Rigidity Theorems for Foliations
by Surfaces and Spin Manifolds

JAMES L. HEITSCH! & CONNOR LAZAROV?

1. Introduction

This paper is devoted to applications of the Lefschetz fixed point theorem
for foliations [HL1; HL2]. The applications presented here are generaliza-
tions of two classical theorems: the finiteness of the automorphism group of
a compact oriented surface of genus greater than 1, and the rigidity of com-
pact spin manifolds with nonvanishing 4 genus [AH].

A foliation of a compact connected oriented Riemannian manifold is rigid
if no compact connected Lie group acts nontrivially as a group of isometries
taking each leaf to itself. If the foliation admits an invariant transverse mea-
sure then we can define the foliation Euler number and A genus. Proposition
3.1 says that a foliation by oriented surfaces with negative foliation Euler
number is rigid. Proposition 3.2 says that a foliation by spin manifolds with
nonzero foliation A genus is rigid if we insist that the Lie group of isometries
preserves the leafwise spin structure. The proofs involve the application of our
foliation Lefschetz theorem to the leafwise de Rham and Dirac complexes.

We also give examples of foliations which satisfy the hypotheses of Prop-
ositions 3.1 and 3.2 but whose leaf-preserving isometry group (resp., leaf-
preserving isometry group preserving the leafwise spin structure) is still not
finite.

In Section 2 we review the Lefschetz theorem for foliations. In Section 3
we state and prove our main theorems, and in Section 4 we present our ex-
amples. Section 5 contains the proof of Proposition 2.2 and some remarks
about the leafwise de Rham and signature complex. We would like to thank
John Wood for a number of helpful conversations.

2. Review of the Lefschetz Theorem

We recall some of the material from [HL1]. Let M be a compact connected
oriented Riemannian manifold of dimension m and F a codimension-q ori-
ented foliation.
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A Dirac complex (E, d) along F consists of:

(1) A family E = (Ey, Ej, ..., E;) of Hermitian vector bundles over M
with Hermitian connection V' on E;.

(2) A family d =(d,,...,d,_,) of differential operators, where

di: CP(E;) > C®(Ej4y).

The d; differentiate only in leaf directions and the complex (£, d) is a
generalized Dirac complex [GL] along the leaves of F. This means that
E=@® E; is a module over the bundle of Clifford algebras C(T*F)
and the connection V=@ V' on E is compatible with Clifford multi-
plication and the Riemannian connection on 7*F. Furthermore, the
operator

D=®@(d;+d} |): C°(E)—> C*(E)
is given by the composition
C*(E) L C*(T*MQ®E)—~ C*(T*FQE) "> C*(E),
where m is Clifford multiplication.

Let f be a diffeomorphism of M which takes each leaf of F to itself. A
geometric endomorphism of (E,d) over f is a family T'=(Ty, ..., T;) of
complex linear maps .

T;: C®(E;) —» C*(E))
such that d;7T; =T, ,d;. We require that each 7; be given by

2.0 Ti(s)(x) = Aj,x(s(f(x))),

where A;: f*E; - E; is a smooth bundle map. Let EF be the bundle E; re-
stricted to the leaf L. 7; induces a map 7;* on L*(E}) and a map

7% HI(E,d) - H}(E,d),

where H} (E, d) is reduced L? cohomology ker(d’)/im(d% ). Here dF is the
restriction of d; to sections of EX. Let d/* be the adjoint of df, and let

Af=df dl}+dldf.

Using Hodge theory we can identify H} (E,d) with ker(A%), and 7%* in-
duces a map 7/%* on ker(A}) given by compression of T;* to this kernel. We
denote the family {7;%*} by T

A holonomy invariant Radon transverse measure v for F determines a
trace tr, on certain families of operators on {L?(EF)}. In particular, for a
Dirac complex along F and a geometric endomorphism 7, tr, (7;*) is defined.

Then we define L,(T) by
k .
L,(T)= 3 (=1)'tr,(T}).
=1

=

We note here the following proposition.
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PROPOSITION 2.2. For each i, tr,(T;*) is independent of the metrics used
to define it.

See Section 5 for the proof.

In order to have a Lefschetz theorem for Dirac complexes and geometric
endomorphisms, we must make assumptions about the fixed point set N of
f and the behaviour of f near N. We assume that N =, N, is the finite dis-
joint union of closed connected submanifolds N, each transverse to F, and
that f is nondegenerate along N. Let L be aleaf and N = NN L. Nondegen-
eracy means that, for the map df, , induced from the differential of f on
ny=TL,/TNE, we have

det(Z,—df, ) #0.

Finally we remark that, given a family a = {a*} of smooth measures on { N’}
that vary smoothly transversely, we can define a measure a dv on M using the
invariant transverse measure. The main theorem of [HL1] is the following.

LEFSCHETZ FIXED POINT THEOREM. Let M, F, (E,d), v, f, A, T, and
N be as above. To each N* we can associate a smooth measure a* which de-
pends only on f, A, the symbols of A;, the metrics, and their derivatives to a
finite order on N*t. The family a = {a®} varies smoothly transversely and

L,(T) =SNadu.

REMARK. For the applications that follow, we consider a compact con-
nected Lie group G acting by isometries on M taking each leaf of F to itself.
An element g € G acts, via the differential, on the cotangent bundle along the
leaves and thus on the associated bundle Q of oriented orthonormal frames
of this cotangent bundle. We will assume that the action of G on Q liftstoa
principal bundle P which is a reduction of Q. Then G acts on vector bundles
E which are associated to P via representations of the structure group of P.
In the notation above, we have bundle maps A4,: E,, — E,. It is convenient
to define the action of g on E to be given by A,-1 so that g: E, - E,,. We
define L,(g) to be L(T,-1). With this convention G acts as a group of bundle
maps of E and as a group on C®(F) with the action given by (gs)(x)=
gs(g7'x).
We will be interested in the following complexes.

2.3. (E,d) is the de Rham complex along the leaves of F, the leaves of F
are even-dimensional, and each component of N has dimension g so that
each component of N’ is a single point x. If g is a topological generator of
a maximal torus of G, then the measure on N’ associated to the geometric
endomorphism g = 7,1 is given by

al(x)=signdet(/,—g,) = +1.
(See [ASe, p. 542] and [AB, I, p. 245].)
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2.4. Each leaf has dimension 24, and the principal SO(24) bundle Q has
a Spin(2k) reduction P. We assume that the action of G on Q lifts to an
action on P commuting with the projection Spin(2k)—SO(2k). Then G
acts as a group of bundle maps on the vector bundles A*(P), A~ (P). G acts
as a group of geometric endomorphisms on the complex Ey=A"(P), E|=
A~ (P), dy=D", di=D", where D*, D™ are the ordinary Dirac operators
along the leaves. (See [AS, III, pp. 569-571], [AB, 11, p. 474], and [HLI,
pp. 21-23].)

We conclude this section with a discussion of the characteristic numbers
X, (F) and /i,,(F ). Let M, F, v be as above, and assume that each leaf has di-
mension 2. For each leaf L let K be the curvature form of the Riemannian
connection on L, and let Pf(K*) be the associated Pffafian form. {Pf(K%))
is a smooth family of measures.

DEFINITION 2.5. x,(F)={,,Pf(K*)dy.

We note that the Connes index theorem [C] implies that x,(F’) is equal to
the v-index of the leafwise de Rham complex, and by [HL1, §6] x, (F) is also
equal to L, (7).

Let A, (py, ..., px) be the A polynomial [AS, III, p. 570] and A, (K*) the
differential form we get by replacing p,, ..., px by the Pontrjagin polynomi-
als in the curvature K-,

DEFINITION 2.6. A,(F)={,,A,(K")dv.

Again, the Connes index theorem implies that A, (F) is equal to the »-index
of the leafwise Dirac complex, which is in turn equal to L,(7).

3. The Main Theorem
Let M, F, and » be as in Section 2.

PROPOSITION 3.1. Suppose F is a foliation by surfaces and v is a non-
negative measure. If x,(F) <0 then no compact connected Lie group can
act nontrivially as a group of isometries of M taking each leaf to itself.

For the statement of the next proposition, let F, Q, P, and G be as in §2.4.
In this case, we say that F has a spin structure and that G preserves the spin
structure. The following is a generalization of the main theorem of [AH].

PROPOSITION 3.2. Let F be a foliation with a spin structure. If A,(F) #0
then no compact connected Lie group can act nontrivially on M as a group
of isometries taking each leaf to itself and preserving the spin structure on F.

Before proving these, we establish a lemma about fixed point sets of leaf-
preserving group actions.
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LEMMA 3.3. Let G be a nontrivial compact connected Lie group acting
on M by isometries taking each leaf of F to itself. The fixed point set of this
action is a closed submanifold which is transverse to F.

Proof. The fixed point set of a compact Lie group action is always a closed
submanifold, so we must show transversality. Let p be a fixed point, L the
leaf through p, and V the orthogonal complement of 7,,(L) in 7,(M). We
will show that the representation of G on V is trivial.

In a neighborhood of p the local leaves of Fare given by y;=¢,..., y,=
€4, Where {x,...,x,,»;,...,¥,} is a foliation chart. We write this as y =e.
The map exp,, is a diffeomorphism on a neighborhood of 0 € 7,,(M), so we
get a foliation of this neighborhood with leaves X, =exp, I(y =¢). Because
the differential dexp,,  is the identity, it follows that ¥, =exp, I(y,=0,...,
Yg=0)is tangent to 7,(L) at 0e 7,(M). Since V is transverse to X, at O it
follows that V is transverse to Z, for small |e|.

Let u € V (u sufficiently small), and assume that Gu # u. Then there is a
path 6, in G with 6, =id, such that the path ¥ — 6,u is a nontrivial path in VV
and hence is transverse to X, for small |e|. Since there are only a countable
number of local leaves corresponding to a given leaf of F, it follows that this
path will intersect some X, corresponding to a leaf of F other than the leaf
through exp,(u). Since exp, commutes with the action of G, this contradicts
the assumption that G takes each leaf to itself. Thus G acts trivially on V, so
exp,(V') is contained in the fixed point set. Thus the fixed point set is trans-
verse to F. 0

Proof of Proposition 3.1. We may assume that G = S'. Suppose G acts non-
trivially, and let g be a topological generator of G. As a leaf-preserving dif-
feomorphism of M, g is homotopic to the identity, and hence (by [HLI,
6.3]) the map g%* induced on the L? harmonic forms on each leaf is the
identity. Thus L,(g)=L,(I)=x,(F).

The action of g on M must have a nontrivial fixed point set, since other-
wise the Lefschetz theorem implies that x,(F) = 0. Let p be a fixed point on
the leaf L. dg,f is orientation-preserving because it is homotopic to the iden-
tity, and hence it must be rotation through an angle 6. 6 # 0, for otherwise
g% would be the identity on L, and from Lemma 3.3 it follows (since M is
connected) that g is the identity on M. Thus p is isolated on L and from
§2.3 we have a%(p) = +1. We apply the Lefschetz theorem to g acting on the
de Rham complex along the leaves to conclude that

x(F)=L,(g)=| (+Dav=r(N)=0,
which is a contradiction. O

We remark that in the case where there is only one leaf M, a proof using the
Lefschetz theorem of [AB] was given by Atiyah (lecture).
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For the proof of Proposition 3.2 we need the following result. Assume
that the compact Lie group G acts as a group of geometric endomorphisms
of (E,d),where g: E; ,—E; ,.. Again, it will be sufficient to consider G= S !

THEOREM 3.4. The Lefschetz number L,(g) is a continuous function or
G.

Proof. From [HLI1, Thm. 5.1] we have

k
L,(8)= 2 (=1)'tr, (T, ;e "4).
i=0

Let E=E;, A=A;, and T,=T, ;. Let k, ;(x, y) be the Schwartz kernel of
exp(—¢AL) and let B «: E,— E,, be the map induced by g. The Schwartz
kernel k£, (x,y) of T,-1exp(—tAF) is B, .k, (x,gy). From the definition
of tr, it will be enough to show that for fixed ¢, tr kf (x,x) is continuous in
g, uniformly in x; that is,

|tr k£, (x,x)—tr k! (x,x)| < C|g—h|,

where C is independent of x € M. Note that we use the more suggestive nota-
tion g — hinstead of gh~!. We will suppress the sub- and superscript L in the
subsequent discussion.

We first take the case where E is a trivial 1-dimensional bundle. Relative
to an orthonormal section of E, k,(x,y) and B, , are functions. We first
show that k,(x, gx) is continuous in g, uniformly in x. It follows from the
uniform continuity of G acting on M that for |g — /| small and any x, hx will
lie in a good coordinate system [R, p. 93] centered at gx on the leaf through
x. The disjoint union of the leaves of the foliation is a manifold of bounded
geometry, so there is an integer s > 0 independent of x and the leaf such that
oy, the Dirac function, lies in the Sobolev space H_ (L). Let y be a C*
function of compact support on L. For fixed x, g, & let ¢ be the L? function
(14+A) (845 —0py), and let y = (14+A) " y. Then

3
Kes Vo] =[v(8%) —y(hx)| = ' > ﬁ(fi)((gx); — (hx);)

in normal coordinates on L centered at gx. From the Sobolev inequalities
it follows that

dy
0X;

(&)||(gx)i— (hx);| = Ck|v|k|gx—hx],

|<90s ¢)L2(L)| = Sl;p

where K is a positive integer greater than s and independent of x, || |k is the
Sobolev K norm, Cy is a constant depending only on K, and |gx — kx| is the
distance between gx and /Ax determined by the metricon L. |y|x=[¥|x_s, s0O

Ko, )| 21y = Ck ¥ | ks | gx — hx]
and it follows that |¢|_(x—s)=< Cx|gx —hx|. Now
"‘P”—(K—s) = H(l + A)—(K_S)(l +A)_S(6gx—6hx)”0 = " 6gx_ 6hx”—l(-
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Thus |6, —6yx|—x = Ck|gx—hx|, which is bounded by a constant times
|g — 1| independent of x, because of the uniform continuity of the action
of G. Now

Ikl(xa gx) —k,(x, hX)I = |<e—m(6gx - 5/1x)a 6x>|

<le™" -k, 16l -k 18gx = Snxl -
Bounded geometry of the leaves implies that |6,[_x is bounded independent
of xe M, and |exp(—¢A%)|_k k is bounded for fixed ¢; hence |k, (x, gx)—
k.(x, hx)| is bounded by a constant times |g — /| independent of x € L and
of the leaf L.
Now

| B, ki (x, 8X) =By vk (x, hx)| <|By || k/(x, gx)—k,(x, hx)|
+|Bg,x—Bh,kat(x, hx)]-

It follows from the boundedness and uniform continuity of the map (g, x) —
B, ,, the boundedness of |k,(x, y)| for fixed ¢ [HLI, 2.3.13], and the previ-
ous result that the right-hand side is bounded by a constant times |g — /|in-
dependent of x and L.

More generally, when E is not a trivial bundle choose synchronous ortho-
normal framings {v,,...,v,} near x and {w|,...,w,} near gx on the leafl L
through x. For v having length 1, let §* be the distributional section of E*
given by 6V*(s) = (s(x), v),. 6"*e H_.(E") for s independent of x and v.
As above, |6""| _ is bounded independently of v, x, and L for K >s. Asin
the previous case, let ¢ = (14+A)™5(8"/>8*— "), let ¥ be a C* compactly
supported section of EL, and let y = (1+A%)~5y. Then

(o, W2ty < Cklvlklgx—hx|
and

lol - k—s)=18"78= 8" M| _x < Cx|gx — hx],

so that |k;/(x, gx) — k/*/(x, hx)| and hence also |k,(x, gx) — k,(x, hx)| is
bounded by a constant times |g — /| independent of x and L. Now a calcula-
tion in normal coordinates and synchronous framings identical to the case
of E trivial shows that |tr B, .k, (x, gx)—tr By .k, (x, hx)| is also bounded
by a constant times |g — /| independent of x and L. O

Proof of Proposition 3.2. We can assume that G =S, The fixed point set N
of G is a closed submanifold transverse to the foliation F. Let N, be a con-
nected component of N and let y e N,N L. The normal bundle to N,NL in
L at y can be written as @ V¥, where G acts on Vy/ by the representation § —
exp(2wim;0) for m; > 0. It follows that the V/ are complex G vector bundles
on N,NL.

Let z be a complex number, z # 1. The function 1/(1 —ze™*) can be written
as R(x, z), where R(x, z) is a formal power series in x whose coeflicients are
rational functions in z having a pole only at z =1 (and no pole at z = ).

Let A"(z) =(z")/* 11}~ %/2R(x;, z). Because of the factor (z")"/2 this
is defined only up to sign. It defines a formal power series in ¢y, ..., ¢, the ele-
mentary symmetric functions in xi, ..., X,.
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Now let z € G be a generator. z acts on ¥/ by multiplication by z. Let
A(V/,z) = A%(z"), where d; is the (complex) dimension of V.

The Riemannian connection on N,NL preserves the bundles ¥/ and is a
complex connection on each V7. We can replace ¢, ..., ¢, by the Chern poly-
nomials in the curvature of this connection. In this way A(V7, z) becomes a
differential form on N, N L. Let A(N, N L) be the differential form we get by
replacing the Pontrjagin classes in the expression for the A class of a real
vector bundle [AS, III, p. 570] by the Pontrjagin polynomials in the curva-
ture of the Riemannian connection on N,N L. Then we define

AN,NL,z)=AN,NL) ] AV, 2).
J

Now A(N,NL,z) is a differential form on N, N L that has the factor (z9)"/?,
where d =3 m;d; and d;=dim¢ V”. The choice of sign is determined by the
argument of [AH, p. 21]. Namely, let y € N, and choose (z9)"? 50 that

2nazd H(l +zmj)df= trace(z I (A+(P)y®A—(P)y))’
J

where L is the leaf through y and 2n, = dim(N,NL). A(N,NL,z) is the
leafwise measure on the fixed point set given in the foliation Lefschetz theo-
rem for z acting on the leafwise Dirac complex, and

L@)=32| AN.NLz)dy
(see [HL1] and [G, Thm. 0.4, 2d]).
Now consider the function on the complex plane given by

A(F,2)=3 S A(N,NL,z)dv.
o o
Since A(N,NL, z) is a differential form whose coefficients are rational func-
tions having poles only at the roots of unity, the same is true of A(F, z) and,
because of the factor (z9)2, A(F,0)=0 and A(F, z) has no pole at z=co.
For z € S! (but z not a root of unity), z is a topological generator of S' and
thus the fixed point set of z acting on M is the same as the fixed point set of
S!acting on M. For such a z acting on the leafwise Dirac complex we have

L,(z)=A(F,z).

The left-hand side of this equation, however, is defined for all ze S! and,
by Theorem 3.4, L,(z) is a continuous function on S'. Thus A(F, z) has no
poles and so is analytic and bounded, and thus is a constant and hence zero.
Therefore L,(z) =0 for all ze S’. But for z=1, L,(z) = A(F). 0

4. Examples

Let M be a compact Riemannian manifold, F an oriented foliation, and
v an invariant transverse measure. In [HL1] we have introduced the group
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O(M; F) of isometries of M taking each leaf to itself. Proposition 3.1 im-
plies that if F is a foliation by surfaces, » is nonnegative, and x,(F) <0,
then O(M; F) contains no nontrivial compact connected Lie group.

Similarly, let F be a foliation by Spin(2k) manifolds and let P be a spin
structure for F. We let O(M; F, P) be the group of isometries of M which
take each leaf of F to itself and which preserve the spin structure of F. With
the hypothesis of Proposition 3.2, O(M; F, P) contains no nontrivial com-
pact connected Lie group.

We now give examples to show that O(M; F) and O(M; F, P) can still be
nontrivial and not finite.

LEMMA 4.1. Let M, F,v be as above. Suppose that M is a flat bundle over
the compact even-dimensional manifold X with fiber S, and that F is the fo-
liation of M given by the flat structure. Then x,(F) = x[X1v(S) and A,(F) =
A[Xv(S). In particular, if x| X]1<0 and v(S)>0 then x,(F) <O0.

Proof. Let w: M — X be the bundle projection. We can construct an open
set U in X of full Lebesgue measure such that, for each leaf L and fixed
xp€ U,
= WWH)NL= U U,
zer Hxg)NL

where {U,} are open and mutually disjoint, and where 7 (U;) = U and each
U, is a fundamental domain for the cover 7: L — X. Construct a measurable
function f: M - S==n"1(x,) by

|z for uel,
f(”)"{zo for ue M—="\(U),

where z, is a fixed point in 7~ !(x,). By the definition of x, and A4,,

o ={ (| . Pr&H)dna);
zes\Jf2)

- _ - L
Am={_({ ., AkH)ar.

But Iif(KL) and Ai(K") are given by local data on X: Pf(K")=Pf(X")
and A, (KY)=A,(K%) on U,. 7 (Uy) has full measure in X, so the integrals
become x[ X ]v(S) and A[X]v(S), respectively. O

Let T" be the fundamental group of a compact surface of genus 3. Let H be
the hyperbolic disk. We take the complex structure on the surface given by a
symmetric fundamental domain D in H. Let {a,a’}, {b, b’}, {c,c’}, {d,d’},
fe,e’}, and {f, f’} be pairs of opposite sides of D. Let A, B, C, D, E, and F
be orientation-preserving isometries of H without fixed points which take
(resp.) atoa’, bto b, ctoc’,.... Iis the free group on these generators
subject to
FE-'DC™'BA~'F'ED"'CB'A=1.
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Let 6,,0, be independent irrational numbers in S!=R/Z. Define a homo-
morphism #: I - translations(S') by sending

AE,C"to 06-0+60,, A LE™,C to 60—6,,
B,F,D"'to 650+0,, B\, F™D to 6—0—6,.

The above relation is clearly preserved under this homomorphism. Let M =
H xS, where the identifications are given by (x, 6) ~ (yx, h(v)0) for yeT.
M is a flat bundle over a surface of genus 3, and M is foliated, the leaves
being given by the images of H x {point} in M. The action of I" on S' pre-
serves the standard measure and thus induces a nonnegative transverse in-
variant measure for the foliation. From Lemma 4.1 we have x,(F) <0.

We construct a leaf-preserving isometric action of Zx Z on M by

(m,n)[x,0]={x,0+mb,+no,].

This action is clearly well defined and takes each leaf to itself. It is clear that
a nontrivial element of this group cannot have any fixed points.

There are other leaf-preserving isometries of M which do have fixed points.
Let G=SL(2) and K =S0(2) so that H = G/K. It is easy to check that the
map of M given by [gK, 0] — [gogK, 0] is well defined on M if

h(goy ‘g5 'y)=1 forall yeT.

This map is clearly an isometry taking each leaf to itself. Let g, be the ele-
ment of SL(2) which induces rotation by —2#/3. It is easy to see that the
condition above is satisfied; thus the map induces an isometry of M with
fixed points. In fact, one can readily show that L,(gy) > 0.

Finally, we construct an example of a compact manifold foliated by spin
manifolds with 4, (F) # 0 and with an infinite group of leaf-preserving isom-
etries which preserve the spin structure on the foliation. Let X,(d) C CP?3be
the surface given by a polynomial of degree d. Then from [LW, p. 478] the
characteristic classes of X,(d) are given by ¢;=(4—d)x and p, = (4—d?)x?2,
where x is the restriction of the canonical generator of H2(CP3). Thus X,(4)
is a compact orientable 4-manifold with ¢; =0 and hence w,=0 and p,;=
—12x2, so that A[X,(4)] # 0. Let X = X,(4)#T*. Since

Wo (X)) =wy(X2(4) +wy (T =0,

X is a spin manifold. A[X]=A[X,(4)]+A[T*]=A[X,(4)]#0 since the
connected sum is oriented cobordant to the disjoint union. Let I'" be the fun-
damental group of X. H{(X) = H,(X,(4))® Z*, and thus I" maps surjec-
tively to Z4. Choose a Z factor in Z# and let p: I" — Z be the surjection onto
this factor. ‘ :

Let P be a spin(4) reduction of X, X the universal cover of X, and P the
pullback of P to X. It follows that P is a spin(4) reduction of X. Choose an
irrational number 6, S' and let I" act on S'! by

v0 =27mp(v)6o+0.
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We let M = X x S! with the foliation F having leaves given by the images of
X x {point} in M. F has an invariant transverse measure v as in the previous
example, and has a spin structure given by P x S. It follows from Lemma
4.1that A,(F)#0.
Let yo€I" be an element which maps onto a generator of Z under p. We

have an action of Z on M given by

n[x,0]=[x,2mp(yg)0o+01.
Clearly, this is an isometric leaf-preserving action which has a lift to the spin
structure on F given by

nle,81=1[e, 2mp(vg)0p+0]

for [e,01e Pxp S

5. Proof of Proposition 2.2 and Remarks

This section is essentially an addendum to [HL1]. We begin by proving the
following.

PROPOSITION 2.2. For each i, tr,(T;*) is independent of the metric used
to define it.

Proof. Choose metrics on M and the E;. For a leaf L we have EF, df, and
A} as in Section 2. Denote by

QL LX(EFy - ker(df) and PL:L*(EF) - ker(Ak)

the orthogonal projections. Let A% ! be the Laplacian determined by anoth-
er choice of metrics and Pf: L2(EF) — ker(A%!) the associated projection.
Note that P{ is not necessarily an orthogonal projection on L*(E}) with re-
spect to the inner product given by the original metrics (which we continue
to use).

The Hodge theorem for Dirac complexes tells us that

ker df =im d- ;,®ker AF =im dF ;@ ker AP,
In addition, both P and P}, when restricted to ker d, are zero onimd} ;.
Thus, on ker df, P*P{=P" and P{ = P{P". The facts that T;(imd% ) C
im d- | and T;(ker d}) C ker dF then easily give that
PLT, Pt |ker dF = PLPLT, PE | ker df.

Note that (PF)?=PL, (PL)?=PL, and Q“PL=PLQL=PL Now let P=
(P}, Py={P{}, and Q={Q"}. Then
tr,(PT; P) =tr,(QPT; POP) =tr,(QPP,T; P QP) =tr,(PP,T; P, P)

=tr,(P,T;P{P?) =tr,(P{T;P\P) =tr,(P,T; P, PP;) =tr,(P,T; P)).

The fourth and sixth equalities follow from [HLI1, §2] and the facts that
P,T;P, P is a bounded measurable leafwise smoothing operator,



296 JAMES L. HEITSCH & CONNOR LAZAROV

Pt=lim exp(—tA}) and P{=lim exp(—rAQ"). O
{—c0 {0

COROLLARY 5.1. The Betti numbers (3; of a foliation do not depend on
the metric on M.

Recall that 8; =tr,(P;). This corollary was first proven by Connes [C].
Consider now the signature operators D along the leaves of a foliated
manifold where the foliation has dimension 2k. Let ¢ be the usual involu-
tion on leafwise forms; let Pf++ be projection onto the +1 eigenspace of ¢ in
ker A%, and similarly for P{~ (see [AS, I1I]). On each leaf L, consider the
quadratic form on L? harmonic forms given by (a, 8) =§, a A *B. The usual
argument of [AS, III] shows that P are the projections onto the positive
and negative definite spaces of this form. Let P = {P{'*}, D, = {D%}, and

S, (M, F) =tr,(P{) —tr,(Py).

The argument of [AS, III] extends to show that the » index of D, I,(D,),
satisfies
IV(D+) :SV(M! F)

COROLLARY 5.2. S,(M, F) does not depend on the metric on M.
Proof. I,(D,)=L,(I), where I is the identity map of M. tl
We note the following.

THEOREM 5.3. Suppose f, and f, are leaf-preserving isometries of the
Soliated manifold M which are homotopic through leaf-preserving diffeo-
morphisms (not necessarily isometries). Then L,(fy)=L,(f,) for the sig-
nature complex.

Proof. By (6.3) of [HL1], f5=./{ acting on harmonic forms. But for the
signature complex, ker A C harmonic forms. 0l

Theorem 5.3 is also true for the de Rham complex, and we may drop the
condition that f, and f; be isometries.

Finally, we remark that the results of [BT], originally conjectured by Wit-
ten, extend to foliated manifolds in much the same way as the result of [AH]
on the A was extended here.
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