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1. Introduction

The main result of this paper is a factorization theorem for square integrable
functions in the Dirichlet space of a finitely connected region. By using this
theorem, we transfer many properties of the Dirichlet space of the unit disk
to the setting of any finitely connected region.

In particular, we transfer the corona theorem for the algebra of bounded
functions in the Dirichlet space and the result that invertible functions in
the Dirichlet space are cyclic. We then study the structure of zero sets and
that of universal interpolating sequences for the Dirichlet spaces. We show
that, in an appropriate sense, the universal interpolating sequences for any
finitely connected region are exactly the finite unions of the conformal images
of those for the unit disk. Motivated by this result, we present a sufficient
condition of Rosenbaum for a sequence in the unit disk to be universal inter-
polating for the Dirichlet space. In contrast to the situation for the algebra
of bounded analytic functions, no metric characterization of these sequences
is known for the Dirichlet space of the disk. We remark that our methods
are very general and can be applied to many other settings.

THE DIRICHLET SPACE. Let G be a region (open connected set) in the
Riemann sphere. The Dirichlet space D(G) is the Hilbert space of functions
J analytic on G whose derivative f’ is square integrable; that is,

SG| fRPdA<w.

Geometrically, this integral condition means that f maps G onto a region
that has finite area (counting multiplicity). An inner product on D(G) can
be defined by fixing a “base point” w in G and letting

(fr8) =f<w)Z,rTw_)+SG f'g dA.

Two different base points give rise to two equivalent norms (see e.g. [5,
Prop. 6]), and hence they induce the same topology on the space.
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ADDITIVE AND MULTIPLICATIVE DECOMPOSITIONS. If Qis a finitely
connected region in the complex plane C and K|, ..., Ky are the bounded
components of C\(, then Q,=QUK,U.--UK} is a simply connected re-
gion, and also ©; = (CU [oo})\ K is a simply connected region when1<i/<N.
The Cauchy integral formula provides a method of decomposing every func-
tion f analytic on @ as a sum: f= fy+ f;+ --- + fy, where each f; is analytic
on {1; and f; () =0 if £#0. Moreover, there is only one way, up to the
order of addition, to write such a sum.

In [7] we proved the following version of the additive decomposition the-
orem: If fis in the Dirichlet space D(Q), then each f; is in D(%;). Since each
Q; is a conformal image of the unit disk, this decomposition allowed us to
transfer many properties of the Dirichlet space of the disk to the setting of
finitely connected regions.

However, this additive decomposition is not adequate for the study of
zero sets and interpolating sequences in a finitely connected setting. For this,
we need the following multiplicative decomposition theorem (Theorem 3
below): If the boundary of Q consists of simple closed curves, then for every
square integrable function f in D(Q) there exist functions f; in D(;) such
that f=fy f1--- fy- For example, this theorem tells us that the zeros of f
can be regarded as a finite union of the conformal images of some zero sets
for the Dirichlet space of the disk. Shapiro and Shields [14] have given some
conditions for a sequence in the disk to be a zero set for the Dirichlet space.
However, no complete characterization of these zero sets is known. For the
algebra of bounded analytic functions on the disk, there is a necessary and
sufficient condition for a sequence to be a zero set (see e.g. Duren [8] or
Garnett [10]).

SOME APPLICATIONS. If ¢ is a function analytic on a region G with the
property that ¢-D(G) is contained in D(G), then ¢ is called a multiplier. A
function f in D(G) is cyclic if the set {¢f: ¢ is a multiplier} is dense in D(G).
If f(w)=0 for a point w in G then this set cannot be dense and hence f is
not cyclic. In the converse direction, Brown [4] proved that if G is the disk
and if both f and 1/f are in D(G), then f is cyclic. In the present paper, we
use the multiplicative decomposition to extend Brown’s result to any finitely
connected region.

The second application concerns the algebra formed by all bounded func-
tions in the Dirichlet space D(G). The following is known as the corona
theorem for the algebra: If g, ..., g,, are functions in the algebra satisfying
|g1(z)|+ -+ +|gn(z)|> 6> 0 forall zin G, then there are functions hy, ..., h,,
in the algebra such that g hy+ -+ + g,, h,, = 1. When G is the disk, the corona
theorem for this algebra was proved by Tolokonnikov [15] and independently
by Nicolau [11]. We transfer the corona theorem to any finitely connected
region.

INTERPOLATING SEQUENCES. We let /* denote the Banach space of all
bounded sequences and /? denote the Hilbert space of all square summable
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sequences. Suppose {z,}1° is a sequence of distinct points in a region G and
that f is a bounded analytic function; then the sequence { f(z,)} isin /®.The
sequence {z,} is said to be a universal interpolating sequence for the algebra
of all bounded analytic functions on G if, for every sequence {u,} in /*,
there is a function f in the algebra such that f(z,) = u, for all n.

When G is the disk, Carleson [6] proved a necessary and sufficient con-
dition for a sequence to be universal interpolating, and shortly thereafter
Shapiro and Shields [13] gave a simpler proof. Recently, Berndtsson, Chang,
and Lin [3] studied the analogue of Carleson’s condition for the polydisk;
they showed that the corresponding condition implies interpolation, but that
the converse is false.

In [13] Carleson’s result was generalized to the Hardy space H?. Since H?
contains unbounded functions, the setting of its interpolation theory is dif-
ferent from that mentioned above. In this aspect, the Dirichlet space D(G)
is similar to H”, and so we use the setting for H” to study the interpola-
tion problem of D(G). This involves specifying, for every sequence {z,} of
points in G, a natural positive weight sequence {w,} so that {f(z,)w,}is a
bounded sequence for each f in D(G). A sequence {z,} is then a universal
interpolating sequence for D(G) if the following holds: For every fin D(G),
the sequence { f(z,)w,} is in 1%, and conversely every sequence in I1* can be
written in that form.

We show that every universal interpolating sequence for the Dirichlet space
of any finitely connected region is a finite union of the conformal images of
those for the disk. Lastly, we present a sufficient condition of Rosenbaum for
a sequence in the disk to be universal interpolating for the Dirichlet space.

ACKNOWLEDGMENT. The first author wishes to thank Joel Shapiro for
his interest and valuable comments.

2. Multiplicative Decomposition

The main result of this section is a factorization theorem (Theorem 3 below)
for square integrable functions in the Dirichlet space of any finitely con-
nected region whose boundary consists of simple closed curves. As we shall
see, any finitely connected region is conformally equivalent to a region where
the factorization can be applied to every function in the Dirichlet space.
Using these facts, we extend some results for the Dirichlet space of the unit
disk to the setting of any finitely connected region.

We begin by showing that, for the study of the Dirichlet space of a finitely
connected region, we can assume without loss of generality that the region
is bounded and has no isolated boundary point. This follows from the fol-
lowing three observations.

First, for any two conformally equivalent regions G, and G, in the Riemann
sphere, the Dirichlet space D(G,) is unitarily equivalent to the Dirichlet space
D(G,). To prove that, we let ¢ be a conformal map from G; onto G,. Then
the change-of-variable formula gives
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712 — o 712
sz|f| dA_jGII(f o) |2 dA.

If ¢ takes the base point that defines the norm of D(G)) to that of D(G,),
then the composition map f— fe¢ is an isometry from D(G,) onto D(G;).

Second, every isolated point, possibly o, of the complement of an open
subset G in the Riemann sphere is a removable singularity of every function
in D(G). In view of the first observation, we need only to prove the case
when G contains the unit disk A except the origin. If fis a function in D(G)
and f(z) =X%, a,z" for z in A\{0}, then for 0 <R <1 we have

an]a,,]z(l—Rz”)=S

R<|z|<1

[rRdA<| |/12dA.
G

By taking R — 0, we conclude that @, = 0if n <0, and hence fis analytic at 0.

Third, the Dirichlet space of the whole complex plane C, or of the whole
Riemann sphere, contains only constant functions. This can be easily seen
by computing the Dirichlet norm of the power series ¥ @, z".

For the study of the Dirichlet space of any finitely connected region @, by
the last two observations we can assume that the complement of € is non-
empty and does not have an isolated point. From the first observation we
can further assume that oo is in one of the components of the complement
of Q; that is, © is bounded.

NOTATION. Throughout this paper, @ always denotes a bounded finitely
connected region with no isolated boundary point. We let X, ..., K be all the
bounded components of C\Q. We use Q, to denote the region QUK U --- U
Ky, and for 1 =i< N we use ; to denote the region (CU {eo})\ K.

We now prove a factorization result for all functions analytic on €2, and then
we return to the Dirichlet space D(£2). From now on, if G is a subset of the
Riemann sphere then dG denotes the boundary of G, and when G is open
H(G) denotes the space of all functions analytic on G. Note that our defini-
tions imply that every function in H({2;) is analytic at o when 1 <k < N.

PROPOSITION 1. Suppose f is a function in H(Q). Then there exist func-
tions fo, fi1s --+» fn»> With each f; in H(Qy), such that f= fy f1-* fn-

Proof. We begin by fixing a nonzero function fin H(Q) and assuming N =2
for notational simplicity. Our method works for any NV, but the notation is
more complicated. The zeros (counting multiplicities) of f in @ form a set,
which can be written as a disjoint union of three subsets S, S;, S,, so that if
S; has any limit point then the point belongs to 99;.

Now we use the following fact: Suppose G is a region, {m,} is a sequence
of positive integers, and {a,} is a sequence of points in G which has no limit
point in G; then there is an analytic function on G vanishing only at the
points {a,}, with multiplicities {m,}. So if 0 <i <2, then there is a function
h; in H(2;) vanishing precisely at the points of S; with the same multiplicities
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as f. Note that the function f/hyh,h, is analytic and nonvanishing on (.
Thus, to continue the proof, we can assume that f is nonvanishing on (.
Let L; and L, be two nonintersecting line segments in 2 such that
Q\(L,;UL,) is a simply connected region. On this region we can write f(z) =
| f(z)|€'®?), where O is a real-valued continuous function.
Without loss of generality, we assume that L, is parallel to the real axis.
Hence the function that takes w in L, to
lim ©(we'’)—lim ©(we')
027 -0
is continuous, and thus the function must be a constant of the form 2n« for
an integer n. Let {; be a point in K, and {, be a point in K,. If m is an integer
corresponding to L,, chosen in the same way as n, then the function

g(z)=(1z—8)""(z—85)""f(2)

can be written in the form |g(z)|e’¥®), where y is a real-valued function con-
tinuous on Q. Hence, log g can be defined as an analytic function on .

By the Cauchy integral formula, we can write log g = g+ g, + &,, with each
g in H(;), and so

[=(@z— ) " (z— )" esoed1e82,

If n=0 then (z— ¢;)"e®0 is in H({;). On the other hand, if n <0 then
(z— &) eflis in H((2,). By applying the same argument to the term (g — )",
we finish the proof. ]

For f in the Dirichlet space D({2), the factorization given by the last propo-
sition does not guarantee that each factor f; is in D(Q;). Our next theorem
is that f; can be so chosen under additional hypotheses. Before we prove the
theorem, we need a definition and a lemma.

DEFINITION. Throughout this paper, for 0 <i <N, we say that U is an
isolating neighborhood of d%; if U is an open subset of © in the form U=
V' NQ, where V is an open set containing 8Q; such that the closure ¥ of ¥ has
empty intersection with dQ; whenever i # k.

Suppose f is a function analytic on the unit disk A; it is easy to see that f is
in D(A) if and only if fis in D(R <|z| < 1) for some positive R < 1. By using
a conformal map from A onto ;, where 0 <i < N, we transfer this property
to D({};) as follows: Suppose U; is an isolating neighborhood of d%; and f'is
a function analytic on Q;; then f is in D({;) if and only if f is in D(U;). We
shall use this remark repeatedly.

LEMMA 2. Let f be asquare integrable function in D(Q). Suppose fy, ..., fn
are functions such that each f; is analytic on Q; and f = f, fi - - f. Suppose
that for each k, the function f; does not vanish on dQ; whenever i # k. Then
Jx is in D(Q;) for each k.
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Proof. By our assumption on the functions, each dQ; has an isolating neigh-
borhood U; such that f; does not vanish on U; whenever i # k.

To show that f; is in D(£;), it is enough to show that fj is square integra-
ble on Uy. Welet g = f; f> -+ fy and write f§ = f'g ! — fg~2g’. The first term
on the right-hand side of the equation is square integrable on U, because g
is bounded away from zero on U, and f’ is square integrable on Q. Since f
is square integrable on 2 and g is analytic on a neighborhood of U,, the
second term is also square integrable on Uy. The same argument shows that
Ji is in D(Qy) for every positive integer k < N. O

We remark that the conclusion of Lemma 2 does not hold if we only re-
quire f; to be analytic on Q;\{ec} when k7 0. For example, take  to be an
annulus and set f(z) =2z, fo(z)=1, and fi(z) =z.

We are now ready to prove our main theorem. We will use this theorem to
extend many properties of D(A) to D(Q).

THEOREM 3. Suppose 0%y, ..., 0Qy are simple closed curves. If f is a non-
zero square integrable function in D(Q), then there exist functions f; in
D(Q;) for 0<i=<N such that f=fy fi--- f. Furthermore, each f; can be
chosen so that it does not vanish on 92, whenever i # k.

Proof. By Proposition 1, there exist functions f; in H(£;) such that f=
JoS1 -+ fn. We rearrange the zeros of f as follows. Suppose fy(a) =0 for
a point « in dQ; and f,(B)=0 for a point 8 in dQ,. Since 99, is a simple
closed curve, we can fix a point {; in C\Q, and write f as

2=B)z—=$)fo (z—a)fi S

i—« z2— 1 Z—B.

(
f= Sy I
The term z — { is introduced in the equation so that the second term on the
right-hand side is still analytic at «. For i # k, the function f; has at most
finite number of zeros on 32, and so by rearranging these zeros as above
we can assume that f; does not vanish on dQ2;,. By Lemma 2, each f; is in
D(Q,). O

The technique of rearranging zeros in the last proof, together with Proposi-
tion 1, can be used to prove similar factorization results for other spaces of
analytic functions. We shall use H*(G) to denote the algebra of all bounded
analytic functions on a region G.

COROLLARY 4. Suppose 9%y, ...,y are simple closed curves. If f is a
Junction in H*(Q), then there exist functions f; in H*(Q;) for 0<i<N
such thatf=f0f1 "'fN.

COROLLARY 5. Suppose 3, ..., dQy are simple closed curves. If f is a
square integrable function in H*(Q) N.D(R), then there exist functions f; in
H*(Q;)ND(Q;) for 0=<i=< N such that f=fyf1- In-
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We have shown how to factorize functions f in D() under additional hy-
potheses on f and (2. As we shall see, Q is conformally equivalent to a region
where the factorization can be applied to all functions in the Dirichlet space.

A Poincaré region G is a region that has the property that every function
in D(G) is square integrable on G. For example, by using the power series
representation for analytic functions, it is easy to see that the unit disk and
the annuli are Poincaré regions. Although the unit disk is conformally equiv-
alent to any simply connected region, Axler and Shields [1] have given an ex-
ample of a bounded simply connected region which is not a Poincaré€ region.

THEOREM 6. The region 2 is conformally equivalent to a bounded finitely
connected Poincaré region whose boundary consists of differentiable simple
closed curves. ‘

Proof. Without loss of generality, we assume N =2 and so @ = Q)\(K; UK}).
Our proof works for any N, but the notation is more complicated.

Let ¢; be a conformal map that takes 2, onto the complement A€ of the
unit disk A. Note that K, is contained in ©; and ¢;(KX,) is a simply connected
compact subset of A°. Thus, there is a conformal map ¢, that takes the com-
plement of ¢;(K,) onto A€, and so ¢, takes the boundary of ¢;(;), which
is the unit circle, onto a differentiable simple closed curve. Now, let ¢, be
a conformal map that takes the bounded simply connected region inside
@,°01(0%2) onto A. Hence ¢g°¢,°¢; takes Q onto a finitely connected region
G whose boundary consists of simple closed curves.

From the above construction, the unit circle is a component of the bound-
ary of G and it has an isolating neighborhood (as defined before Lemma 2)
which is an annulus. Furthermore, for each bounded component of the com-
plement of G, there is a conformal map that takes A onto that component
and takes a neighborhood of A onto a neighborhood of that component.
Thus, each component of the boundary of G has an isolating neighborhood
U which is the image of a conformal map ¢ on an annulus W, and moreover
¢ extends. to be conformal on an open set containing W.

We claim that G is a Poincaré region. It is sufficient to prove that U=
¢(W) is a Poincaré region. For that, we let f be a function in D(U). Hence
the composite function fe¢ is in D(W') and, since every annulus is a Poincaré
region,

S |fep|?dA< oo,
w

The fact that ¢ is conformal on a neighborhood of W implies that ¢’ is
bounded on W, and hence

[ Jrraa={ |r-elle’?dA <. 0

Now we turn our attention to some applications of Theorems 3 and 6. For
that, we need some definitions and elementary facts.
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The maximal ideal space of a Banach algebra is the set of all multiplica-
tive linear functionals on the algebra. With the supremum norm, H*(G) is a
Banach algebra. We define the norm on #*(G)N.D(G) by taking the sum of
the norm of H*(G) and the norm of D(G). With this norm, H*(G)ND(G)
is also a Banach algebra. Let w be a point in G. For either algebra, the point
evaluation functional that takes every function f to f(w) is multiplicative.
By identifying every point in G as a multiplicative linear functional, we can
regard G as a subset of its maximal ideal space. It is well known that the fol-
Iowing two statements are equivalent for both Banach algebras (see e.g. [10,

p. 191]):

(1) In the weak* topology, G is dense in the maximal ideal space.
2) If £, ..., f, are functions in the Banach algebra and if

| fi()|+ -+ f1(2)| = 6>0

for all z in G, then there exist g,,..., g, in the Banach algebra such
that fig+---+f,8,=1.

Either of the two statements above is called the corona theorem. As indi-
cated in the introduction, when G is the unit disk A, the corona theorem is
known to be true for the algebra H*(A)N.D(A). Now we extend the corona
theorem to our region f1.

PROPOSITION 7. The maximal ideal space of H*(Q)ND() contains
as a dense subset.

Proof. As indicated at the beginning of this section, if two regions are con-
formally equivalent then their Dirichlet spaces are unitarily equivalent. Thus
if statement (2) above holds for one region then it must hold also for the
other region. This implies that the corona theorem holds for H*(Q,) N.D(Q;)
and also that, by Theorem 6, it is enough to prove our proposition for the
case where  is a Poincaré region whose boundary consists of differentiable
simple closed curves.

Fix a multiplicative linear functional A on H*(Q)N.D(Q). Then, for each
nonnegative integer k <N, we can view H*(Q;)ND(Q;) as a subspace of
H=(Q)ND(Q) and so A is a multiplicative linear functional on H®(£2,)N
D(9,). Viewing Q, as a dense set in the maximal ideal space of H*(2;)N
D(2,), we see that for each & there is a net of multiplicative linear functionals
in Q; converging to \.

We claim that all these nets, as nets of points in C, converge to exactly
one common point. To prove that, we need a fact from the standard case of
the unit disk A: If a net in A, regarded as a net in the maximal ideal space,
converges to a linear functional, then by applying the net to the position
function z in D(A) we see that this net, regarded as a net of points in C,
converges to one point in A. Note that every conformal map from A to Q;
extends to be continuous on the boundary, and so the net in Q; defined in
the last paragraph converges to a point z;, in Q. To finish our claim, we must
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show that all z;, are the same; without loss of generality, we need only show
that z, = z,. Fix a point {; in C\{,. It is easy to see that 1/(z— ¢;) is a func-
tion in D(2,) and z— ¢ is in D(€y). Since 1 =(z—¢;)(1/(z— &), by apply-
ing the linear functional \ on both sides of the equation we obtain z7=z;.

If zy is in @ then we are done. Otherwise, z, belongs to df; for some i.
Pick the net in Q;, denoted by {z,}, that converges to A in the maximal ideal
space of H*(R2;) N D(Q;). We can assume that each z, is a point in Q. For f
in H*(2)ND(Q2), by Corollary 5 we can write f= f, fi -+ fn, Where f; is in
H*(Q)N D). Thus f(z,) = fo(2a) -+ fn(2a) = NS). |

With a slight modification, the argument of the last proof, along with Cor-
ollary 4, can be used to extend the corona theorem for the algebra H*(A) to
H> (). There are many other ways to do that; see Fisher [9, Ch. 6].

COROLLARY 8. The maximal ideal space of H*(Q) contains Q as a dense
subset.

If Qis a Poincaré region as in the statement of Theorem 6, then Theorem 3
helps us to factorize all functions in D(£2). In the rest of this section we study
this region in greater detail, and make greater use of the properties of its
Dirichlet space. Before doing that, we give some related remarks.

If « is a point in a region G then, by the definition of the norm |- |; of
D(G), the linear functional that takes fin D(G) to f(«) is continuous. This
linear functional is called the point evaluation for «. It is also easy to show
that the functional f— f'(«) is continuous on D(G). Hence, by the prin-
ciple of uniform boundedness, for any compact subset K of G there is a
positive constant C = C(K') such that if z is a point in K then both | f(z)| and
| f'(z)| are less than C| f| -

With the above remarks, we are now ready to prove the next lemma,
which can be regarded as the converse of Theorem 3. We shall use |- | to de-
note the norm of D(R), and |- |; to denote the norm of D(£;) for 0<i=<N.

LEMMA 9. With Q the same region as before, we suppose further that Q
is a Poincaré region. Then there is a positive constant C such that, if fi is a
Junction in D(Q;) for each nonnegative integer k <N, then

|fo -+ InI=ClSfolo - 1 /vl

Proof. For notational simplicity, we prove the lemma for the case N=2;
the same argument will work for any N. For i =0, 1, 2 we let U; be an isolat-
ing neighborhood (as defined before Lemma 2) of ;.

Let f=f0f1f2. ThUS
S =L iLfatSof{SatSo 1S5

If we let K=Q\(U,UU,UU,), then X is either empty or a compact subset
of Q. If K is nonempty then, by the remarks preceding the lemma, thereis a
positive constant Cy, independent of the functions, such that
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| |72 dA = Colfolly-L AR 113-

To finish the proof, we must show the corresponding inequality with X re-
placed by U;. Without loss of generality, we consider only the case of Uj,.
Since U, is a compact subset of Q,, there is a constant C; > 0, independent
of the functions, such that if z is in U, then the values | fi(z)| and | f{(z)|
are less than Cy| fi|;. Similarly, there is a constant C, > 0 such that if z is in
U, then | f5(z)| and | f3(z)| are less than C, ] f5[,. By our expression for f’ in
the last paragraph, we need only show that there is a constant C; > 0, inde-
pendent of the functions, such that

Jo ol? 4= Gl folf.

Since @ is a Poincaré region and D(f},) is contained in D(), we see that
every function in D(,) is square integrable on U,. Now the existence of C;
follows from an application of the closed graph theorem; or see [5, Prop. 6].

O
We say that a sequence of points in a region G is a zero set for D(G) if there
is a function in D(G) vanishing precisely at the points (counting multiplici-
ties) of the sequence. Note that a conformal map from a region G, onto a
region G, takes a zero set for D(G;) to a zero set for D(G,). This implies
that, for 0 <k <N, a sequence of points in (; is a zero set for D(Q;) if and
only if it is the conformal image of a zero set for the Dirichlet space of the
unit disk. By Theorem 6, we can assume, via a conformal map, that (2 satis-
fies the hypotheses of Theorem 3 and Lemma 9. So every zero set for D({2)
can be written as a finite union U s;, where s; is a zero set for D({2;). Con-
versely, any such union is a zero set for D({).

Now we study the multipliers of the Dirichlet spaces. If ¢ is a function
analytic on a region G and has the property that ¢f is in D(G) for each f
in D(G), then ¢ is called a multiplier. Let m(G) denote the algebra of all
multipliers. Since D(G) contains the constants, 7(G) is contained in D(G).

As a corollary of Theorem 3 and Lemma 9 together, we now show that
multipliers can be factorized in the same way as other spaces.

COROLLARY 10. With Q the same region as before, we suppose further
that Q is a Poincaré region whose boundary consists of simple closed curves.
If ¢ is a function in m(2), then there exist functions ¢; inm(Q;) forO<i<N
such that ¢ = @g@; -+ @N-

Proof. Suppose ¢ is a function in m(2). Then, by Theorem 3, we can write
@ =@oe1-** ¢N, Where ¢; is in D(;) and does not vanish on 9Q; for i # .
Let g be a function in D(2,) and C be a constant such that g+ C does not
vanish on 94; for each positive integer i < N. Since g is in D(2), the product
e(g+C) is in D() and so ¢(g+ C) is square integrable on Q. Note that
e(g+C)=¢pp(g+C)ep; -+ ¢n. By Lemma 2, ¢o(g+ C) is in D({,) and so
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©og is in D(y). Thus ¢ is in m(L,). Similarly, one can show that ¢; is in
m(;) for each positive integer i < N. O

Suppose G is a region. A function f in D(G) is cyclic for m(G) if the vector
subspace {of: ¢ € m(G)} is dense in D(G). We call the function f a cyclic
vector. When G is the unit disk, the cyclic vectors have been studied exten-
sively by Brown and Shields [5]. Now we show that the product of cyclic
vectors of D(Q,) is a cyclic vector of D(2).

LEMMA 11. With Q the same region as before, we suppose further that 2
is a Poincaré region whose boundary consists of differentiable simple closed
curves. For 0 <i <N, suppose that f; is a function in D(%;) and is cyclic for
m(2;). Then f=fy--- fnis in D(Q) and is cyclic for m(12).

Proof. We prove the case N=1; our argument will work for any N. It fol-
lows from Theorem 3 and Lemma 9 that if ¢ is in m(Q,) and ¢, is in m ()
then ¢ ¢, is in m(2). For every function g in D(£2), by Theorem 3 there are
functions g; in D(Q;) such that g = g¢g;. Then by Lemma 9 there is a positive
constant C, independent of the functions, such that

leoer foS1—gl=|voer foS1—8oe1 /1l+ 801 f1—80&1]
= C'HsoofO"go"O’"solfl"l+ C'"go||0‘"€01f1—81"1

We can choose ¢; and then ¢, so that the expression in the last line is as
small as possible. O

Brown [4] has proved that every invertible function in the Dirichlet space of
the unit disk is cyclic. This result can be generalized to Q; for 0 <k <N by
using the following fact: If ¢ is a conformal map from a region G, onto a
region G,, then a function f in D(G,) is cyclic for m(G,) if and only if fee
is cyclic for m(G;). Brown’s result can further be generalized to our region
Q, with the help of Lemma 11.

PROPOSITION 12. If f is in D(Q) and its reciprocal 1/f is also in D(),
then f is cyclic for m(Q).

Proof. Inview of Theorem 6, it is sufficient to prove the proposition for the
case where ) is a Poincar¢ region and 9 consists of differentiable simple
closed curves.

We only prove the proposition for the case N =1; our argument will work
for any N. Let f be a function in D(2) such that 1/f is in D(). By Proposi-
tion 1 we factorize f as f = f, fi, where f; is in H(Q,) for each k. Note that
Jo and f; do not vanish on Q. Furthermore, f; has at most a finite number
of zeros in C\@,, and f] has at most a finite number of zeros in C\Q,.

Now we make three observations. First, suppose fy(a) =0 for a point «
in C\Q,, with multiplicity 1. If we fix a point ¢; in C\Q; and write
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S _ So z—a)fi
2=t z—a z—8

then the first term on the right-hand side does not vanish at « and is in
H(£,), and the second term is analytic at c and is in H(2;).
Second, suppose 3 in C\{, is a zero of f;; then we can divide out the zero:

J1
=B
Note that the first term on the right-hand side is in H(£,) and the second
term is in H(Q,).

Third, if f;(e0) = 0 then we can find a positive integer k such that (z— ¢;)%f;
is analytic at co and does not vanish at co. This can be shown by writing f; as
a power series of 1/(z— ¢{;) on a neighborhood of oo,

From these three observations, we conclude that there is an integer k such
that we can write

S=z—=8)/

(z— ) f=gogis

where each g, is analytic and nonvanishing on .

Note that @ is a bounded Poincaré region and 1/(z — {;) is bounded on €.
It follows that if f is in D(Q) then so are (z— {)f and f/(z— ¢;). Thus z— &
and 1/(z— {;) are in m(Q). Hence (z— {;)*f is in D(Q) and, by Lemma 2,
each g, is in D(Q,). By taking reciprocals on each side of the last displayed
equation, and repeating the above argument, we see that 1/g; is in D(Qy).
Thus each g is cyclic for m(Qy).

It follows from the definition of a cyclic vector that f is cyclic for m () if
and only if (z— &)*f is cyclic for m(Q). Now our result follows directly
from Lemma 11. O

3. Universal Interpolating Sequences

In this section we study the interpolating sequences for D(?). As indicated
in the introduction, the interpolation problem for the algebra of bounded
analytic functions is different from that for D({2), which contains unbounded
functions.

Critical to the formulation of the interpolating problem for D(Q) is the
notion of a reproducing kernel. As mentioned in the previous section, for
every point ¢ in a region G, the point evaluation that takes f to f(a) is a
continuous linear functional on D(G). Thus there is a function k, in D(G)
such that

gla)=<g, k)

for all g in D(G). We call k, the reproducing kernel for the point a.
For every sequence {z,}1° of points in G, we define a linear operator T on
D(G) by ’
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S(@z))®
Tf = ,
s {llkz,,ll }1

where | - | denotes the norm of D(G). Since | f(z,)| < |k, |-|f], T is a contin-
uous map from D(G) into /®. If Tf is in /? for each f in D(G), then by the
closed graph theorem T is a continuous map into /2. If /2 is contained in
TD(G) then there exists a positive constant M such that, for each sequence
{c,} in /2, there is a function f in D(G) satisfying | f] < M(Z]|c,|?)? and
Tf ={c,}; one may show this by another application of the closed graph
theorem.

Following the interpolation theory for H? in [13], we call {z,} a universal
interpolating sequence for D(G) when TD(G) = /2. From this definition, we
see that a universal interpolating sequence consists of distinct points and
has no limit point in G.

Let ¢ be a conformal map from a region G, onto a region G,. As indi-
cated at the beginning of the previous section, we can assume that the com-
position map f— fo¢ defines an isometry from D(G,) onto D(G,;). Hence
if ¢(a) =p then the D(G,) norm of k, equals to the D(G,) norm of kg. It
follows that a sequence {z,} in G, is a universal interpolating sequence for
D(G,) if and only if {¢(z,)} is a universal interpolating sequence for D(G,).

Now we focus our attention on our finitely connected region (. We claim
that every subset of a zero set for D({) is again a zero set. We first consider
the case for the unit disk A. Suppose f(z) =X a,z" is a function in D(A),
with f(0) =0; then

L)

More generally, if « is a point in A and ¢: A — A is the conformal map de-
fined by ¢(z) = (z —a)/(1 — @z), then the order of the above inequality is pre-
served when we replace f by fe¢ and f/z by fe¢/¢ simultaneously. Hence,
if g in D(A) vanishes at all the zeros (counting multiplicities) of a Blaschke
product B, then g/B is also in D(A). It follows from the last inequality dis-
played above that D(A) is contained in the Hardy space H?, and so a zero
set for D(A) is a zero set for H2. Thus our claim is true if @ = A. By using
an argument involving a conformal map, we see that our claim holds for
Q,, where 0 <k <N. With these results in hand, our claim follows from
Theorem 3, Theorem 6, and Lemma 9.

We claim that every universal interpolating sequence {z,}{° for D(Q) is a
zero set. To prove that, we can assume (via a conformal map) that Q is a
Poincaré region; it follows directly that z is a multiplier. Let f be a function
in D(R), with f(z;)=1and f(z,,) =0 for n = 2. The nonzero function g(z)=
(z—2z)f(z) vanishes at every z,. By dividing out all other zeros from g, we
obtain a function that vanishes precisely at {z,,]}.

Now it is easy to see that if « is a point in © and a# z,, for all », then
fa}U{z, ] is also a universal interpolating sequence. Similarly, we can also
remove a point.

2

dA=m 3 nla, <7 S nla, = |/2dA.
1 1
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We are dealing with interpolating sequences for different regions, so we
must distinguish different reproducing kernels for one point w in Q. Through-
out this section, we use k,, and &/, to denote the reproducing kernel in D(£)
and the reproducing kernel in D({;) respectively. As in the previous section,
we use |- | to denote the norm for D(2) and |- |; to denote the norm of D(;),
where 0 </ <N. Although the two norms |k, | and |k},|; are different, the
next lemma shows that they are equivalent for w near 99;.

LEMMA 13. There exist Cy, C,, and 6 >0 such that, if 0<j<N and wis
a point in Q satisfying dist(w, 0$;) <6, then

Collkul =1kl = Cilk,).

Proof. Without loss of generality, we only need to prove the case j=0.

We can consider D(2,) as a closed subspace of D(2). Hence, by the closed
graph theorem, there is a constant C; > 0 such that | f| < C;| f], for all f in
D(Q,). For any point w in {, by the definition of a reproducing kernel we
have

[l =k (w) < CilkS o1 -

For the other direction, we use the additive decomposition indicated in
the introduction: Every function h in D(2) can be written uniquely as h=
ho+ hy+ -+ + hy, with each h; in D(8;) and hy() =0 when k#0. For 0 <
i < N, the linear operator P;: D(Q) — D(Q;) defined by P; 2 = h; is continuous,
by the closed graph theorem. For all f in D(Q) we write f=Pyf+---+
Py, f, and hence for w in @ we have

7001=171 S 12y 1K1

where | P;|,p, is the operator norm of P;. Letting f=k,,/|k,|, we obtain

N .
Il — 217 lop 13l = 1Pollop 140 lo-
1=

As w approaches 39, both |k, | and |k2]o go to oo; this is because Q, is
conformally equivalent to the disk A and there are unbounded functions
in D(A). If 1<i=<N then |k.|; stays bounded as w approaches 4Q,, by
the principle of uniform boundedness. Hence there exists 6 > 0 such that if
dist(w, dQ,) < 6 then

2 | Pilop-1kuli = 5 1k
i=1
Combining the last two displayed inequalities, we finish the proof. ]

For a universal interpolating sequence {z,};° for D(2) whose accumulation
points belong to dQ,, we define some related linear operators. As before, we
write k,? to denote kzon. For each integer m =1, we define a bounded linear
operator 7,,,: D(Q) - /? by
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TS = {f(z”)}w.

1%zl

Note that 7,, f is in /? because of Lemma 13.

Let E,,={feD(Q): f(z,)=0 for n=m} and let E;, be the orthogonal
complement of E,, in D(Q). The operator 7,, induces a bounded invertible
operator T,,: E;t — I? by restricting T;, to Ej.. As before, we use |- |, to de-
note the operator norm; we use ||, to denote the /2 norm.

We remark that {|7,,],,} is a nonincreasing sequence. To prove this we
need only show that |75y, <| 77" op- For k=1,2 we let Q;: D(2) —» D(Q)
be the orthogonal projection onto Ej-. Note that 7,0, f=T, f for all fin
D(), and so by the definition of an operator norm we have

|75 lop = sup{l f|: f€ E3 and |T; fl.=1)
=sup{|Q, f|: fe D(?) and |T; f.=1}.

If fisin D(2) and f(z;) #0, then there exists a function g in E,\ E; such
that f(z;)+g(z;) =0.Thus I, (f+g)=T, f and Q,(f+g) = O, f. It follows
that

175 |op = sup{| @2 f]: f € D(Q) satisfies | T, f].=1 and f(z;) =0}.
Since E5 C Ei* and |Q, f|<|Q, f] for all f in D(Q),

175 op =sup{| Q1 f|: fe€D(Q) and |T; f[+=1]
:"Tl—l"op-

This completes the proof of our remark. With this remark, we are ready to
give an operator-theoretic proof for the following complex analytic result.

PROPOSITION 14. Let S be a universal interpolating sequence for D(Q}).
Suppose S=UN_, S;, where each S; is either empty or has accumulation
points all of which belong to d%2;. Then each of the nonempty sets S; is a
universal interpolating sequence for D(9;).

Proof. Without loss of generality, we assume that S, is nonempty and prove
that Sp={z,}” is a universal interpolating sequence for D({2;). For nota-
tional simplicity we assume N = 2; the argument we give will work for any V.

It is clear that T takes D(£,) into /2, so we must show that T} takes D(Q,)
onto /2. It is enough to show that T, is onto /? for some 7. We consider
the continuous linear operators P;: D(2) —» D({};) as defined in the proof of
Lemma 13. By the principle of uniform boundedness, there exists a positive
constant C such that for all f in D(2) and all z in S,

(P f+ P, ))<= C|f].

For m =1, define S,,: E;>5 — I? by the equation S, f = T,, P, f. It is clear that
S,, is a bounded linear operator. For all f in E;},



304 KIT C. CHAN & ALLEN L. SHIELDS
"Tmf—gmf"*="Tm(Pl+P2)f"*

w 1/2

=ciri( $ 1ka?)
n=m

The summation above is finite since it is the square of |7,1|.. Since

{177 "|op} is a nonincreasing sequence, we can choose m large enough so that

" Tt'n - S'm "0p = " T;;1 "(;p1

This implies that S, is also invertible and, in particular, that S,, is onto /2.
By the definition of §,,, we conclude that 7}, maps D(2,) onto /2. O

The converse of the last proposition holds. We now take a look at the sim-
plest case. Suppose S is a sequence of points in 2 and that S is a universal in-
terpolating sequence for the Dirichlet space D(;) for some k. By Lemma 13
and the fact that D(Q;) contains the constants, the sequence (1/|k,|: z € S}
is in /2. Using the same notation as in the proof of Lemma 13, we write
S=Py f+---+Pyf for any function f in D(Q). Since the function P; f is
bounded on S when j # k, the sequence {f(z)/|k,|: z € S} is in /2. In addi-
tion, D({2;) is contained in D(2), and so S is a universal interpolating se-
quence for D(). We generalize this observation as follows.

PROPOSITION 15. Suppose Sy, Sy, ..., Sy are sequences of points in Q. If
each S; is a universal interpolating sequence for D(Q;), then S=UN_, S;isa
universal interpolating sequence for D(?).

Proof. If fis in D(Q) then, by the remark preceding our proposition, the
sequence {f(z)/|k,|:z€ S} is in /2. We must show that every /? sequence
can be written in that form.

We claim that it is sufficient to consider the case when Q is a Poincaré
region whose boundary consists of differentiable simple closed curves. To
show this, let ¢ be a conformal map from {2 onto a region G. By the remark
preceding our proposition, each Sy is a universal interpolating sequence for
D(Q) and so ¢(Sy) is a universal interpolating sequence for D(G). By Prop-
osition 14, all these ¢(S;) satisfy the hypothesis of our proposition, with
Q2 replaced by G. If we can prove that U ¢(S;) is a universal interpolating
sequence for D(G), then it follows that U S is a universal interpolating
sequence for D(Q2).

If i## j than S;NS; contains at most a finite number of points. Since both
the hypothesis and the conclusion of our proposition do not depend on these
points, we assume that S;NS; is an empty set. For notational simplicity, we
only prove the proposition for the case N=2. The same argument will work
for any N.
~ Since every universal interpolating sequence is a zero set, there are non-
zero functions f in D(;) and g in D(£2,) such that f=0o0n S;and g=0o0n
S,. By dividing out all (finitely many) zeros in S, from f and g, we may
assume that f and g are bounded away from zero on Sj.
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Let {a,}° be a sequence in /2 and let Sy = {z,,}7°. For notational simplicity,
we write k, and & to denote k, and k) , respectively. By our assumption on
Sy, along with Lemma 13, there is a function ¢ in D(2,) such that

¥(zx) _ oulkl
1691, ~ f(z,)e(z,) k0],

By Lemma 9, the function 2=y fg is in D(Q2). We observe that #=0 on
S,US,, and that h(z,) = a,|k,|; that is, & interpolates {c,} on Sy. Suppose
{B,}, {v,] are two sequences in /2. By using the same argument as above,
we can find A4; in D(Q) such that A; vanishes on SyUS, and A, interpolates
{B,} on §,. Similarly, there is a function 4, in D(2) such that %, vanishes
on Sy;U S, and interpolates {v,} on S,. Hence, the function A+ A+ h, isin
D(Q) and it interpolates {«, }U(B,}U{vy,} on S. ]

A sequence of points in the unit disk A is a universal interpolating sequence
for D(A) if and only if it is transformed, under a conformal map, into a
universal interpolating sequence for D(9;). The last two propositions to-
gether imply that, in an appropriate sense, the universal interpolating se-
quences for D(Q) are exactly the finite unions of the conformal images of
those for the unit disk.

For the space of bounded analytic functions H (), the universal inter-
polating sequences have the same composition structure and can be described
in terms of Green’s functions; see [9, p. 161]. We remark that for this formu-
lation, our argument for Proposition 15 works, but that for Proposition 14
does not.

For either H*(Q) or D(), the composition structure allows us to con-
struct a universal interpolating sequence in Q by using those in A. There is a
necessary and sufficient condition for a sequence in A to be a universal inter-
polating sequence for H*(A). We shall show a sufficient condition for a
sequence in A to be a universal interpolating sequence for the Dirichlet space,
similar to that for H*(A). It is not known whether such a condition is nec-
essary. Nevertheless, that condition can be used for construction.

For the rest of this paper, we focus our attention on the Dirichlet space
D(A). We define an inner product on D(A) by

S5 g>=§(n+1)f(n)§—(_n),

where f(z) =3 f(n)z" and g(z) =3 £(n)z". The norm induced by this inner
product is equivalent to the norm defined in the introduction, but it is more
convenient to use. The corresponding reproducing kernel £,,(z) for a point
w in A is given by
1 0 w n
ky(z)=
()= l wz % n+1’

The following theorem was discovered by Rosenbaum [12] in 1965, but
never published. He also studied the problem of interpolating /? sequences
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using Dirichlet functions and their higher order derivatives. To keep our
discussion complete, we include his proof here also.

THEOREM 16. Let {z,};° be a sequence of points in the unit disk A. If

log(1—|z,]) 1
log(1—|z,44]) 9

then the sequence is a universal interpolating sequence for D(A).

lim sup

Proof. For notational simplicity, in this proof we write k; to denote kz;.
Let A be the infinite matrix [A4,,,] where A, =<k, /| k.|, knm/ | k.| By [13,
Thm. 3], we need only show that A is an invertible operator on /2. (One may
also refer to a result of Bari [2].)
Note that 4,, =1, and that
2
(Iog2 ___1__
—Z,%

1 ns~m

l(kns km>|2 =

nsm

+ Arg? ——}——)
1=Z,2m

It follows that, for all e >0, we can choose an integer j = j(¢) such that if
m,n> j then

1 1
<(1+e)|z,)* ————,
Az 2 et =TeD
and
2
ks Ko =< |=—1— | (14€) log? —
n<m I—Ian

By definition | A,,,,| =|A,,.|, and if #, m > j then
log(1—|z,|)
log(1—|z,])°

Our hypothesis implies that we could have chosen e small enough so that if
n,m>j then | A,,,|< p!"~"™|, where p<1/3. Now we estimate the operator
norm of the difference of A and the identity operator I:

"A—Iuop =Ssup 2 IAnml

n n#m

o o]
=2 3 p
n=1

|Aml> < (1+¢€)3

<l1.

Hence A is invertible. O

The constant 1/9 in the theorem may not be sharp. We conclude this paper
by raising the following question.

QUESTION. Can we replace 1/9 by 1 in Theorem 16?
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