Rational Powers of Generators
of Mobius Groups

JOHN R. PARKER

1. Introduction

In this paper we will be concerned with 2-generator Fuchsian groups, in par-
ticular groups of the first kind (see [4] or [1]; also, for 2-generator groups
see e.g. [10] or [12]). We will use the following notation: The group of all
Mobius self-maps of the upper half plane H= {z € C: Im(z) > 0} will be de-
noted by PSL(2, R), and Mobius self-maps of the Riemann sphere will be
denoted by PSL(2, C).

We need a definition of roots and rational powers of Mobius maps; this
is motivated by the fact that, for each integer n, the nth power of g in
PSL(2, R), written g”, is its nth iterate. Thus we want an nth root of g to be
a map in PSL(2, R) whose nth iterate is g; this will be denoted g!/” and will
not in general be unique. We similarly define rational powers of g. We begin
with the simplest case, namely rational powers of parabolic M6bius maps.
Rational powers of hyperbolic maps are also easy to define but will not be
needed here.

DEFINITION. Let gq be the parabolic Mobius map given by gg: 2~z +1,
and let g in PSL(2, R) also be parabolic. Thus there is a map f in PSL(2, C)
with g = fgo f~!. For each k in Q we define the kth power of g, to be
gk: z~z+k and the kth power of g to be g¥ = fgk f1.

We remark that it is necessary for f to be in PSL(2, C) and not just in
PSL(2, R). The above definition gives a unique kth power of a parabolic
Mobius map for all rational k. Hyperbolic maps in PSL(2, R) also have
unique rational powers. Rational powers of elliptic maps are not unique,
and are defined as follows.

DEFINITION. Let g, be the elliptic Mobius self-map of the unit disc
go:z—e'Pz/e"% where 0<|0|<x/2, and let g be an elliptic element of
PSL(2, R) whose trace satisfies tr?(g) =tr?(gy) =4 cos?#8. Thus there is an
f in PSL(2, C) with g = fg, f ~!. For each rational k& we define a kth power
of g, to be g&: z-e*%z/e~* and a kth power of g to be gk = fgk 1.
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If we had chosen a different interval for the argument of g,, then we would
have found a different argument of the kth power of g,. When k is in Z
these differ by an integer multiple of 27 and we obtain the same map as the
kth power; but in general these give distinct kth powers. With the above
choice of interval for 6, the only ambiguity occurs when § = +7/2. Both of
these angles give the same map and a choice of kth powers which are in-
verses of each other.

The geometrical interpretation of rational powers of elliptics is as follows.
For elliptic g in PSL(2, R) and rational k < 1 we may write g = 0,0y and g¥ =
0, 09, Where g; is reflection in the geodesic L;. If 6 is the angle between L
and L, at the fixed point of g, then the angle between Ly and L is k0 at the
fixed point of g, which is of course the fixed point of g*.

This paper is devoted to the investigation of the group generated by ra-
tional powers of the generators of a 2-generator Fuchsian group. Suppose g
and 4 in PSL(2, R) have distinct fixed points and generate a discrete group
(g, h). For each pair of integers @ and b the group (g%, %) is a subgroup of
{g, h) and hence is also discrete. We consider two problems: First, for which
integers @ and b is the group (g%, h'/%y discrete; and, more generally, for
which rationals ¢ and u is (g’, h") discrete?

These questions are most interesting when we assume that both groups
are of the first kind. To see this, let g and 4 be as above, and let rationals ¢
and u be chosen so that g’ and A* are primitive and g’#* and g ~'h* are both
hyperbolic; then the group {g’, %) is discrete and of the second kind (see
Proposition 2.1). Such examples are very easy to construct. We therefore
restrict our attention to groups of the first kind.

The case of two parabolics generating a Fuchsian group of the first kind
was solved by Beardon in [2]. There he proved the following result.

THEOREM 1.1 (Theorem 1 of [2]). Suppose that g and h in PSL(2, R) are
parabolic with distinct fixed points, that the groups {g, h) and {g’, h*) are
discrete and of the first kind, and that t and u are rational. Then, to within
conjugacy, the pair {g, hy and {g', h") is one of the six cases:

c 4 a X4
<Z Z+2,Z 2Z+1>, <Z Z+2,Z 22+1>,

wheret=a/c,u=1,a<c,anda,ce{l,2,3,4}. O

The purpose of this paper is to extend Beardon’s result to other groups of
the first kind. In Section 3 we list all conjugacy classes of parabolics g and
elliptics 4 and all pairs of rationals ¢ and u for which g, ) and {(g’, h*) are
both Fuchsian groups of the first kind. In Section 4 we give two partial re-
sults for groups generated by two classes of elliptics. Namely, we list all
pairs of integers @ and b for which (g, #) and (g'/%, h'/?) are discrete groups
of the first kind with elliptic generators, and, for rational «, we list all Fuch-
sian groups g, #) and (g, #*) that are generated by elliptics and are of the
first kind. The size of the computation prevents a solution of the general
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problem in this case. The method we shall use, which is developed in Section
2, is to reduce the problem to a result about (possibly cusped) hyperbolic
triangles which have a side in common. The results in [8] and [10] give us
conditions on the angles of these triangles. This in turn leads to an equation
involving cosines of rational angles that may be solved by extending the
results in [3].

That these are reasonable questions to ask is indicated by the following
finiteness result, which generalises Lemma 1 of [7].

PROPOSITION 1.2. Let g and h be Mobius maps with distinct fixed points,
and suppose that {g, h) is discrete. Then the group {g'/?, h'/?) is discrete
Jor only finitely many pairs of natural numbers a and b.

Proof. Suppose that the result is false; that is, suppose the group (g'/4, h1/%)
is discrete for infinitely many pairs of natural numbers a and b. Passing to
a subsequence a,, b,, of these pairs, we may assume that a,+ b, tends to
infinity as » tends to infinity, and passing to a further subsequence either q,,
or b, tends to infinity. So without loss of generality g'/%n tends to I in the
matrix topology. Thus, as # tends to infinity, tr>(g'/») tends to 4 and also
tr[g/n, h1/Pn] tends to 2; this can be seen by using the well-known expression

(1.D) tr[ g, h] =tr?(g) +tr2(h) +tr2(gh) — 2 —tr(g) tr(h) tr(gh)

and by observing that for each § > 0 there is an g for which |tr(g"/%n)| <2+ 6
and |tr(g"/anh/n)| < (1+ 8)|tr(h'/=)|for all n> n,,.

We now apply Jgrgensen’s inequality (see [6]) to the sequence of groups
(g, h'/bny, Then for all a,, b, we have

Itrz(gl/a,,) _4| + ltr[gl/"", hl/bn] _2| >1.

Since the left-hand side tends to zero as # tends to infinity we have a contra-
diction, proving the result. 0

Finally, we make a few comments about groups with hyperbolic generators.
There are two main types of difficulty in this case. First, when g and 4 are
not hyperbolics with intersecting axes, we do not have simple criteria indi-
cating when (g, 4) is discrete, or even whether it is of the first or second
kind. The best technique available is the algorithm given by Matelski in [L0]
"and refined by Gilman and Maskit in [5]. The second difficulty is that the
equations we need to solve involve terms of the form cosh(#\) and cosh (u).
There are no general methods of solving such equations of hyperbolic func-
tions analogous to the results for trigonometric functions proved by Conway
and Jones in [3].

2. Rational Powers of Generators

For the rest of this paper we will be concerned with discrete subgroups of
PSL(2, R) that are of the first kind and generated by nonhyperbolic Mdbius
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maps g and 4 having distinct fixed points. Thus g and 4 each have a single
fixed point in the closure of the hyperbolic plane and there is 2 unique geo-
desic Ly which either passes through or is asymptotic to these points. We
denote reflection across Ly by gy. It is well known that maps in PSL(2, R)
may be written as the composition of reflection across two geodesics. For
nonhyperbolic maps these are either asymptotic to or intersect in the fixed
point of the map. Hence we can find geodesics L; and K such that g = o, g
and h = o,y 7;, where reflection across L, is denoted by ¢, and reflection across
K, by 7;. We will suppose that there is a component 3 of H—(LyUL;UK)
whose internal angles at the fixed points of both g and / are in the range
[0, w/2], this is the same as requiring that |tr(gh)|<|tr(g~'h)|; see Prop-
osition 2.2.2 of [11]. This is no restriction, for if it is not satisfied then
we may replace the generator g by its inverse. This does not change the
group.

Consider the groups {g'/4, h!/?y for integers @ and ». We will find condi-
tions on @ and b which imply that ¢(g'/?, #'/?) is also discrete. A trivial ex-
ample of this may be eliminated as follows. Suppose that g is elliptic but is
not primitive; that is, suppose there is a power of g that is not the identity
but whose trace has a larger modulus. For example, suppose that |tr(g)|=
2cos(pw/q), where p and g are coprime with 1< p<gq/2. It is clear that
[tr(g"/?)| =2 cos(7/q). However, as p and g are coprime, there is an integer
r with 1 <r < g such that 1 = pr (mod 2q) and so |tr(g")|= 2 cos(w/q). Thus
g!/P and g’ have the same trace and the same fixed point, which implies
that g!/? is either g” or g~". So (g7, h)=(g", h), a subgroup of (g, h), and
hence is discrete. In fact (g’, h)={(g, k). In order to eliminate things of this
sort happening, we will always assume that elliptic generators are primi-
tive; that is, we assume the modulus of their trace is of the form 2 cos(w/n)

for some n=2,3,.... This is no restriction since replacing a generator of
finite order by a power of itself that has the same order yields the same
group.

We will use the following characterisation of groups of the first kind. This
result implies that J is a (possibly cusped) triangle when (g, &) is of the first
kind.

PROPOSITION 2.1. Let g and h in PSL(2, R) be primitive and nonhyper-
bolic with distinct fixed points. Suppose that the group {g, h) is discrete. Then
(g, h) is of the first kind if and only if either gh or g~'h is nonhyperbolic.

Proof. Without loss of generality we may assume that |tr(gh)| <|tr(gh)|.
Let 3 be as above.

First, we suppose that g# is not hyperbolic. This means that J is a (pos-
sibly cusped) triangle, that is, there is no arc of dH on the boundary of 3J.
By the results of Knapp [8] and Matelski [10] we see that (g, #) is a trian-
gle group and so is of the first kind; see Theorem 10.6.4 of [1] for a proof of
this fact.
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Secondly, we suppose that gh is hyperbolic. We observe that there is an
arc of dH contained in the boundary of J; call this arc . Then by Klein’s
combination theorem (see §VII.A.13 of [9]) the interior of JU g, J is a fun-
damental polygon for (g, /). Thus the arc vy is not contained in the limit set
of (g, ) and so this group is of the second kind.

This proves the result. Ll

We now perform a similar construction for the maps g!/? and #/%. As g and
h are primitive, g!/? and #Y? are also primitive. They are well defined if g
and 4 have order greater than 2. When either g or 4 has order 2, the ambi-
guity in the definition gives a choice between two roots that are inverses of
each other. Observe that g and 4 cannot both have order 2 or else {g, /)
would not be of the first kind. Because for each @ in N, the fixed point of
g1/% is the same as that of g, we can find a geodesic L, with g'/? = ¢, 6, where
g, is reflection across L,. Similarly for each & in N there is a geodesic K},
with #Y? = g7, where 7, is reflection across Kj,. Observe that this is consis-
tent with the definitions of L, and K;. By replacing g'/% by g ~/% if necessary,
there is a (possibly cusped) triangle 3(a, b) bounded by arcs of L,, L, and
K, . This triangle is defined even if g or /# has order two. The arc of L, whase
endpoints are the fixed points of g and / is a boundary arc of both 3 and
J(a, b). By combining this fact with information about the internal angles
of these triangles, we may use hyperbolic trigonometry to solve the prob-
lem. This is done in the next two sections.

Consider the groups {g’, h*¥) for ¢t and u in Q. We want to determine
which groups {g’, h*) are discrete and of the first kind. In order to eliminate
the problems (outlined above) due to nonprimitive elliptic generators, we
assume that g, A, g’, and A* are all primitive. To simplify this problem we
will pass to new Mdbius maps g, and A, in the following manner. Suppose
that # =a/c where a and c are coprime natural numbers. Let g, = g?. When
g and g%° are both primitive elliptics, @ divides the order of g and ¢ divides
the order of g’. Thus g, is primitive; of course, it may be the identity. When
8o is not the identity we construct gl/" and gl/ “ as before; these are also
primitive. When g, is the identity we define gl/ “ and g¥¢ to be primitive
elliptics of order a and c, respectlvely, that have the same fixed point as g.
Observe that go “ is either g or g~! and gO ¢ is either g’ or g~".

Similarly, when u = b/d with b and d coprime natural numbers, we let
ho=h? and find AY/° and K.

We construct triangles 3(a, b) and 3(c, d) as before, each having internal
angles at the fixed points of g and # which are in the range [0, w/2]. Observe
that when either of the groups ¢ gl/ a pd/ b) or (gl/ ¢ hi/ d) is discrete then the
group { g, Ay) 1s automatically dlscrete We may restate the original problem
as follows: When can we find natural numbers a, b, ¢, d so that the groups
(gd/®, hi/®y and (gl/¢, nl/?y are Fuchsian groups of the first kind? Again, this
may be translated to a problem about the internal angles of 3(a, ) and
J(c, d) and thence solved using hyperbolic trigonometry.
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3. Groups Generated by a Parabolic and an
Elliptic Map

The goal for this section will be to prove an analogue of Theorem 1.1 for
parabolic-elliptic discrete groups. Let g in PSL(2, R) be parabolic and 4 in
PSL(2, R) be primitive elliptic of order n, generating a discrete group {g, /)
of the first kind. We construct a cusped triangle 3 as in Section 2 which has
internal angles 0 and w/n at the fixed points of g and 4, respectively. Let 0
be the other internal angle of 3.

DEFINITION. Let g and 4 be Mobius self-maps of H with g parabolic and
h primitive elliptic of order n. Suppose that § is as above. Following Defini-
tion 10.6.1 of [1], we will say that (g, &) is of type (0, w/n, 0). We shall use
this ordering of the angles.

The following theorem, which gives conditions on when the group (g, A) is
discrete, may be found in [10], but the proof is sufficiently short to merit
inclusion.

THEOREM 3.1. Let g in PSL(2,R) be parabolic and h in PSL(2,R) be
primitive elliptic. Then the group {g, h) is discrete if and only if gh and g ' h
are primitive.

Proof. Let 3 be as above. Suppose that |tr(gh)|<|tr(g~'h)|. Thus g~'A is
hyperbolic and hence primitive. When gh is primitive, the group (o, oy, 71>
is discrete and has fundamental domain 3. This group has index 2 in {g, A),
which is also discrete.

Suppose (g, #) is discrete and that gh is not primitive and so is elliptic.
Let 797; be a power of gh which is primitive, where 7 is reflection across a
geodesic K, passing through the fixed point of gh. Let 3’ be the triangle con-
tained in J that is bounded by arcs of gy, 79, and 7;. Then 3’ must contain a
fundamental domain of (g, g, 71). Since J has finite area it must be tiled by
finitely many copies of the fundamental domain, but 3 is not compact. This
gives a contradiction, proving the result. L]

We remark that this theorem implies that the angle § defined above is either
0 or else w/r for some integer r = 2.

With g and 4 as above, we begin by finding all natural numbers a and b
for which the group (g'/?, h'/?) is discrete and of the first kind. As in the
previous section, we construct the cusped triangle 3(a, ). This has internal
angles 0 and #/bn at the fixed points of g and A, respectively. Let ¢ be the
other internal angle of 3(a, b). Thus (g%, h'/?) is of type (0, n/bn, ¢).

Conjugating the group if necessary, we assume that g fixes c and # fixes i,
giving

g:z—-z+t¢, h:z—»(zcos£+sin£>/<—zsin£+cos£),
n n n n
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and so tr[g, h] = 2 + 4¢%sin?(x/n). By (1.1) we also have that tr[g, h] =
2+ 4(cos(w/n) +cos §)2. Combining these expressions, we obtain ¢ sin(w/n) =
cos(w/n)+cos 6. Also,

a, zraz 4t h/2: 70 (zcos — +sin — )/ (—zsin — +cos — ).
ErrEmeT ¢ (z bn bn <3 n bn
Similarly, these give (¢/a) sin{w/bn) = cos(w/bn)+ cos ¢.

Eliminating ¢ from this pair of equations yields

COS % +cos a(cos b_7:1 + cos ¢>
(3.1 =

. T . ™
sin — sin —
n bn

We are now able to prove the following theorem.

THEOREM 3.2. Let g and h be in PSL(2, R) with g parabolic and h primi-
tive elliptic of order n. Let a and b be natural numbers that are not both 1.
Then {g, h) and {g?, h\®y are both discrete groups of the first kind if and
only if they appear on the following list:

(i) <g, h)isof type (0, w/n,0) and {g, h'/?) is of type (0, w/2n, w/2) for
somen=2,
(ii) <g, h) is of type (0, w/n, w/n) and {g"?, hy is of type (0, w/n, ©/2)
Jfor some n=3,
(iii) <g, h) is of type (0, w/2,0) and {g/?, h) is of type (0, /2, 7/3),
(iv) <g, h) is of type (0, w/3,0) and {g'/?, hy is of type (0, 7/3, 7/2).

Proof. Using the notation established above, by equation (3.1) we have a
relation between n, a, b, 0, and ¢. By considering all admissible values of
these parameters we obtain all solutions. We split the proof into four cases
as follows.

First, suppose that b=2. Then (3.1) and the fact that cos ¢ =0 give

T T T
cos —+cosf a(cos B +cos qS) acos —
n n

2n
sin Kl sin T - sin il
n bn 2n
™ ™
2acos? — afcos —+1
2n _ n
™ . ™ . ¥y
2cos — sin — sin —
2n 2n n

Since the right-hand side is at least as big as the left-hand side, we have
equality throughout. We obtain the solution a=1, b=2, §=0, and ¢=
w/2, which holds for all #; this is given in part (i).
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Secondly, suppose that a=2, b=1, and cos¢ >0 so cos¢=1/2. Then
(3.1) gives

coSs 1+cos 0 a(cos T +cos d)) 2(cos —Zr— +cos qb)
n bn - n

R ™ R ™ . ™
sin — sin — sin —
n bn n

2 cos £+1 2 cos I+cosf)

n n
= >
. T .
Sin — sSin —
n n

Again we have equality throughout, and so n=2,a=2, §=0, and ¢ = 7/3.
This is the solution given in part (iii).

Thirdly, suppose that n=3, a=3, b=1, and cos¢=0. As p=7/2 we
have w/n> n/2; otherwise the triangle 3(a, 1) has zero area, and so n=3.
Then (3.1) gives

™ ™ ™ ™
cos —+cosé acos — 3cos— cos—+1
n no_ n n

. . .
sin — sin — sin — sin —
n n n n
Thus n=3, a=3, and 6 =0, which gives the solution in part (iv).
Finally, suppose that a=2, b=1, and cos¢=0. As above, n=3; (3.1)
then yields

T T T T
cos —+cos 2cos — cos —+cos —
n n n n

. T . T . T
sin — sin — sin —
n n n
So 8 = w/n, giving the solution in part (ii).

We have exhausted all possible values for n, a, b, and ¢, so these are the
only possible solutions. We can readily see that each gives a solution by con-
structing the fundamental domains for the relevant groups, as in Section 2.
This proves the theorem. O

We now wish to prove an analogous theorem for rational powers of gener-
ators. We make the simplification discussed in Section 2; that is, we will find
all natural numbers a, b, ¢, d with a, ¢ coprime and b, d coprime for which
the groups ¢ g(I,/ ? h(l,/ by and ¢ gé/ ‘, h(l,/ 4y are discrete and of the first kind. Thus
(gé/“, hé/b) is of type (0, w/bn, 6) and (g(l)/c, h(l,/d> is of type (0, w/dn, ¢) for
some angles § and ¢ in {O}U{(x/r): r=2}.

Repeating the construction of equation (3.1) for these groups, we obtain
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acos -~ +cos 6 C cosl+cos¢
bn dn
(3.2) ' = .

sin —— sin ——

bn dn
This will enable us to prove the following theorem. However, the proof
is sufficiently long and tedious that we confine our attention to two lemmas
whose proofs are fairly short and illustrate the ideas contained in the proof

of the theorem. Details of the rest of the proof may be found in [11].

THEOREM 3.3. Let a,b,c,d be natural numbers with a,c coprime and
b, d coprime. Also suppose that either b=d and a<c or else b<d. Let g
and h be in PSL(2, R) with g parabolic, h primitive elliptic of order bn and
h®/ primitive elliptic of order dn. The groups {g, h) and {g®¢, h%/?y are
discrete and of the first kind if and only if they appear on the following list:

(i) <&, hy is of type (0, w/n,0) and {g, h"/?y is of type (0, 7/2n, w/2)
Jor some n=2,
(ii) <g, h) is of type (0, w/n, 0) and.{g?, h\/?) is of type (0, w/2n, w/2n)
for somen=2,
(iii) <g, h) is of type (0, w/n, ©/n) and {g"?, h) is of type (0, w/n, 7/2)
Jor some n=3,
(iv) <g, h) is of type (0, w/3,0) and (g3, h) is of type (0, /3, ©/2),
(v) g, hy is of type (0, /3, 0) and {g*?, h) is of type (0, /3, 7/3),
(vi) <g, h) is of type (0, /3, ©/3) and {g>'?, hV/2) is of type
(0, 7/6, 7/2),
(vii) <g, h) is of type (0, w/3,w/3) and (g3, h"/?) is of type
(0, 7/6, 7/6),
(viii) <g, h) is of type (0, /3, ©/2) and {g>, h'/?) is of type
(0, w/6,7/2),
(ix) <g, hy is of type (0, 7/3, 7/2) and (g%, h'/?) is of type
(0, 71'/6, 7('/6),
(x) g, h) is of type (0, 7/2,0) and {g'/?, h) is of type (0, 7/2, 7/3),
(xi) <g, h) is of type (0, /2, w/3) and (g%, h'/?) is of type
(0, w/4, n/2),
(xii) (g, k) is of type (0, /2, w/3) and {g*, hV/?) is of type
(0, w/4, w/4),
(xiii) (g, h) is of type (0, /2, 7/6) and (g%, h*) is of type
0, 7/3, 7/2),
(xiv) {g, h) is of type (0, /2, 7/6) and {g*/3, h*/) is of type
(0, w/3, w/3),
(xv) (g, h) is of type (0, /2, 7/6) and {g?, h*/?) is of type (0, w/3,0),
(xvi) (g, h)isof type (0, n/2, /6) and {g?, h'/3) is of type (0, ©/6, ©/2),
(xvii) <g, h) is of type (0, 7/2, w/6) and {g*, h'/3) is of type
(0, /6, ©/6).
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The first of the two lemmas deals with the case where b =d, thatis, b=d =1
and e <c.

LEMMA 3.4. Let g and h be in PSL(2, R) with g parabolic and h primitive
elliptic of order n. Let a and ¢ be coprime natural numbers with a < c. Then
(g, h) and (g%, h) are discrete groups of the first kind if and only if they
appear on the following list:

(i) g, h) is of type (0, w/n, ©/n) and {g"/?, hy is of type (0, «/n, /2)
for some n=3,
(ii) <g, h) is of type (0, /2,0) and (g2, h) is of type (0, w/2, w/3),
(iii) <g, h) is of type (0, w/3,0) and {g'3, hy is of type (0, 7/3, 7/2),
(iv) <g, h) is of type (0, w/3,0) and (g, h) is of type (0, /3, 7/3).

Proof. The list gives groups with the desired properties by constructing the
fundamental domains. It suffices to show that these are the only such groups.
Let 8 and ¢ be as above. Then by equation (3.2) we have

a(cos T +cos 0) c(cos T +cos d))

n n

sin =~ sin =
n n
This gives 0 =a cos 8 —c cos ¢+ (a—c) cos(w/n).

We analyze this equation by using Theorem 6 of [3]. There are no vanish-
ing sums of length 3, since this would imply that a, ¢, a— ¢ would all be +1.
Thus all the cosines are rational multiples of one another, and so are either
taken from the set {0, /2, w/3} or from the set {(x/n, /2): n> 3}. By con-
sidering the area of triangles 3(a, 1) and 3(c, 1), we see that 0 < ¢.

In the first case we have n=2 or 3, =0 or «/3, and ¢ =x/3 or w/2. If
n=2 then ¢ n/2; otherwise the triangles J(a, 1) and 3(c,1) would have
zero area. Solving for @ and c in all of the above cases we obtain the results
(ii), (iii), and (iv), together with the result (i) for n=3.

In the second case we must have § = n/n and ¢ = w/2. Solving for @ and ¢
we obtain the result (i) for n> 3. ]

The second lemma deals with the case where bn=2 and dn > 2.

LEMMA 3.5. Let gand h bein PSL(2, R) with g parabolic and h elliptic of
order 2. Let a, b, c,d be natural numbers with a and c coprime, b=1 or2,
and d > b with b and d coprime. The groups {g, h) and {g¢, h®/?y are dis-
crete and of the first kind if and only if they appear on the following list:

(i) <g, h) is of type (0, 7/2,0) and {g, h'/?) is of type (0, ©/4, x/2),
(ii) <g, h) is of type (0, w/2,0) and (g%, hV/?) is of type (0, n/4, 7/4),
(iii) <g, h) is of type (0, w/2, 7/3) and {g?, h'/?) is of type (0, n/4, ©/2),
(iv) (g, h) is of type (0, /2, 7/3) and {g*, h'/?) is of type (0, ©/4, w/4),
) (g, h) is of type (0,%/2, w/6) and {g2,h*>) is of type (0, w/3,0),
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(vi) g, h) is of type (0, /2, 7/6) and {g*/, h?/?) is of type
(0, /3, w/3),
(vii) <g, k) is of type (0, /2, 7/6) and {g*>, h*) is of type
0, /3, 7/2),
(viii) (g, h) is of type (0, w/2, ©/6) and {g*, h'3) is of type (0, 7 /6, 7/2),
(ix) <g, h) is of type (0, /2, w/6) and {g*, h'/*) is of type (0, x/6, 7/6).

Proof. Again we may see that the list consists of groups of the desired form
by constructing the fundamental domains. We show that these are the only
solutions.

Using the notation already established, equation (3.2) gives

iy
c(cos an +COos d))

acosf=
sin —
dn

Hence
acos(w/2—0—m/dn)+a cos(w/2+0—w/dn) = 2c cos(w/dn)+2c cos 9.

Since bn =2 we have 6 in {0}U{(x/r): r=3} and ¢ in {0}U{(x/s):s=2}.
The only solution given by Theorem 6 of [3] has dn=4 and 6 = /3 and is
of the form

0=cos ¢ —cos(w/3—y¥)—cos(w/3+ ).

Examining the possibilities for ¢ yields (iii) and (iv).

We are left with the case where all the cosines are rational multiples of
at least one of the others, that is, the angles are either taken from the set
{0, w/2, w/3} or from the set {(x/n, w/2): n>3j.

In the first case we have dn =3 and so 8§ = /6. Considering all the possi-
bilities for ¢ gives (v), (vi), and (vii).

In the second case we either have 6 = n/dn or 6=0; these give rise to
dn =6 and dn =4, respectively. When dn =6 this gives solutions (viii) and
(ix). When dn = 4 this gives solutions (i) and (ii). O

We find the rest of the solutions in a similar manner. This is done by extend-
ing Theorem 6 of [3] to include all vanishing sums of length 6; using these,
we match the values of the angles in these sums with those coming from
equation (3.2). This is a very long and tedious calculation that differs from
the above calculations only in scale. Therefore we do not give the details but
refer interested readers to [11].

4. Groups Generated by Two Elliptic Maps

In this section we look at discrete subgroups of PSL(2, R) that are of the
first kind and are generated by two elliptics with distinct fixed points. We
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explore the question of when the group generated by rational powers of
these maps is discrete.

Consider pairs of primitive elliptics g and 4 in PSL(2, R) with distinct
fixed points and which generate a discrete group of the first kind. Let the
order of g be m and the order of /# be n. As before, we construct the triangle
J having internal angles of n/m and =/n at the fixed points of g and A, re-
spectively. We let the other internal angle be §. We observe that m and n
cannot both be 2.

DEFINITION. Let g and 4 be primitive elliptic Mobius self-maps of H of
orders m and n, respectively, with distinct fixed points. Let § be as above. Fol-
lowing Definition 10.6.1 of [1], we will say that {g, 4) is of type (x/m, ©/n, ).
We use this ordering of the angles.

The following theorem tells us for which values of 6 the group {g, A) is dis-
crete and of the first kind.

THEOREM 4.1 (Knapp [8]). Let g and h in PSL(2, R) be primitive elliptic
Mobius maps with distinct fixed points of order m and n, respectively. Let 0
be the angle defined above. The group (g, h) is discrete and of the first kind
if and only if one of the following occurs:
(i) 0=0, that is, either gh or g~ 'h is parabolic;
(ii) 0==/l, where 1/I+1/m+1/n<1, that is, either gh or g~'h is
primitive elliptic;
(iii) 6 =2n/l, when m=n and where 1/1+1/m<1/2;
(iv) 0=2n/n, when m=2 and n=17,
(v) 0=3xn/n, when m=3 and n=17,
(vi) 0=4x/n, when m=n=17; or
(vii) 0=2x/7, when m=3 and n="1.

Proof. That either gh or g~'h is nonhyperbolic follows from Proposition
2.1. The rest was proved by Knapp in [8]. Ol

We now give an analogue of Theorem 3.2. Let (g, #) be of type («/m, n/n, 8)
and let (g, h'/?y be of type (x/am, x/bn, $). Since J and 3(a, b) are tri-
angles with a cornmon side, the following equation may be derived using the
second hyperbolic cosine rule (see §7.12 of [1]):

iy v T ™
COS — COS —+cos @ COS — COS — +COS ¢
m n am bn
4.1 =

R T . ™ R ™ . ™
sin — sin — sin — sin —
m n am bn

We are now able to prove the following theorem.

THEOREM 4.2. Let g and h in PSL(2, R) be primitive elliptics of orders m
and n, respectively, with distinct fixed points. Let a and b be natural numbers
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that are not both 1 with a < b. The groups {g, h) and {g\/?, h'/?) are discrete
and of the first kind if and only if they appear in the following list:
(i) <g,h) is of type (x/m, w/n, n/m) and {g, h'?*) is of type
(w/m, w/2n, w/2) for some m and n with 1/m+1/2n<1/2,
(ii) <g, h) is of type (w/2, w/n, w/2n) and {g, h"/?) is of type
(w/2,n/2n, w/3) for some n=4,
(iii) <g,h) is of type (x/2n, «/n, w/2) and {g, h'/?) is of type
(n/2n,7/2n,2n/3) for some n=4,
(iv) (g, h) is of type (x/3, w/n, w/3n) and {g, h'/?y is of type
(w/3, n/3n, w/2) for some n=3,
(v) g, h) is of type (7/3n, /n, w/3) and {g, h'?) is of type
(w/3n, n/3n,2n/3) for some n=3,
(vi) (g, h) is of type (w/4n, w/n, w/4n) and {g, h'*) is of type
(w/4n, w/4n,27/3) for some n=2.

REMARK. The triangles given by this theorem are the same as those given
by parts (iii), (iv), (v), and (vi) of Knapp’s theorem, Theorem 4.1.

Proof. This is proved using equation (4.1) in the same way that Theorem
3.2 is proved using equation (3.1). O

We will now explore an analogue to Theorem 3.3. By a similar construc-
tion to that given above, we have the group (g, h)=<gé/ a hé/ b) being of
type (w/am,w/bn,0) and the group (g’, h*y={(gy/, h}/?) being of type

(w/cm, w/dn, ¢). Again we use the second hyperbolic cosine rule to obtain

coS —7r—cos —7L+cosﬂ cos —7r—cos —7r-—+cosq5

am bn cm dn
4.2) =
T

N ™ . ™ . T .
sin — sin — sin — sin —
am bn cm dn

This may be rearranged to give a vanishing sum involving twelve cosines,
which may in principle be solved using an extension to Theorem 6 of [3].
In practice, the length of these calculations would make solving this equa-
tion completely impractical. We may partially solve it by assigning values to
some of the parameters. In particular, the problem may be solved com-
pletely in the case a=c =1 using a technique similar to that used to prove
Theorem 3.3. This may be found in [11], but as it is long and tedious we do
not include it here.

THEOREM 4.3. Let b and d be coprime natural numbers with b<d. Let g
and h in PSL(2, R) be primitive and elliptic with distinct fixed points and of
orders m and bn, respectively. Moreover, suppose that h®/? is primitive with
order dn. The groups {g, hy and {g, h??)y are discrete and of the first kind
if and only if they appear on the following list:
(i) <g, h) is of type (w/m, w/n, w/m) and (g, h"'?) is of type
(w/m, /2n, w/2) for some m and n with 1/m+1/2n<1/2,
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(ii) <g, h) is of type (n/2, w/n, ©/2n) and {g, h"/?) is of type
(w/2,n/2n,w/3) for some n=4,
(iii) <g,h) is of type (x/2n, w/n, w/2) and {g, h"/?) is of type
(n/2n,w/2n,2%/3) for some n=4,
(iv) (g, h) is of type (x/3, w/n, ©/3n) and {g, h'?) is of type
(w/3, ©/3n, w/2) for some n=3,
(v) {g, h) is of type (x/3n, /n, ©/3) and (g, h'/?) is of type
(w/3n, ©/3n,2x/3) for some n=3,
(vi) <g, h) is of type (n/3,7/2n, w/6n) and {g, h*/?) is of type
(w/3,w/3n, x/3) for some n=2, ,
(vii) (g, h) is of type (w/6n,x/2n, 7/3) and {g, h*/?) is of type
(w/6n, w/3n, w/2) for somen=2,
(viii) (g, h) is of type (w/4n, /n, w/4n) and {g, h**) is of type
(w/4n, «/4n,27/3) for some n=2,
(ix) (g, h) is of type (w/12n, n/3n, w/12n) and {g, h*/*) is of type
(w/12n, w/4n, n/3) for some n=1,
(X) <g, h) is of type (w/12n’, w/15n’, ©/20n’) and {g, h*/*) is of type
(w/12n’, 7/20n’, w/3) for some n=5n'=5,
(xi) <g, h) is of type (w/2, ©/4,0) and {g, h*) is of type
(w/2, /6, 7/4),
(xii) g, h) is of type (w/2, /6, w/8) and {g, h*'*) is of type
(w/2, /8, /4),
(xiii) (g, h) is of type (n/2,w/5, ©/10) and (g, h*/®) is of type
(m/2, 7r/6’ 7/5),
(xiv) (g, h) is of type (n/2,w/10, ©/12) and (g, h*/®) is of type
(w/2, /12, w/5).

REMARK. In part (i), if m and » tend to infinity then g and 4 (respectively)
become parabolic, so we obtain Theorem 3.2(i) and (iii). Letting both m
and 7 tend to infinity gives part of Beardon’s theorem, Theorem 1.1.

In parts (ii), (iv), and (vi), if n tends to infinity then 2 becomes parabolic,
so we obtain Theorem 3.3(x), (iv), and (v), respectively.

In parts (iii), (v), (vii), (viii), (ix), and (x), if we let » tend to infinity then
g and & become parabolic, so we obtain Beardon’s theorem, Theorem 1.1.
Observe that parts (ix) and (x) give the same solution from Theorem 1.1
whereas the others each give distinct solutions.
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