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1. Introduction

In this paper we address the problem of estimating the covolume of a discrete
group of orientation-preserving isometries of hyperbolic space in any dimen-
sion. We provide a general method for obtaining a lower bound for the co-
volume in the case that the group has parabolic elements. For a torsion-free
discrete group of orientation-preserving isometries of hyperbolic 4-space
having parabolic elements, we give an explicit lower bound.

By the Bieberbach theorem (see [13, Thms. 3.2.1 and 3.2.2]), for any given
dimension #n there are only finitely many cocompact discrete groups of isom-
etries of R”, up to affine equivalence. These are called the n-dimensional Bie-
berbach groups. Each n-dimensional Bieberbach group G contains a finite-
index subgroup A = A5 isomorphic to Z". The subgroup A; consists of all
translations in G. Let us denote by I, the maximum of the indices |G: Ag|,
where G ranges over all n-dimensional orientation-preserving Bieberbach
groups.

If A is a lattice in R”, we denote by |A| the Euclidean volume of R”/A and
by 8 the nonzero vector of smallest length in A. It is well known that for
every n> 0 there exists a positive constant §,, such that for any lattice A in
R” we have |A|=6,|B8|". (See [3] for the values of §, when n<38.)

Our first main result is the following theorem.

THEOREM 1. Let A be a discrete subgroup of orientation-preserving isome-
tries of hyperbolic (n+1)-space H"*!. Suppose that A has finite covolume.
Let m denote the number of orbits of points in R" which are fixed by para-
bolic elements of A. Then m < o and

Hn-}-l 6 m
vol )2 n_.
A nl,

Section 3 of this paper is devoted to the proof of this theorem.
Our second main result deals with the 4-dimensional torsion-free case, and
will be stated in terms of hyperbolic manifolds. If A is a discrete, torsion-free
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group of isometries of H"*! then the quotient M = H"*YA is a hyperbolic
(n+1)-manifold. Each orbit of parabolic fixed points of A in R” is said to
define a cusp of M.

We will obtain the following result.

THEOREM 2. Let M be a hyperbolic oriented 4-manifold of finite covol-
ume. Let m denote the number of cusps of M. Then m <o and

Vim
(M)=——.
vol(M) 36

This is a 4-dimensional analogue of [8, Sec. 5] and [4], which give a lower
bound for the volume of a hyperbolic 3-manifold with cusps. We will derive
Theorem 2 from Theorem 1 by an analysis of the torsion-free orientation-
preserving Bieberbach groups in R3. The proof occupies Section 4.

In Section 2 of this paper we use the Vahlen group (see [1]) and geometric
facts about Mébius transformations in R” to prove a result (Theorem 2.3)
about the action of elements of a discrete group on horoballs based at para-
bolic fixed points. In Section 3 we reinterpret the latter result in the light of
the Bieberbach theorem and use it to prove Theorem 1.

In [12], Wielenberg implicitly obtained results equivalent to some of those
in Section 2 from an entirely different point of view.

A number of arguments in the present paper generalize to » dimensions
arguments that appear in the literature in the 3-dimensional case. In some
instances we have been able to do this in such a way that the proofs become
more geometric and, even when specialized to dimension 3, simpler than
those appearing elsewhere. In this connection we would like to call particu-
lar attention to the use of isometric spheres in the proof of Proposition 2.1,
and to the apparently new notion of “canonical horoball” used in Section 3.

2. Isometric Spheres and Actions on a Horoball

We shall use the following conventions. We shall write R”=R"U {oo}. We
shall denote by GM(R") the group of all Mébius transformations of R”. The
Euclidean distance from x to y in R” will be denoted |x—y|. The Euclidean
sphere of radius r about a point x € R” will be denoted S(A, r). The Poincaré
extension of ¢ € GM(R”) will be denoted ¢.

The isometric sphere of a Mobius transformation in R” will play a key role
in our proofs. Recall that any Mobius transformation in R” which does not
fix oo restricts to a Euclidean isometry on a unique Euclidean sphere in R”.
(See [2, Sec. 3.5].) The following proposition is crucial in all that follows.

PROPOSITION 2.1.  Suppose that ¢ € GM(R™) and that ¢ (o) # . Let S(A, r)
be the isometric sphere of ¢. Set
H,={xe H"! |X=Xx1e1+ - +Xp+Xpi1€001 Xny1>1),

where ey, ..., e, are the usual basis vectors in R"*\. Then the following
conclusions hold.
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(@) For each P in H"*! we have
|6(P)—(c0)||P— ¢ (o0)| =1,
(b) For each P in H, we have
|(P)—(e0)| <.
(c) We have ¢(H,)NH,=4.

Proof. Let o denote the inversion in S(A4, r). In {2, Sec. 3.5] it is shown that
A=¢ (o), (1)

and
there is a unique Euclidean isometry ¢ of R” such that ¢ = yo. (2)

It follows that L
®=Ya. 3)
The Poincaré extension § is the inversion in the sphere S(A, r), where A=

(A4, 0) is a point on the hyperplane x,,,; = 0. Furthermore, { is a Euclidean
isometry of R”*!. For every point P in H"*! we therefore have

|$(P) = &()||P— ¢~ ()| =¥ (P) —§5(c0)||[P— 5§ (o)
=|6(P) — G(o)||P— &~ (c0)|
=|6(P)—-A||P-A|=r?, (4)
where in the last equality we have used the basic geometric property of in-

version in a sphere. This proves assertion (a) of the proposition.
For every point P in H,, by definition we have

|P—A|>x,.1>T. (5)

We combine (4) and (5) and the fact that A= ¢ (o) to deduce that for
every P in H, we have

|$(P) — (o) =

This proves assertion (b).

The set H, is a horoball with center at o, whereas ¢(H,) is a Euclidean
(n+1)-sphere. The hyperplane x,,; =0, which we identify with R” is tan-
gent to ¢(H,) at the point ¢(). Since ¢() is the center of the isometric
sphere of ¢ 71, it belongs to R”. We now conclude from (6) that ¢(H,) N H, =
@. This proves assertion (c) and completes the proof of Proposition 2.1. [

r2 r

It was shown by Vahlen that any Mobius transformation in R” can be repre-
sented as a 2 X 2 matrix which has entries in the n-dimensional Clifford alge-
bra and is subject to certain conditions. Such a matrix is called a Vahlen ma-
trix. Vahlen showed that the set of all such matrices is a group under matrix
multiplication. This group is denoted by PSL ,(I',) and acts on R” accord-
ing to the formula x — (ax+ b)(cx+d) ™). This action can be used to define
an isomorphism between PSL (T',) and SO*(1, n).
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If
a b
M=<c d)ePSL+(I‘,,),

the Mobius transformation corresponding to M fixes o if and only if ¢=0.
When ¢ # 0 the isometric sphere of the Mo6bius transformation correspond-
ing to M is the set {x € R"||cx+d|~2=1}. With the notation of Proposition
2.1, we have A=—c~!d and r=|c|™!. For a detailed exposition of Vahlen
matrices see [1].

In [5] we used this representation to generalize the Shimizu-Leutbecher
inequality (see [11] and [7]) to Mobius transformations in R”. The result we
obtained was the following.

THEOREM 2.2. Let

1 1 a b
U= =
( 0 1> and M (c a’)’
with ¢ #0, be elements of SL . (I',). Suppose that {M,U) is discrete. Then
lc|=1.

Using Proposition 2.1 and Theorem 2.2, we shall now describe the action of
elements of a discrete group on horoballs based at parabolic fixed points.
The following theorem will be crucial in the proof of Theorem 1. This de-
scription generalizes a classical result for the case n= 3. The argument given
below, when specialized to the 3-dimensional case, proves the classical result
without complicated computations involving quaternions.

THEOREM 2.3. Let A be a discrete subgroup of PSL ,(T',). Let
1 1
U= A.
(0 1 ) ©

Hi={xeH" | x=xe/+ -+ X8, +Xp 118041 Xns1>1).

Set

Let

c d
such that M(o) # o and T=MUM ~'e A. Then HiN\M(H,)=9.

M= (“ b)ePSL+(r‘,,)

Proof. The set H; is a horoball with center at co. The Euclidean (n+1)-
sphere M(H,) is tangent at the point M(oo) to the hyperplane x,,, ; = 0 (which
we identify with R”). By the first assumption on M we have that c#0. A
simple calculation based on the properties of the Vahlen matrices (see [1] or
{5, Thm. A]) shows that the lower left entry of T equals —cc*. (There is a
unique linear involution @ — a* on the Clifford algebra in dimension n which
is the identity on the n-dimensional vector space spanned by the basis ele-
ments of the algebra.) It is also shown in [1] that the norm is multiplicative
on the entries of any Vahlen matrix and that |c¢|=|c*|. Hence,
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|—cc*|=|c]? (1)
By Theorem 2.2 we have
lc|~2< 1. )
This implies that
lc|1<1. 3)
Proposition 2.1 with = |c|~! implies that, for each P in H;, we have
| M(P)— M()| <|c| ™. 4)
We use (3) to deduce that for each P in H; we have
|M(P)— M(e)| <1. (5)
This completes the proof. O

REMARKS.

1. For reasons of conjugacy one can replace the 1 in the top right entry of
U in Theorem 2.2 by any 8 in R”. (The conclusion will then be that
|eB|=1.)

2. Similar adjustments can be made in Theorem 2.3.

3. For a different approach to some of the results of this section, see [12].

3. Proof of Theorem 1

The following proposition and corollary will describe the structure of A,
the stabilizer of o in A. Proposition 3.1 generalizes [2, Thm. 5.1.2].

ProrosiTION 3.1. Let f and g be elements of PSL ((I',)). Suppose that g is
loxodromic. Suppose that f and g have exactly one fixed point in common.
Then (f, g is not discrete.

Proof. The proof is identical to that of [2, Thm. 5.1.2] except that Vahlen
matrices are used in place of elements of PSL(2, C). It is essential to observe
that the entries of the Vahlen matrices are elements of the Clifford group [1],
on which the norm is multiplicative. L

COROLLARY 3.2. Let A be a discrete subgroup of PSL (I',). Suppose that
A, contains a parabolic element. Then A, is a discrete group of Euclidean
isometries of R".

Now let A be a discrete subgroup of PSL_(I},). Suppose that A has finite
covolume. Let p e R” be the fixed point of some parabolic element v € A.
Choose M € PSL _(T,) such that M(o) = p. The group (M ~'AM),, contains
the parabolic element M ~!yM and has finite volume. By the proof of [6,
Thm. 2], (M ~'AM),, contains a unipotent element. A unipotent element
fixing o can be identified with a Vahlen matrix

(3 )
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By Theorem 2.3 and the remarks following it, we get that H, /(M ~'AM).,
embeds in H"*"/(M ~'AM) and therefore vol(Hg /(M ~'AM),) < o. By
Corollary 3.2, the group (MAM ~1),, is a discrete group of Euclidean isome-
tries of the horosphere

HSjp={xeH" i x,, =|B]},

which we identify with R”. Since vol(H|g/(MAM ~'),,) < oo, it follows eas-
ily that vol(HS|B|/(MAM"1)°°)<oo. But according to [9, Cor. 8.25], any
discrete group of Euclidean isometries of R” having finite covolume is co-
compact.

By the Bieberbach theorem (see [13, Thm. 3.2.8]), the group A consisting
of all Euclidean translations in (M ~!AM),, has finite index and rank # in
(M ~'AM),,. We may identify A with a discrete group of vectors in R”. Let
v be the shortest nonzero vector in A. Thus |v| is the minimum length of any
nontrivial translation in (M ~'AM),..

We define the canonical horoball at the point p to be M(H, v})- The canon-
ical horoball is well defined. Indeed, if M, is any other element of PSL (I,)
such that T'(0) = p, then we have M; = MT for some similarity of R". The
group of Euclidean translations in (M, !AM,),, is T(A), and its shortest vec-
tor is v;=T(v). It is clear that T(H,)=H)y, and hence that M (H,,)) =
M(H,,)).

ProproSITION 3.3. Let A be a discrete subgroup of PSL (I',). Suppose that
A has finite covolume. Then the canonical horoballs at any two distinct para-
bolic fixed points are disjoint.

Proof. Without loss of generality we may assume that one of the given para-
bolic fixed points is co. Among all nontrivial Euclidean translations in A,
let U denote the one with minimal length. After conjugation by a similarity

we may assume that
1 1
U= .
(o 1)

By the previous definition, H, is the canonical horoball at co.

Let x € R” be the other parabolic fixed point. Choose M € PSL (TI',) such
that M(o0) =x. Notice that we may choose M so that among all nontrivial
Euclidean translations in (M ~!AM).,, the one with minimal translation

length is
1 1 )
0 1/

In particular, MUM ~'e A. The canonical horoball associated with x is
M(H,;). Upon applying Theorem 2.3, the assertion of the proposition fol-
lows. O

ProrosITION 3.4. Let A be a discrete subgroup of orientation-preserving
isometries of H" V. Suppose that A has finite covolume. Let x be any para-
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bolic fixed point of A, and let H denote the canonical horoball at x. Then

H Oy,
vol| — | = .
A, nl,
Proof. We may assume that x =, and that H/A_, has finite volume. By
Corollary 3.2 and the discussion following it, A, is a discrete cocompact
group of isometries of R”, and'the group A of all translations in A, has finite
index and rank # in A,,. We identify A with a discrete group of vectors in R”.

Now let 8 denote the shortest nonzero vector in A. Then H = Hg. Let
P C R" be a fundamental parallelepiped for A. Then the set

F={x+r,18,41|1X€P,rpy1>|B]} 1)

is a fundamental domain for the action of A on H = H)g|. Since H/A, has
finite volume, the hyperbolic volume of F is given by

® dxy---dry,,

vol(F) = S o, (2)
. 18] Inii
From (2) we obtain
® dry. _ |A]
vol(F)=|A|S i R il 3)
ol rafl nlsl
By the definition of §,, we have
6
vol(F)=—=. 4)
n
By the definition of I, it follows that |A,: A|<1I,. Hence
H vol(F) 0y
1 = = . 5
vo <Am) Au:A| - nl, ©)
This proves the proposition. O

Proof of Theorem 1. Let x, ..., X,, be inequivalent parabolic fixed points of
A.Fori=1,...,mlet H; denote the canonical horoball at x;. It follows from
Proposition 3.3 that H\/Ax,, ..., Hy,/Ax, are isometric to pairwise disjoint
open subsets of H**/A. The assertion of the theorem therefore follows from
Proposition 3.4. L]

REMARKS. 1. It is known (see [10]) that [, < 37”1t is also known (see [3])
that 6, = 27"x™2)/(n/2)! for n even, and §, = (x"~V/2(n—1)/2))!)/n!
for n odd.

2. Theorem 1 provides an explicit lower bound for the covolume in terms
of I, and §,,. This lower bound is not the best possible. The constant 6, comes
from the critical lattice in R”. The constant /,, comes in general from a specific
Bieberbach group in R” which may not have the critical lattice as its group
of translations. One can get a better lower bound by an analysis of the Bie-
berbach groups in R”, This will be illustrated in the next section.
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4. Proof of Theorem 2

It is well known [3] that for any lattice A in R? we have

A= Z=I8P 0

When n =3 in the torsion-free case it is also known [13, Thm. 3.5.5] that
every 3-dimensional torsion-free Bieberbach group contains a translation
subgroup of index at most 6. Thus it is clear from the proof of Theorem 1
that if A is a discrete, torsion-free subgroup of Iso*(H*) having parabolic
elements then

1 V2

covol(A) = 736 = T

In this case Theorem 2 provides a better estimate.

2)

Proof of Theorem 2. The group A, is an orientation-preserving, torsion-
free 3-dimensional Bieberbach group. Theorem 3.5.5 of [13] gives a com-
plete classification of such groups; up to affine equivalence there are exactly
six of them, denoted Gy, ..., Gs. Let us first consider the case where A, is
isomorphic to Gs. In this case the translation subgroup of A, is

At = {ala as, aS}s

where a, is orthogonal to @, and a; and {a,, a;} is a hexagonal plane lattice.
The index of A in A, is 6 in this case. Simple geometric arguments show
that the volume of the period parallelepiped for this lattice is greater than
or equal to V3/2, so in this case we obtain

V3/2 V3

covol(A) = 3.6 - 36"

In a similar manner, one obtains a lower bound for the covolume of A in
each of the other five cases, using the index of A in A, and a geometric esti-
mate for the volume of the period parallelepiped. By inspection, these values
are all seen to be strictly greater than V3/36. In particular, if A, is isomor-
phic to G, then the index is 1 and the volume is at least V2/2. This completes
the proof of the theorem. |
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