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1

Let f be an analytic function in the open unit disk D. The valence function
is defined by
ve(w)=card[f "'(w)ND], weC,

where pre-images are counted with multiplicities. In this article we give a
negative answer to the following question posed by Stephenson [5, Ques-
tion 2]. We say that a function is analytic on the closed unit disc clD if it is
analytic in some neighbourhood of ¢/D.

QUESTION. If f and g are analytic on ¢/D with identical valence func-
tions, does there exist an algebraic homeomorphism ¢ of D with fey =g?

THEOREM 1. There exist f and g analytic on cID such that ve(w) =vg(w),
we C, but foy # g for any homeomorphism  of the unit circle dD.

The proof is based on the following theorem.

THEOREM 2. There exists a function ¢ analytic on cID and two disjoint
“arcs I, I, C 0D such that ¢ maps each of them homeomorphically onto the
same arc but with opposite orientations.

Note that if ¢ is not required to be analytic across dD then such a function
can be constructed easily. (Take, for example, ¢(z) = w?(z), where w(z) is
a conformal map of D onto {ze€D:Rez>0}.) To some extent this is also
true for Theorem 1: Stephenson [5] produced two analytic functions in D,
piecewise analytic and continuous on dD, with all other properties of f and
g in Theorem 1.

2

Before we proceed to the proof, let us indicate some relations between The-
orem 2 and the multiplicity of analytic Toeplitz operators. Recall that for
¢ € H* the Toeplitz operator T is the multiplication operator on the Hardy
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space H?: T, f = ¢f. The multiplicity pof an operator 7 is the least dimen-
sion of a subspace X such that {7"X: n=0]} is total. By p, we denote the
multiplicity pr,. Let us introduce the following characteristics.

The maximal valence n(¢) is defined by

n(¢)=supfr,(w), we Cj.

It is noteworthy that »,(w) =dim ker(T; —wI). Now let ¢ be analytic in D
and continuous on c/D. We put

Pa(w)=card[¢"'(w)Nc/D] and Q%(¢)={weC: i (w)=k].
The essential maximal valence is by definition
n,(¢) =sup{k e N:card QX(¢) = o}.

Clearly n(¢) <n,(¢). It was proved in [2] that “for good ¢” n.(¢) <ps=<
n.(¢)+1, and in [3] (see also [4]) p4 was completely determined for ¢ ana-
Iytic on ¢/D. Since it is more convenient to work with 7(¢), a question arises
under what conditions is n(¢) = n,(¢). It is readily seen that for a func-
tion ¢ analytic on ¢/D one has n,(¢) = sup{k € N: Q¥(¢) contains an arc).
Hence the inequality 7n,(¢) > n(¢) can occur only if two arcs of dD are
mapped onto one arc with opposite orientations. It is not hard to derive
from the reasoning of [1, Thm. 1] that for an entire ¢ such behaviour is im-
possible and thus #n,(¢) = n(¢). Theorem 2 shows that for ¢ analytic on ¢/D
this is not the case. Moreover, one can show that for such a ¢

n(¢)=n,(¢)=2n(¢)—1

is a sharp inequality.

3. Proof of Theorem 2

Fix 0 <zy<1, and consider the function f(z) = —i(z+z,)% The curve y=
S(AD) consists of two loops: the “exterior” loop +,, and the “interior” loop
v;- Denote the intersection points of y with coordinate axes by A4, B, C, D,
E, F, G (see Figure 1). By [AD], [AB), etc. will be denoted the smallest arcs
of v with respective (included or excluded) endpoints. We shall construct a
function ¢ analytic on ¢/D such that ¢(dD) = f(dD) but the curve ¢ ¢(e’)
traces the interior loop «; as follows:

[AE), [EF), [FG),[GF), [FE), [EF), [FG), [GA).

Thus the arc a:=[EF)U[FG] is the image of three different circle arcs, one
of which is mapped with the reverse orientation. The values E, G are the
“returning points” in which the curve starts to trace its path in the opposite
direction.

Let us observe that the behaviour of the boundary curve described above
is not peculiar in itself. For example, consider the function z - (w?—w)(2),
where w is a conformal map of the unit disk onto the domain {ze C: |z| <5,
Im z > 0}. The problem is to obtain such a behaviour for a function analytic
across dD.
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Now we pass to the construction of ¢. Consider a polynomial of third de-
gree with critical values E, G, and let R be the Riemann surface of its in-
verse. The required function ¢ will be the composition of a univalent func-
tion w: D — R with the projection map on the Riemann surface.

We shall need a concrete geometric representation of the surface R. Take
three copies of the complex plane Py, Py, Py and apply a standard “cut and
paste” operation. Namely, cut P; and P;; along the ray (—o, E] and then
cut Py, Py along [G, +0). Then identify the opposite edges of the cuts be-
longing to different sheets to obtain a surface R (see Figure 2).
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Define the projection w: R — C to be the identity map for each sheet. Our
construction has resulted in a branched covering with two simple branch
points that will be denoted K, L: n(K)=E, w(L)= G. The conformal struc-
ture is lifted to the set R\ {K, L} by means of 7. The functions (z — E)"?
and (z— G)"?can be lifted in a single-valued manner to the neighbourhoods
of K and L, and provide the conformal structure there.

Now we proceed lifting the curve y= f(dD) to R, starting with the point
K and moving in the sheet P;. Put

Iy=7"W[EFGAB))NP;, TP=a"Y[BCD])NPy,
and
Ly =7~ ((DAEFG]) N\ Ppy.

As long as we do not hit a branch point, the curve 7 is lifted by = ~! without
any problem. Since I';;; arrives at the branch point L we must decide where
to go next. We choose to continue in the sheet Py, returning to K along the
arc I'\P:= 7 (&) N Py; (see Figure 3).

Figure 3
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It is clear that I' =T, UT'{PUT,;,UT is a simple closed curve on the Rie-
mann surface R such that «(I') = 4. Moreover, I' is contractible in R. Indeed,
if we perform a homotopy of the arcs I';, I';;; to the cuts, we shall obtain a
curve [KMIUTDU[NLIUT{? which is contractible in Py (see Figure 3).
Thus T' is the boundary of a topological disk lying in R. By the Riemann
mapping theorem there exists a univalent analytic function w from the disk
D onto the interior of I'. Put ¢ = wo w. Clearly the curve ¢ — ¢(e?) traces the
arc « thrice as planned at the beginning of the proof. It remains to check
that ¢ extends analytically to a neighbourhood of ¢/D. This property may
be verified for w: D — R. But this would follow if we prove that the curve I
is analytic. In other words, we must show that any arc of I which is small
enough can be represented as an image of a line segment under a suitable
mapping analytic and univalent in a neighbourhood of the segment.

It is immediate from the construction of the curve that I is locally analytic
outside the branch points K, L. Let U be a small disc centered at z= F and let
V' be the component of = ~(U) such that L € V. Then the intersection VNI
consists of two arcs «,, o_ ending at L such that o, € Py;; and «_ € Py (see
Figure 3). The conformal structure in ¥ is defined by the map z— (z — E)"?,
which carries a, U _ to a part of the arc («—E)"2 (both branches of the
square root must be considered). It remains only to make use of the follow-
ing elementary lemma.

LEMMA. Let f be analytic in a neighbourhood of the origin, f(0) =0,
f(0)#0, p=f([0, €]). Then for e > 0 sufficiently small the set 3 = {z e C:
z%€ p} is an analytic arc; that is, for some function g analytic at the origin,
one has g(0)=0, g’(0)#0, and 8= g([—09, d]).

Proof. One can write f(z) =zh(z), where h(z) =ag+a;2+ -+, ag#0. In a
small neighbourhood of the origin there exists an analytic function A,(z)=
bo+ b,z + -+ such that h#(z) = h(z). Thus f(z?) = (zh,(z?))% We can put
g(2) = zh(z?). Clearly g’(0) = by# 0 and (g([—86, 6]))>= f([0, 62]). [l

The local analyticity of I" in the neighbourhood of X is verified in the same
manner, and the proof of Theorem 2 is complete. [l

4. Proof of Theorem 1

We employ the same ideas as in the proof of Theorem 2, so the exposition
will be sketchier. Set #(z) = (z +0.2)* and y = #(dD). This curve has the form
indicated in Figure 4.

We mark four points A, B, C, D on the interior loop of the curve. The
functions f, g will be chosen so that f(0D) = g(dD) =+. The arc [AD] will
be traced as follows:

t~ f(e"):[AD),[DA),[AC),[CB), [BD];
t—g(e"):[AC),[CA),[AD),[DB),[BD].
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Figure 4

Because, for any homeomorphism ¢ of the unit circle, the order in which
the values A4, B, C, D are taken by the functions ¢ — f(e’) and ¢~ f(y(e*))
coincides modulo a cyclic permutation, we see that foy # g.

Now we pass to the construction of f, g. We consider two Riemann sur-
faces Ry, R,, each obtained by a “cut and paste” procedure from five copies
of the plane. Any pair of these planes can be pasted together to form a simple
branch point by cutting them along a common ray and identifying opposite
edges of the cuts, as was done in the earlier construction. Forming simple
branch points over A, B, C, D in this way, using pairs of planes according
to the two patterns in Figure 5, will determine Riemann surfaces denoted
by Rrand R,. Let 7y, m, be the projection maps. We shall construct simple
closed curves I'y C Ry and T, C R, such that 7s(I'y) = 7,(I';) = . In Figure 5
one sees schematically the arcs of I'y,I', projecting onto [ABCD]. All the
rest of v is lifted uniquely by means of =71, 7;!. As before, we can prove
that I';, I'; are contractible and then sét f = 7ewsand g = wew,, where wy, w,
are the conformal mappings of the unit disk onto the interiors of I', I, cor-
respondingly. Using the lemma we obtain that f, g are analytic in a neigh-
bourhood of ¢/D. The construction is then complete.

It remains to check that f, g have identical valence functions. The argu-
ment principle yields that v,(w) =»,(w), we C\ . For the points we y\[AD]
the valence functions are also easily calculated to be equal. Over the arc [ BC]
there are no interior points, since all its five pre-images are boundary arcs.
So vs|ipci=ve|Bcy=0. Over the arcs [AB), (CD] there are three bound-
ary arcs. From Figure 5 it is clear that the remaining two arcs of Wf_l([AB))
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Figure 5

are separated by I'y. Therefore, only one pre-image of [AB) lies in D, and
vs|1apy= 1. The same is true for the arc (CD]. Similarly, v, |45y = v¢ | (cp)=1.
Thus vs=v», and we are done.

I am grateful to Michael Lyubich for many helpful discussions on the sub-
ject of this article, and to the referee for valuable suggestions.
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