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1. Introduction

Let 7 be a (bounded linear) operator acting on a complex, separable, in-
finite-dimensional Hilbert space 3C and assume that the spectrum of 7, o(7),
is not connected. The Riesz decomposition theorem says that under these
circumstances JC can be written as the algebraic sum JC,+ JC, of two non-
trivial invariant subspaces of T’; equivalently, 7 commutes$ with a nontrivial
idempotent operator E. Furthermore, E = E(T) can be written as a certain
contour integral, and the upper semicontinuity of separate parts of the spec-
trum implies that every operator 7’ close enough to 7 commutes with a non-
trivial idempotent E’= E(T"’). Moreover, if T has the above property then the
same is true for every operator WTW ~!similar to T, because o(WTW ~1) =
o(T).

On the other hand, in [6] Gilfeather considered the class of all strongly ir-
reducible operators defined by

89(3) ={T e £(3C): T does not commute with any nontrivial idempotent}.

(Here £(3C) denotes the algebra of all operators acting on 3C.)

In this note we characterize the norm-closure 89(3C)~ of the class §9(3C).
In a certain sense, this characterization can be considered as an “approx-
imate inverse” of the Riesz decomposition theorem. Indeed, we have the
following.

THEOREM.
89(3C) " ={Te £L(I): a(T) is connected}.

Our introductory paragraph indicates that ¢(7) is necessarily connected for
each 7 in 89(3C)~; moreover, the class §9(3C) (as well as its closure) is in-
variant under similarity. Thus, we must show only that every 7 in £(3C)
with a connected spectrum can be uniformly approximated by strongly ir-
reducible operators.

Received June 5, 1989.

*The research of this author has been partially supported by a grant from the National Science
Foundation.

Michigan Math. J. 37 (1990).

283



284 DOMINGO A. HERRERO & CHUN-LAN JIANG

2. Some Examples of Strongly Irreducible Operators

The proof of the reverse inclusion in the Theorem will follow the same lines
as the proof of Lemma 5.5 of [4]. Recall that a Cauchy domain is a non-
empty bounded open subset 2 of C whose boundary consists of finitely many
piecewise disjoint rectifiable Jordan curves; @ is an analytic Cauchy domain
if, in addition, the boundary consists of analytic Jordan curves. A connected
Cauchy domain is called a Cauchy region.

LEMMA 1. Suppose that
A,
0
Ap
Ou Qn ' O C
QO QO -+ Oy C,

. . . 0 ‘
LQ’"I Om2 *+* QOmn Cm_,

with respect to the orthogonal direct sum decomposition

(38 %)o(z §)

where
(i) {o(A4;)}}=1 and {o(C)}/L, are two familes of pairwise disjoint com-
pact sets such that
n

o(R) = [ U a(A,-)] U [ U o(cf)]

ji=1 i=1
and a(R) is connected;
(ii) interior o(R), interior 6(C;) (i =1,2, ..., m), and interior 6(A;) (j =
1,2,...,m) are Cauchy regions;
(iii)) A; and C; are strongly irreducible operators such that
AJ,X=XC,=>X:0;
(iv) either a(A;)No(C;)=0 and Q;; =0, or c(A;)No(C;) #0@ and Q,
does not belong to the range of the mapping
Y- TC,-,Aj(Y) = C,Y— YAj.
Then R is strongly irreducible.

The proof follows exactly as in the proof of [4, Lemma 5.5, pp. 67-70]. The
condition “4; X = XC; = X = 0” guarantees that every operator £ commut-
ing with R necessarily has a lower triangular matrix with respect to the given
decomposition; moreover,
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(E, A

\_ 0 E’,”J

where E; commutes with 4; (j=1,2,...,n) and Ef commutes with C; (i=
1,2,...,m).

Furthermore, since 4; and C; are strongly irreducible, an idempotent £
commuting with R necessarily satisfies £;=0 or 1 and E{/=0 or 1. Final-
ly, condition (iv) guarantees that £=0 or 1, whence we conclude that R is
strongly irreducible. il

LEMMA 2. Let A,Ce £(3C). Assume that
3¢ = V{ker(\—C)*: NeT, k=1)

for a certain subset T" of the point spectrum ¢,(C) of C, and o,(A)NT =#;
then

AX=XC=X=0.

Proof. Let p be a monic polynomial with zeros in I" and let x € 3C be any
vector such that p(C)x =0; then AX = XC implies

p(AXx=Xp(C)x=X0=0.
Since p(A) is injective, we infer that Xx = 0. It readily follows that

ker XD Viker(A—C)*: \eT, k=1}=3C.
Hence, X =0. O

Recall that Te £(3C) is semi-Fredholm if ran 7 is closed and either ker T or
ker T* is finite-dimensional; in this case, we define the index of T by ind T =
dim ker T—dim ker 7*. The reader is referred to [9] for references.

LEMMA 3. Let Q be a Cauchy region. Given n (1 <n<®), there exists
A=A(Q, —n)e 89(3C) such that s(A)=Q2", 0,(A)=0Q, and ker(A\—A) =
{0} and ind(\ — A) = —n for all \ € Q, where o,(A) denotes the essential
spectrum of the operator A.

Proof. Let H*(39) denote the closure in L2(d$2, dm) (dm =linear Lebesgue
measure on the boundary of @) of the rational functions with poles outside
Q~, and let M (dQ)=“multiplication by \” on H 2(99Q). It is well known
(see, e.g., [8, Chap. 3]) that
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o(M, (39Q))=Q7, 0,(M,(9Q))=09,
and

ker(\—M_(0Q))={0} and ind(A—M_(0Q2))=—1 forall AeQ.

Moreover, by Yoshino’s theorem, the commutant Q'(AM, (32)) of M (3Q)
consists of all operators of multiplication by functions in A *(dQ) [10]. Since
Q is a connected Cauchy region, it is not difficult to deduce that M (3Q) is
strongly irreducible. Thus, if # =1 then we can take A =M __(09Q).

Suppose 1 < n < oo, In this case we define
K'B 1 O ™
B 1

B -

0 B 1
_ B

(with respect to the orthogonal direct sum H2(dQ)"™ of n copies of H2(3%)),
where B=M_(3d9Q).

Suppose L =(L;;){ j=1 € @'(A); then
0=AL—-LA
[ [B, Ly]+Ly

[B, Ly]+Lj

[B,L,_1,1]+Lp
L [B, Lnl] [Bsan]"'Lnl [BsLn3]_Ln2 [Bann]—'Ln,n-lJ
where [B, C]1=BC—CB and the (i, j)-entry for 1<i<mn and 1<j=<nis

equal to [B, LU] +L,'+1’j—L,',j_1.
The (n, 1)-entry indicates that L,; € @’(B), and the (n, 2)-entry shows that

L, =[B,L,;]=06g(L,,)€randg,

where 6z is the inner derivation induced by B. Thus
L, e @(B)Nranég.

We shall see later (Lemma 4 below) that @’(B)Nran 6z = {0}, and there-
fore L,; =0. Now the (n—1,1)- and (n, 2)-entries show that L,,_, yand L,
commute with B. By induction, we deduce that

Ly=L, y1=--=Ly=L,;=L,;3=---=L,,_1=0

and L4, L,, € @' (B). By a formal repitition of the same arguments, we infer
that
LU=O f0r15j<i$n
and that
L;e®(B) forall i=1,2,...,n.
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Suppose that E e @'(B) is idempotent. By replacing (if necessary) E by
1—E, we can directly assume that E; # 0. Since E = E? implies E; = E} for
all 7, and since B is strongly irreducible, we deduce that E;; =1 or O for all
i=1,2,...,n; in particular, £, =1.

The above matricial computation shows that

0 [B,Epl+Ey—E), *
O0=AF—-FEA=1|0 0 * |,
* * *

sothat F,, —E}; = E,,— 1€ @' (B)Nran ég. Once again, we deduce that E,, =
1 (and therefore £, =0 because E is idempotent).

By another inductive argument, we conclude that E; =1 for all i, and
hence E = 1. It follows that 4 € 89(3C). The other properties follow by
straightforward computations. |

In order to complete the proof of Lemma 3, we must show that
Q@’(B)Nran ép = {0},
where B=M_(0%). Indeed, we have a stronger result.

LEMMA 4. Q@'(B) is orthogonal to ran ég, in the sense of Banach spaces;
that is,
|IR—65(L)|=|R]|

forall Re Q' (B) and all L € £(3C).

Proof. Clearly, ker 65 = @’(B), and (by using Yoshino’s theorem [10]) this
algebra contains no nonzero compact operators. Furthermore, if 7: £(3C) -
£(3C)/XK (IC) denotes the canonical projection of £(3C) onto the quotient
Calkin algebra £(3C)/X (3C), and if R = “multiplication by ¢” (¢ € H*(0Q))
commutes with B, then

|7 (R)=IR[=[é].

(Here X (3C) denotes the ideal of all compact operators.)

Recall that B =M (9Q) is a rationally cyclic subnormal operator [8, Chap.
3]. The Berger-Shaw theorem implies that B is essentially normal, that is,
m = w(B) is a normal element of the Calkin algebra [3].

Let p: £(3C)/X(3C) — £(3C,) be a faithful unital *-representation. Since
M = p(m) is normal, a result of Anderson indicates that

Al =]A—dp(X)]

for all Ae @’ (M) and all Xe £(3C,) [1, Thm. 1.7].
It readily follows that for each Re @’(B) and each L € £(3C),

IR|=]pem(R)|<|pom(R)—bpr(pom(L))|
=|pem[R—65(L)]|<|R—8p5(L)|.

Hence, @’(B) is orthogonal to ran d. Ol
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LEMMA 5. Given an analytic Cauchy region Q and y> 0 small enough so
that the complements of Q™ and

AQ,)=UQ +r:0<r=1j

have exactly the same number of components, there exists A= A(Q,n, —x©) €
89(3C) such that a(A) = A(Q,n), the left essential spectrum ¢;,(A) of A co-
incides with \U{oQ+ry:0<r=<1}, and

ker(N\—A)={0} and ind(A—A)=—o0
Sorall \e Q\g;.(A).

Proof. The operator L of [7, Lemma 3] satisfies all our requirements. In-
deed, the operator constructed in this reference has the right spectral prop-
erties and its double commutant, @”(L)=[Q®'(L)]’, is a maximal Abelian
strictly cyclic subalgebra of £(JC). More precisely: (1) @”(L) = @’(L) coin-
cides with the algebra of all multiplications by the elements of a suitable Hil-
bert space of smooth functions in two variables #,\ (0<7 =<1, and X runs
over a certain compact subset of C); (2) L =“multiplication by N\’ on this
space; and (3) 3C= @"(L)ey, where ey(f, \) =1 is a strictly cyclic vector for
the algebra. Moreover, if  is connected, then JC is a space of continuous
functions defined on a connected subset of [0, 1] X A(£2, ), whence we read-
ily infer that L commutes with no nontrivial idempotent. Hence, L is strongly
irreducible. 0

COROLLARY 6. Let Q be an analytic Cauchy region. Given n (1<n <),
there exists A= A(Q, n) € $9(3C) such that 6(A)=Q2", 0,(A) =0, and

ker(A\—A)*={0} and ind(A\—A)=n

Jor all \efl.

Moreover, if n> 0 is small enough to guarantee that the complements of
Q7 and A(Q, ) have exactly the same number of components, then there
exists A=A(Q, n, ) e 8I(IC) such that 6(A)=A(Q,),

0,0(A)=UUf{aQ+ry:0=r=<1j,
and
ker(N\—A)*={0} and ind(A—A)=o

Jorall \e Q\o,.(A).
Proof. For 1 < n < «, define A(Q, n) = A(Q*, —n)*, where Q* = {A: A\ e 2}

and A(Q*, —n) is defined as in Lemma 3. For n =00, A(Q, 1, o) is similarly
defined by using Lemma 5. 0

LEMMA 7. Let Q be an analytic Cauchy region. Then there exists A=
A(Q,0) € 89(3C) such that 6(A)=Q2", 0,(A) =0Q, and

dim ker(A—A4) =dimker(A—A)*=1
Sor all \e (2.
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Proof. Define

qo (M2 X
_< 0 M+(am>

(with respect to H2(3Q)@®H?(89Q)). Since
0,(M,(30*)*) = 0,(M, (39)) = 30, (M (30*)*)
= 00, (M, (3Q)) = 9%,
it follows from [5, Thm. 5] that X can be chosen so that

X ¢ ran 7y 30y, M, (92)

(7p, ¢ is defined exactly as in Lemma 1).

Since M, (dQ) and M _(0Q*)* are strongly irreducible, it follows from
Lemmas 1 and 2 that so is A. (Indeed, 0,(M,(99)) = ¢, while H*(0Q) =
V {ker(w—M,(3Q*)*)*: k =1} for each we Q.) O

We close this section with a standard result on approximation of operators
(see [8, Chap. 3]).

LEMMA 8. Given Te £(3C) and €¢>0, there exists T, e £(IC) such thai
|T—T.|<e€, 01,(T.):=0;o(T)N0,.(T) is the closure of an analytic Cauchy
domain ® such that

0,.(T)CP C{AeC:dist[\, 04,.(T)] <€},
and
ind(A\—T,)=ind(A\—T),
dim ker(\ —7.)* =dim ker(A—T)*, and
dim ker(\ — 7})** = dim ker(A — T)**

Jorall \& 0,,.(T,) and all k=1.
In particular, the number of components of o(T,) is finite and cannot ex-
ceed the number of components of o(T).

3. Proof of the Main Result

Now we are in a position to prove the Theorem. Suppose 7T e £(3C) and
o(T) is a connected set. Given e > 0, we construct 7, and & as in Lemma 8.
Clearly, o(T,) is connected. Let £ be an analytic Cauchy domain such that
Q- C®and C\Q~ and C\ ®~ have exactly the same number of components.

Let 2,9, ..., Q, be an enumeration of the components of o(7,)\ Q™. Let
1 (0 <7 <€) be small enough so that (2;), N(Q,), =0. By using Lemmas 3,
5, and 7 and Corollary 6, we define 4; as follows: if

n=ind(A\—=T)=ind(A—T,) #0, o for all Ae{};,

then A; = A(Q;, n); if ind(A—T.) = 0(\ € ;) then A; = A(Q;, 0); and finally,
if ind(A—T,) = —oo (resp., o) for all A\eQ;, then 4;=A(Q;,n, —) (resp.,
Aj=A(Q), 7, ).
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Observe that if j # k then
o(A4;)Na(Ag) S AR, n) VAR, 7) C(Q;), N (Q),=0.

The open set @\ o(X @7_; A;) has finitely many components, ¥;, ¥,, ...,
¥,,, and these components are (not necessarily analytic) Cauchy regions.
Define C; =M (¥)*, i=1,2,...,m; if i # h, then

ag(C)HNo(Cy)=¥"NVY, =0.
If R is defined as in Lemma 1 (for some Q= (Q};)), then

n m
o(R) = [ _U] U(Aj)] U { _U] o(C,-)],
j= i=
and this set is connected and coincides with Q~U[o(T)\ 04.(7T.)]. Thus,
{fo(A)))]<, {o(Cy)}iL, and R satisfy (i) and (ii) of Lemma 1.

Since H*(d¥;) = V{ker(w;—C;)*: k=1} and w; ¢ 0(4;) for each w; e ¥;,
we deduce from Lemma 2 that (iii) of Lemma 1 is satisfied.

By construction, ¢(A4;)Na(C;) =da(A;)N 3o (C;) = 0,(A;)Na,(C;), where
0,(-) and o,(-) denote (respectively) the left and right spectrum of the oper-
ator. Thus, by using [5] (or [8, Thm. 3.19]), we can construct Q= (Q};) so
that (iv) of Lemma 1 is also satisfied.

It readily follows that R € §9(3C). Moreover, our construction shows that

o(R)Ca(T,) and Oire(R) C oy (T2), |

o(T.) and o(R) are connected sets, and each component of g,,,.(7.) meets
01.(R). Further,

ind(A\—R)=ind(A—T,), dim ker(A — R)* <dim ker(A—T)¥,

and
dim ker(A —R)** < dim ker(\ — T})**

for all N\e o(T )\ 0;,.(T.) and all k=1.

The similarity orbit theorem [2, Thm. 9.2] implies that 7, can be uniformly
approximated by operators R, similar to R. Hence, there exists R, similar to
R such that

|T=R|=|T=T|+|T. — R| < 2e.

Since R, € 894(3C) and e can be chosen arbitrarily small, we conclude that
Tesdd(3C)". [l

If Te £(C? and o(T) = {\}, then T belongs to the closure of the similarity
orbit of A+ q,,, where g,, denotes the nilpotent Jordan cell of order »n, which
is strongly irreducible [8, Chap. 2]. By combining this observation with the
Theorem and Lemma 8, we can easily derive the following consequence.

COROLLARY 9. Given T e £(3C), there exists a sequence {T,} ;- in £(IC)
such that \T — T,| — 0(n — ), and T,, is similar to a finite direct sum of
strongly irreducible operators; moreover, if o(T) only has a finite number
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m of components, then the T,’s can be chosen so that each of them has ex-
actly m direct summands.
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