordinate.
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But x e X\min(X) & x € X, and there is a y € X such that y <x and
x £ y o there is a y e L such that (x,y) e X2N G,\G; © x € p;(G). Hence
min(X) =XN(L\ p(G)) is the intersection of two G;’s and so is itself a G;.
The result for max(X') follows by exchanging G; and G,. U

COROLLARY 5.2. Let @ be a separable C*-algebra. Then MP(Q) is a Polish
space.

Proof. Observe that Primal(Q®) is a 7,-closed subset of Id(®@) (which is
second-countable by separability), and that MP(®) = min(Primal(®)). [l

COROLLARY 5.3. Let Q be a separable unital C*-algebra. Then the space of
maximal ideals is a Polish space with respect to 7.

Proof. By [3, 4.1], Id(®)\{Q} is 7,-closed and hence Lawson-closed. So the
theorem is applicable. O

Let &: MP(Q) — T, be the canonical map.

THEOREM 5.4. There is a Borel measurable map : T — MP(Q) such that
Poy =idy.

Proof. By [20, 4.2.12] we must prove that ®~!(s) is closed for all s € Z and
that ¢(G) C T is a Borel set for all open sets G C MP(Q®). The first part trivi-
ally holds by continuity. So let G C MP(Q®) be nonempty and open, and let
us prove that ®(G) is an F,-set, hence a Borel set.

There is a 7,,-open set U C P1(®@) such that G = UN MP(Q®). Consider
PeU. Let I be a minimal primal ideal contained in P. Then I € U (since U
is open) and therefore ®(P)=®([), where I e UNMP(QR) = G. So we have
proved one inclusion of ®(U) = ®(G); the other is trivial. It remains to
prove that ®(U) is F,.

U is also 7,-open, and so is a countable union of 7,-compact sets Kj,

K,,.... But the K,, are also 7,,-compact (not necessarily Hausdorff), and so
®(U)=U ®(X,) is a countable union of compact and hence closed sets,
since 7" is Hausdorff. ]

For any te T, let Q(¢) := @/Y(¢) for a fixed Borel cross-section y: 7T —
MP(@®). So any x € @ defines a field X of operators, where ¥(¢) =x+y¢(¢) €
@/Y(t). Let ¥ be the map x — X into the C*-algebra & of bounded operator
fields on T with fibres @(¢), which is obviously a *-homomorphism.

From now on @ must be unital. Then a complex-valued and bounded
function on 7" may be considered as an element in &; in particular, the ring
of continuous functions C(7) is contained in &.

We may consider ¥ = Xy as a complex-valued function on 7. Since ¢ in
general is not continuous (see the example below), the first part of the next
theorem is surprising.

THEOREM 5.5. Using our previous notation, for a separable unital C*-
algebra @ we have:
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(i) ¥(cen(®))=C(T).
(ii) ||¥(-)|| is @ Borel measurable function on T for all x € Q.

(iii) If f: T—> U Q(¢) is an operator field such that for all ty€ T and ¢ >0
there is an open neighbourhood U of t, and an element x € @ such
that || f(¢t) —X(t)|| < e forall t e U, then there is an element y € Q such
that f=J.

(iv) forall te T and a € Q(t) there is an x € Q such that X(t) =a.

Proof. (i) Let x ecen(®). To show that X is continuous let ¢, » ¢ in 7. Let
- Q4:=yY(t,). By compactness [3, Prop. 4.1], any subnet of (Q,) has a con-
vergent subnet, say Qg— 1 in PI(®). Then X(#3) =X(Qg) — xX(I), and the
continuity of ¥ will follow if we show that X(I) = X(¢). But we have 3=
®(Qp) = ®(I) and #3— ¢; that is, $(I)=¢. So I and y(¢) are mapped to the
same element by ®, and we have ¥(¢) =xX(¥(¢)) =x(1).

Conversely, let fe C(T). Then f-® is a bounded and continuous function
on Prim(Q®), and so by the Dauns-Hofmann theorem there is an x € cen(Q®)
such that if fo® =X then f=X is in the image of V.

(ii) Clearly ||%(:)||=]|||eX=y. Since ||- || is continuous [3, 4.2], the claim
follows from the Borel measurability of .

(iii) The usual trick of using a partition of unity will do: Let f and ¢>0
be given as in part (iii) of the theorem. By compactness of 7, there are open
sets Uy, ..., U, and elements x, ..., X, € @ such that T= U U; and

sup|| f(£) = %;(D)|[<e.
tey;
Let (g;); be a partition of unity subordinated to the cover (U;);. Then the

usual estimates show that || f(¢) —X7_,g;()X;(?)]|<e for all ¢. By (i) we
know g; = d; for some a; € cen(®@). So we have proved that
sup

f(f)—( é ajxj)~(t)l' <e.
teT Jj=1

Now let ¥,: @/ker(¥) — ® be the induced homomorphism. Then we have
|.f— ¥o(X7=1a;x;+ker(¥))|| < e. Thus we have proved that for any » there
is an element y, € @/ker(¥) such that || f— ¥(y,)|| < 1/n. Since ¥, is iso-
metric, (¥,), is a Cauchy sequence and hence convergent to an element y €
@&/I. Obviously f= ¥,(»), and so for any preimage x € @ of y we will have
f=Xx

(iv) is trivial. O

This representation ¥ may be rather trivial. In fact, by [11, 7.16] there is a
separable type-I C*-algebra with a rich ideal structure such that the center is
trivial (a unit should be adjoined to this example). But things are much bet-
ter in the liminal case, as seen in the following.

THEOREM 5.6. Let G be a liminal separable unital C*-algebra. Then the
representation V¥ described above is faithful. There is an open dense subset
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U C T such that all functions ||%(-)| are continuous on U and such that the
fibres Q(t) are elementary for all z € U. Moreover, X|y =0 x=0.

If Prim(Q) is Hausdorff then we may choose U =T, and the representa-
tion coincides with the representation given in [12, 10.5.4].

Proof. Let U, be the interior of the set of separated points in Prim(®). By
Corollary 2.3, &: Uy, — ®(U,) =: U is a homeomorphism onto the open dense
subset UC T. Since &~ !: U— U is continuous and since U, C MP(Q) [3,
Prop. 4.5], we have continuity of | %(-)|| =[x+ -|je¢-

For t € U we have ¢/(¢) € Prim(Q®); hence Q@(¢) = @/¢(¢) is elementary.

Clearly x = 0 implies ¥|; = 0. Conversely, let X|, =0. By the formula
|%(:)||=|lx+||o¥ and Theorem 2.2, we have ||x+7||=0 for all 7 in a dense
subset of MP(®). Thus x=0.

Finally, if Prim(Q) is Hausdorff then U, = Prim(Q®), which coincides with
T by the Dauns-Hofmann theorem. Then ® reduces to the identity map
and so does ¢. In this case, ¥ is clearly the representation described in [12,
10.5.4]. This finishes the proof of the theorem. l

REMARKS. If @ is a separable liminal unital C*-algebra with Hausdorff
spectrum, then [12, 10.5.4] tells us how we should represent @ as an algebra
of continuous operator fields on Prim(Q®) which coincides with the spectrum
of the center. If @ does not have Hausdorff spectrum then by Theorem 5.6
we may still have a faithful representation as operator fields living on the
spectrum of the center, but continuity holds only on a dense open subset;
only Borel measurability is guaranteed. In this sense Theorem 5.6 is a direct
generalization of [12, 10.5.4].

This theorem should also be compared with [7, Thm. 3.9], where Busby
constructed a representation of a separable unital C*-algebra as a contin-
uous prefield (i.e., continuity of ||x(-)| for all x € @, but condition (iii) of
Thm. 2.1 doesn’t hold). The base space he uses is a compactification of the
space U, (used in the proof of Theorem 5.6), which need not coincide with
the spectrum of the center of @. (Busby uses the embedding @ = M(L(®))
of @& into the multiplier algebra of L(®), where L(Q) is the ideal of @ be-
longing to U,.) The representation given here is better adjusted to the center
of ®; it uses the spectrum of the center as the base space and it maps the
center as it should.

ExaMpPLE. Consider Example 4.12 of [3] and the notation used there. We
have
T'=NU{oo},

where ®: Prim(Q) — T is the map P,—n and {Q;, Q,, O3} —> . We have
that MP(Q) ={P,|neN}U{Q,NQ,, 01N Q3,0>,NQO;} and & maps P, to
n and the Q; to . So there are three Borel cross-sections y;: T— MP(®),
namely #n — P,, and o is mapped to one of the minimal primal ideals Q; N Q);.
Observe that none of these is continuous, but in spite of this any central ele-
ment x € @ is mapped to a continuous function X on 7.
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