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1. Introduction

Only recently have examples of compact symplectic manifolds with no posi-
tive definite Kdhler metrics been found. The first examples were given by
Kodaira [Kod] and independently by Thurston [Th]. In fact, as is becom-
ing apparent, in any even dimension greater than 2 the compact non-Kihler
symplectic manifolds are fairly widespread. There are (see, e.g., [BG],
[CFG], [CFL)) many nilmanifolds that are symplectic, but none can carry a
positive definite Kdhler metric. However, some symplectic manifolds with
no positive definite Kdhler metric possess indefinite Kidhler metrics.

In order to find more classes of symplectic manifolds, especially ones with
no positive definite Kdhler metric, we generalize the constructions of [CFG]
and [FGG]. In the latter paper symplectic structures on compact 4-dimen-
sional nilmanifolds were described; the manifolds were viewed as circle bun-
dles over 3-manifolds B which themselves are circle bundles over tori. In
order to generalize this construction to surfaces of higher genus we were led
to a somewhat different description, which we present in Section 2, where B
is viewed as a mapping torus of a symplectic diffeomorphism of a 2-torus.
It is this description that generalizes. We then observed that the construction
given in Section 2 always produced symplectic manifolds with free S'-actions,
and we wondered if a general symplectic manifold with a free circle action
arises in this way. In addressing this question we realized that the construc-
tion of Section 2 could be generalized further, and that this broader con-
struction gave rise to the general symplectic manifold with a free circle ac-
tion. Again, many of these more general symplectic manifolds do not have
positive definite Kdhler metrics. This broader construction is given in Sec-
tion 5. In Section 6 we show that all symplectic manifolds with free S'-actions
arise in this way.

The construction of Section 2 begins with a compact symplectic manifold
U together with a symplectic diffeomorphism ¢: U — U. From this we con-
struct a bundle U, over § 'with fiber U and monodromy ¢. Next, if b is an
element of H'(U,Z) invariant under ¢, we use b to construct a principal
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circle bundle E over U, and a symplectic form on E. In the more general
construction given in Section 5 we begin with a manifold U, a diffeomorph-
ism ¢: U— U, and a certain type of 1-parameter family of symplectic struc-
tures -, periodic under ¢. Once again there is a symplectic form on the
total space built out of the symplectic forms on U.

As indicated above, one aspect of the construction that interests us is the
question of which of the symplectic manifolds that we construct carry no
positive definite Kdhler metrics. We address this question explicitly in Theo-
rem 6, where we show that as long as the class b is nonzero the construction
produces a symplectic manifold with no positive definite Kdhler metric.

We shall assume throughout that all manifolds and maps are of class C*.

2. Construction of Symplectic Manifolds from
Lower-Dimensional Symplectic Manifolds
and Symplectic Diffeomorphisms

Let U be a compact oriented differentiable manifold and ¢: U — U a diffeo-
morphism which preserves the orientation. The mapping torus U, of ¢ is
just Ux [0, 1] with the ends identified by ¢. It is naturally a C* manifold,
because it is the quotient of U X R by the infinite cyclic group generated by
(u, t)~ (e(u), t —1). First we note the following lemma.

LEMMA 1. A C*®-form won Ux[0,1] glues up to give a C*-form on U,
provided that for all n>0 we have

L[ 0" 0"
ANF T2 PPN R TE

Next we observe the following.

Ux|[1l}

LEMMA 2. For any be H'(U,R) with ¢*b =>b there is a closed 1-form 3
on U, such that the restriction of 8 to U X {0} is a representative for b.

Proof. Let b be a closed 1-form on Urepresenting be H'(U,R). As ¢*b = b,
we have ¢*b—b =df for some C® function f: U—R. Let ¥:[0,1]— [0, 1]
be a C* function identically 1 near 0 and identically O near 1. We write

B(x, 1) =Y()b(x)+ (1= Y (1)) e*b(x) — (1) f(x) dt.

Then S is a 1-form on UX[0, 1], which by Lemma 1 glues up to make a 1-
form 8 on U,. Clearly, df =0 and [ |yx0;]=b € H'(U,R). O

The natural map p: U, — S' defined by p(u, £) =e*™" is the projection of
a C*locally trivial fiber bundle. Let w be the volume form of S!, normalized
so that it represents a generator of H'(S',Z). Put o = p*(w); then the co-
homology class [a] of « is an integral class in H l(U«,, 7).



Compact Symplectic Manifolds with Free Circle Actions 273

LEMMA 3. Let be H(U,Z) with ¢*b=>b. Then the class [8] of the form
B given in Lemma 2 is integral, and its image in H l(US,,, R) is unique up fo
multiples of [a]. Finally, the class [a]U[B] eHZ(Uw, R) is the image of b
under the natural map a in the Wang sequence ’

- — H'(U,2) <= H'(U, 2) > H*(U,,, Z) — H*(U, Z) — ---
Proof. This is immediate from the definition of the Wang sequence. ]

As a consequence of Lemma 3, given an invariant class b e H'(U,Z), the
class [¢]U[Ble H 2(Uw, R) is independent of the choice of 8, asin Lemma?2.

With these preliminaries out of the way, we are ready to proceed to the
first case of the main construction.

THEOREM 4. Let U be a compact manifold and assume 2, is a symplectic
form on U. Suppose there is a symplectic diffeomorphism ¢: U — U such
that the induced cohomology map ¢*: H\(U, Z) - H\(U, Z) has an element
b e HY(U,Z) with ¢*b =b. Let 8 be any form of the type constructed in
Lemma 2. Let w: E — U, be the principal circle bundle whose Euler class is
a(b) e H2(U¢, Z). Then Qy, gives rise to a symplectic form g on E.

Proof. Since ¢*(Q2y) =Qy, the pullback of @y to Ux [0, 1] via the natural
projection is a closed 2-form which descends to a closed 2-form @ on U,.
Moreover, the restriction of © to each fiber is Q, so Q never vanishes on U,,.

It is well known that corresponding to a(b)e H 2(U%,, Z) there is a circle
bundle x: £ — U,. By Lemma 3 there is a connection form 5 for this bundle
whose curvature form is a A B (i.e., 7*(aAB) =dy; see, e.g., [Kob]). Define

Qr=7*(D+7*(x)An.

Then Qf is closed, and it is not hard to see that Q5 has maximal rank; thus
Qf is a symplectic form on E. L]

We also have the following corollary.

COROLLARY 5. If the symplectic form Q, is integral, then the symplectic
Jorm Qg constructed in Theorem 4 is also integral.

3. When is E a Kihler Manifold?

Now we take up the question of whether manifolds like the ones constructed
in Theorem 4 have positive definite Kidhler metrics. If ¢ is isotopic to the
identity, b =0, and U has a positive definite Kdhler metric, then E is diffeo-
morphic to the product of U with a torus. Clearly, E has a positive definite
Kihler metric. Our main result along these lines is the following.

THEOREM 6. Let U be a compact oriented manifold, let ¢: U— U be an
orientation-preserving diffeomorphism, and let be H'(U,Z) be invariant
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under ¢. If b #0 in H'(U, R), then the total space E of the circle bundie over
U, with Euler class a(b) carries no positive definite Kdhler metric.

There are two cases, depending on whether or not b is in the image of
(¢*—1). We do the simplest case first.

PROPOSITION 7. Use the notation as in Theorem 6. If b is not in the
image of (¢*—1): HY(U,R) - HY(U,R), then E carries no positive definite
Kahler metric.

Proof. 1t follows from the assumption that b is not in the image of ¢*—1,
the Wang exact sequence

-+ — H'(U,R) <= H'(U,R) > HX(U,,R) - - -+,

and Lemma 3 that the 2-form a A 3 represents a nonzero class in A 2(Uw, R).
Therefore the principal circle bundle 7: E — U, determined by it is nontrivial.
Since m*(aAB) = dn, the Massey product

p= L7 ()], [7*(a)], [*(B)]) =[7*(a) A 7]

is defined in E. This closed 2-form evaluates nontrivially on the 2-dimen-
sional torus 7 in FE sitting over a section of p: U, — S'. Since any element in
the image of n*: H 2(U‘,,,R) — H?(E,R) vanishes on 7, it follows that g is
not in =*(H*(U,,R)) C H*(E, R). It follows from the Gysin exact sequence
for w: E— U, that the map =*: H'(U,, R) > H'(E,R) is surjective, so that
the Massey product p is nontrivial modulo the ideal

H'(E,R)-([7*(c)], [7*(8)]).
Hence, E has no positive definite Kidhler metric by the main theorem of
[DGMS]. Ll

Now we turn to the case when b # 0 but b € Im(¢*—1). Showing that E is
not formal as defined in [DGMS], and thus has no Kdhler metric, essentially
amounts to proving that £ has nonzero higher Massey products.

Let VC H'(U,R) be the generalized eigenspace of ¢* associated to the
eigenvalue 1; thus V is the maximal ¢*-invariant subspace on which (¢*—1)
is nilpotent. Clearly, b € V. There is n = 2 such that

belm(e*—1)""! but bé¢Im(e*—D"
Choose b, € V with (¢*—1)""'b,=>b, and set
bi=(¢*—1)""'b,

forl1=i=n—1. Then b=b,=(¢*—1)b,,...,b,_;=(¢*—1)b,,.
Next we construct an abstract differential graded algebra

A*=A*a,b,,..., b,),
where degree(a) = degree(d;) = 1. We define the differential on A* by setting



Compact Symplectic Manifolds with Free Circle Actions 275

dc'i=d5,=0 and db_,'=5,'_1/\ﬁ for 2_<.i5n,

and then extending to all of 4* by the Leibnitz rule and linearity. Clearly,
A* is built up from the trivial differential graded algebra by a sequence of
Hirsch extensions of differential graded algebras. (See [DGMS, p. 249] fcr a
definition of Hirsch extension, which is called elementary extension there.)
Furthermore, the cohomology classes of b, and @ form a basis for H'(A*),
and b, Aa is a closed 2-form in A* representing a cohomology class which is
not divisible by the cohomology class of a.
Let Q*(B) denote the de Rham complex of a manifold B.

LEMMA 8. Suppose U, ¢, and b are as in Theorem 6. Suppose further that
b#0 in H'(U,R) but that b e Im(¢*—1). Then there is a map

¥:A* - Q% U,)

of differential graded algebras sending a to o and by to the form (3 construc-
ted in the proof of Lemma 2. Furthermore, ¥(b,\@) is a closed form rep-
resenting a class in H*(U,, R) which is not in the image of

Ulel: H{(U,,R) > H*(U,,R).

Let us accept this lemma for the moment and use it to take care of the case
b#0, belm(p*—1).

PROPOSITION 9. Let U, ¢, and b € H (U, Z) be as in Theorem 6. Suppose
that b#0 in H'(U,R) but that b € Im(p*—1). Then E has no positive defi-
nite Kdihler metric.

Proof. We begin by showing that neither U, nor E is formal. Were U,, formal
then by definition there would be a diagram of differential graded algebras

Q*(U,) <~ 9L (H*(U,,,R), d =0},
where i/ and j induce isomorphisms on cohomology, and where
HYQU,) S B+ £ HY(U,,R)

is the de Rham isomorphism. (For example, one could take I to be the min-
imal model for Q*(U,).)

By Lemma 8 we have ¥: A*— Q*(U,). Since A* is a sequence of Hirsch ex-
tensions and since i* is a homotopy equivalence of differential graded alge-
bras, there is a map ¥: A*— 9 such that i ¥ is homotopic to ¥. In partic-
ular, i*e¥*=¥* in cohomology. We consider jo¥: A*— {H*(U,,R),d=0}.
Clearly, jo¥(@) = [«] and jo¥(d;) is some class a;e H'(U,,R) for I <i=<n.
Thus, j-¥(b,A@)=a,U[a]le H*(U,,R). Since

Jr¥*=¥*: H*(A*) - H*(U,, R),

this implies that ¥(5, A@) is a closed form in the ideal [«] -H*(U,, R). This
contradicts the last assertion in Lemma 8, and establishes that U, is not
formal.
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Now let us deduce that E is not formal either. Recall that E is a principal
S-bundle over U, with connection form 5 satisfying dn = 7*(aAS), where
w: E — U, is the natural projection map. Since b € Im(¢*—1), the form a A
is exact in U,. Thus, there is a connection 1-form 5 for E — U, which is
closed. Then the natural map

A @QU,) > 9(E)

induces an isomorphism in cohomology. Hence the minimal model for Q*(E)
is isomorphic to A*(n) @ M(U,), where M(U,) is the minimal model for
Q*(U,). In particular, H*(E) = A*(n) @ H*(U,). Were E formal, then there
would be a map of differential algebras

p: A () Q@MU,) - {H*(E),d =0}
inducing the identity in cohomology. The composition
M(U,) = A*(n) @ M(U,) & (H*(E), d =0} - (H*(U,), d = 0}

would also induce the identity on cohomology, contradicting the fact that

U, is not formal.
Since E is not formal, by [DGMS] it does not have a positive definite

Kahler metric. U

NOTE 10. By a similar argument one can show that if U, satisfies the con-
clusion of Lemma 8, then the total space of any circle bundle over U, is not
formal and hence does not have a positive definite Kdhler metric.

Proof of Lemma 8. For 1<i<n we inductively define 1-forms §;(x, ¢) on
U X [0, 1] such that:
(a) each f;(x,t), 1 <i=<n, descends to a 1-form B;on U,;
(b) dB1=0and dB;=6;_Aafor2=<i<n;
(c) forall £€[0,1], B;|uxys is closed and
[8i|uxiny] =b;mod(by, ..., b;_y).

We set 3, = as in Lemma 3. Clearly, (a)—(c) hold for §,. Suppose that in-
ductively we have defined (4, ..., 8;_; as required for 2 <i < n. Consider

(1)

¥(x, 1) = “S;Bi—l(x,s) ds.

By (c), for 3;_; we see that ¥ | yxy, is closed and that
[¥]uxi) =tb;—ymod(b,, ..., b;_,).
In particular, if

@ y=={ Bi(x.s)ds

then + is a closed 1-form on U with [y] =b;_; mod(b,, ..., b;_5). Thus, [y] =
(¢*—1)[£] for some closed form & with [£]=b; mod(by,..., b;_;). We write
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(3) y=(e*—1)E+df
and we define

Bitxe, 0 =={, Bioa(x,5) ds+ E+dWO) - (oo™ (1)),

where ¢ is in Lemma 2.
Clearly, N _
go*B,(x,O)=<p*E+df and B,‘(x,l):’}/"i'g.

Hence, by Lemma 3 and equations (2) and (3), we see that condition (a)
holds for §;. Also, dB;(x,t)=0;_,(x, t)Adt. This proves (b).
Furthermore, [6, | UX{[]] = [f]mOd(bl, ceey b,‘_}). As [E] = b,‘ mOd(bl, esey
b;_;), we obtain (c).
The inductive construction of the {; is finished, thus completing the proof
of Lemma 8, and hence of Proposition 9 and Theorem 6. [l

COROLLARY 11. Let U be a compact manifold, and let Q be a symplectic
Jorm on U. Suppose ¢: U — U is a diffeomorphism with ¢*Q = Q. Suppose
also that be H'(U, Z) is invariant under ¢ and that the image of b in H'(U,R)
is nontrivial. Let E — U, be the circle bundle with Euler class a(b). Then E
has symplectic structure, but has no positive definite Kdihler metrics.

Proof. This is immediate from Theorems 4 and 6. U]

4. Examples

Here are two classes of examples of Corollary 11.

(1) Let U be a Riemann surface of genus g=1, and let be H'(U,Z) be
nontrivial. Consider the circle bundle E — U x S! with Euler class b®|«],
where [«] is the generator of H'(S',Z). Then E has a symplectic form but
no positive definite Kédhler metric. (That £ has no positive definite Kihler
metrics follows already from the fact that b(E)=2g+1.)

(2) Let U be a Riemann surface of genus g=1, and let 7: U—> U be a
Dehn twist about a topologically nontrivial closed curve v. There is a vol-
ume form on U invariant by 7. Let b € H'(U, Z) be any nontrivial class with
zero homological intersection with . Let E — U, be the S!-bundle with Euler
class a(b). Then E has a symplectic structure but no positive definite Kahler
metric. (Notice that b(E)=2g if [y]1#0in H(U,Z), and b{(E)=2g+1if
[v1=0.)

If U= T?, then both examples yield a 4-manifold diffeomorphic to N3 x S,
where N is the Heisenberg nilmanifold of dimension 3. These are exactly the
examples constructed in [FGG].

5. A More General Construction

First of all we shall give some simple examples of 1-parameter families of
symplectic forms.
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LEMMA 12. Let X be a Kdhler manifold and let ¢: X — X be a complex
analytic diffeomorphism. Denote by F the Kdhler form of X and by g the
corresponding (positive definite) Kdihler metric. Then

t->(1=t)F+tp*(F)

is a C® 1-parameter family of symplectic forms for 0<t <1.

Proof. Since the set of positive definite metrics is convex, g,=(1—¢)g+
to*(g) is a positive definite metric. It is easy to verify that g, is Kdhlerian,
and that its Kdhler form is (1—¢)F+to*(F). ]

NOTE 13. If U is a Riemann surface with volume form Q and if ¢: U—> U
is an orientation-preserving diffeomorphism, then an argument along the
same lines shows that there is a 1-parameter family 2, of volume forms on
U connecting Q to ¢*{Q.

In this section it will be convenient to describe the mapping torus a little dif-
ferently than in Section 2. Let X be an oriented manifold together with an
orientation-preserving diffeomorphism ¢: X — X. Fix r >0 and denote by

_ XXR
v (x,t)~(<p(x),t—r)
the mapping torus of ¢. Then the canonical 1-form dt on R can be consid-
ered as a 1-form on X X R, and since it is invariant by the diffeomorphism

(x,1) > (¢(x),t—r), it descends to a I-form « on the quotient X,.
The purpose of this section is to prove the following.

THEOREM 14. Let X be a (2n—2)-dimensional compact oriented mani-
fold together with an orientation-preserving diffeomorphism ¢ : X - X. Sup-
pose that £ e H*(X,Z) is an integral class invariant under ¢. Let ¢ be any
class in H Z(Xw Z) such that

¢|lxxio=&.

Let M.— X, be the S-bundle with Euler class c. The following condition is
sufficient for M, to have a symplectic structure invariant under the S'-action:

There is a 1-parameter family Q, of symplectic structures on X
with ¢*Q,_,=Q, and with [Q,]=[Qy] +E.

Let us examine the special case £ =0. Any c € H*(X »» L) whose restriction to
X x {0} is trivial is of the form a(b) for some b e H'(X,Z). In this case the
l-parameter family of symplectic forms 2, has constant cohomology class,
but are not required to be constant forms. Thus, Theorem 14 in the special
case when ¢ =0 generalizes the construction in Section 2.

To prove Theorem 14 we need several lemmas. The first two are easy ex-
ercises.

LEMMA 15. Any class fe H*(X »» R) which restricts to zero class on X X
{0} has a 2-form representative in the ideal of «.
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LEMMA 16. The family of 2-forms Q, on X gives rise to a 2-form Q on
X x R whick is invariant under the diffeomorphism (x, t) - (¢(x), { —1).
Hence ) defines a 2-form { on X,,.

LEMMA 17. Under the hypotheses of Theorem 14 there is a 2-form vy on
X, such that

(1) dvy=0;
(i) [yl=ce H(X,,Z);
(ili) dQ=aANy.

Suppose for the moment that Lemma 17 is true.

Proof of Theorem 14. Let v be the 2-form given by Lemma 17. Conditions
(i) and (ii) imply that there is a connection 1-form 5 e A/(M.) with dy = 7*y.
We define a 2-form Q. on M, by

Q.=7*(Q)+ 7*(a) A .
Then, by part (iii) of Lemma 17, we have
dQ.=7*(dQ)—n*(a)\dy
=7*(dQ—aNy)
=0.
To show that €. is nondegenerate, we note that
Q= nr*(Q"HAT* (@) Ap=nT*( Q" A a) A

Of course, 2" never vanishes on tangent space to the fibers X X {t}< X,
since Q restricts to a symplectic form on each X X {#} - X . Hence Q" Awis
nowhere zero on X,,. Since 7 is also nonzero on tangent vectors to fibers of
7w M, — X, it follows that 7*(Q"'Aa) Ay is nowhere zero on M. Conse-
quently, €. is a symplectic form on M.. ]

Proof of Lemma 17. To construct a 2-form vy on X, satisfying (i), (ii), and
Qii), we begin by comp~uting dQ on X xR and thus also dQ on X,. Clearly,
Q| xxq is closed, and €2 does not involve df. Hence

a0

dQ=— ndt.
at
Moreover, 8$}/d¢ descends to a (possibly nonclosed) 2-form €, on X, with
dQ = Ql FAY 'S

Since Q'Xx[tl is closed, the form (09/d1) | xx 1) 1s closed. In fact, since we
have [Q |XX[[]] = [Q |XXI0]]+IE’ it follows that

5]~
0t | xxin '

Clearly,
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a\ 920
The form 8%Q1/d1? descends to a 2-form 1, on X, with dQ; =2 Aa. Since
[(89/31) | xx(r] is constant, the class [(9%Q/d¢%) | (] vanishes for all ¢.

Now we find a 1-form ¥, that descends to a 1-form v, on X, such that, for
all ¢,

")
012 | xxiny
so that dvy,—{2, is in the ideal generated by o. Let v, be the 2-form on X,
given by v; =Q;— v, A«; then
dvi=dQ —dy,Na=(Qy—dvy;)Aa=0.

Also, considering X X {0} as a submanifold of X ,, we have

d('72 IXxm) =

Y1l xxi01 = | xxg0)>

so that the cohomology class [y,]| xx0; equals £. By hypothesis ¢ | x«(0;= &,
and hence the cohomology class ¢ —[v;] € H*(X »» R) is such that it is the
zero class when restricted to X X {0}. Now Lemma 15 implies that there is a
closed 2-form vAa on X, which represents the cohomology class ¢ —[v,]
(i.e., [vAa]=c—[v,]). We define the 2-form vy on X, by

Yy=vi+tvAa.
Then
dy=dy,+d(vna)=0.

Also, the cohomology class of vy in H*(X, o> R) 1s
[vI=[vi]l+vAa]=c.

Hence v satisfies conditions (i) and (ii) of Lemma 17. Since
YAa=yviAa=QAa=dQ,

v also satisfies condition (iii). This completes the proof of Lemma 17. ]

Using Theorem 14, we can construct more examples along the lines of those
in Section 4. Let U be a compact Riemann surface with genus g at least 1.
Then a Kdhler form Q of U is a volume form. If ¢: U — U is any orientation-
preserving diffeomorphism, then there is a 1-parameter family of symplectic
structures connecting Q to ¢* of constant cohomology class. According to
Theorem 14, if E is the total space of a circle bundle over U, with Euler class
¢ with the property that ¢ |« 1s trivial, then E has a symplectic structure.
According to Note 10, if there is a nonzero class b in H'(U, R) which is in
the image of (¢*—1), then E carries no positive definite Kahler structure.

6. The Structure Theorem

The purpose of this section is to prove the following converse of Theorem 14
by characterizing symplectic manifolds with free S'-action leaving invariant
a symplectic form.
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THEOREM 18. Let (M?", Fy) be a compact symplectic manifold with a free
Slaction leaving the symplectic form Fy invariant. Let w: M*"— B*"~! pe
the S'-fibration induced by the S'-action. Then there exist r >0, a compact
manifold U, and a diffeomorphism ¢: U — U such that:

(i) B is the mapping torus of ¢; that is,
B=UXR/{(x,t)~(e(x), t—r)}.

(ii) There is a 1-parameter family Q, of symplectic forms on U with
o*Q_, =8, and [Q]=[Qo]+1£

for some p-invariant class £ e H (U, Z).

(iii) The Euler class of M — B restricts to U X {0} to give &.

(iv) Lastly, there is a symplectic form F on M invariant under the §'-
action such that

F=1*(Q)+7*(a) A,

where v is a connection 1-form for M — B and « is the pullback of
d0/2x on the circle. Here Q is the 2-form on B corresponding to ithe
Samily Q,. We can choose U, ¢, and n such that F is arbitrarily close
{o Fo.

Proof. Let ®: S'x M — M be the free circle action. Our first step is to re-
place F, by an arbitrarily close S'-invariant symplectic form whose coho-
mology class is rational, that is, in the image H*(M, Q) < H*(M, R). Clearly,
there is an arbitrarily small, closed 2-form é such that Fy+ 6 represents a
rational cohomology class. Let & be the average of 6 over the S'-action. Be-
cause S'is connected, ®;§ is a closed form representing the same cohomol-
ogy class as 6. Therefore F0+3 and F,+ 6 represent the same cohomology
class. Clearly, F = Fy+ 6 is S'-invariant. Moreover, F is symplectic, provided
that 6 is sufficiently small.

From now on F will be an S-invariant symplectic form whose cohomol-
ogy class is rational. Let d/00 be the canonical vector field on S'; then 0 =
$,(a/08) is an everywhere nonzero vector field on M. Define

1
Qo= é?te(F),

where g denotes the interior product operator. Since Fand © are S'-invari-
ant, o is also S'-invariant. Let £¢ denote the Lie derivative; then, using the
well-known formula dig+gd = £¢, we see that

dOlO = —}:—OBG(F)
27

But since F is S'-invariant, we have £¢(F) =0 and consequently « is a
closed I-form.

Since « is Sl-invariant and vanishes on the tangents to the S'-action, «,
can be written uniquely as 7w*(&), where & is a closed 1-form on the quotient
M/S'= B. We claim that
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(a) a is nowhere 0 on B, and

(b) [&]e H'(B,R) is rational.
Condition (a) follows immediately from the fact that F is symplectic. As for
(b), let S'= B be a circle in B; then, by Fubini’s theorem, we have that

[yo=],
S T

where T is the full pre-image of S'in M. Since [F] is rational, so is fg1 ot
This holds for all circles in B, and so we get (b).

Consequently, the periods of [&] on integral homology are all multiples
of some positive rational number r. Thus the pullback & of & to the univer-
sal covering B of B is exact. Write @ =dji; then i has discrete periods on
paths covering loops in B. In fact, for any path v: [0, 1] - B with v(0) and
v(1) covering the same point of B, there is an integer n(y) with

a(y(1)) = a(y(0)) = n(y)r.

Hence j factors to give amap u: B — R/(Z-r) whose “differential” is &; that
is, p*(dt) = a. This « is never zero, and p is the projection mapping of a dif-
ferential fibration of B over S'. This proves that

B=UXR/{(x,t)=(p(x),t—r)]

for some compact manifold U and some diffeomorphism ¢.

Let 7’ e Q'(M) be a connection 1-form for the principal S-bundle M — B.
This is an S'-invariant 1-form whose restriction to any orbit is d8/2. Since
F is an Sl-invariant 2-form and (g F = 7*(a), we can write F uniquely as

F=m*Q'+7*(a)Ny’
for some 2-form Q' on B. We pull back Q' to a form €’ on UxR and write
Q'=Q+andte,

where Q and & do not involve dt and can be considered as 1-parameter fam-
ilies of forms on U. These two families give rise to forms  and w on B, and
we have the decomposition

Q'=Q+wAa.

If we put y=%'—7*(w), then 5 is also a connection 1-form for M — B, and
we have

F=m*Q+7*(a)A.
The fact that @ comes from a form on B = U, is expressed by the fact that
o*Quxi—rn = uxy for all zeR. Since dn=w*y, where v is a closed 2-
form representing the Euler class of M — B, and since dF =0, we have

where 7 is the lift of » to U X R. In particular, for each ¢, the form Q, =
| uxys is closed. Also, since F" is nowhere zero and
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F'=nm*Q" 'Ax*(a) Ay,

we see that Q7! =Q"_IIU><:1; is nowhere zero for all £. Thus €, is a 1-pa-
rameter family of symplectic forms on U.
Lastly, let us consider
a9,
—L e HY(U,R).
[ Y ] (U,R)

It is equal to [7 ]y, ]- Since 7 is closed, this class is independent of ¢; call
it £. Since 7 descends to a form » on B, £ is invariant under ¢. Since [v]is
integral, £ is integral. Clearly, then,

(2] =1[Qo] +¢£.

This completes the proof of Theorem 18. -]
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