Limits of Strongly Irreducible Operators, and the Riesz Decomposition Theorem

DOMINGO A. HERRERO* & CHUN-LAN JIANG

1. Introduction

Let T be a (bounded linear) operator acting on a complex, separable, infinite-dimensional Hilbert space 3C and assume that the spectrum of T, $\sigma(T)$, is not connected. The Riesz decomposition theorem says that under these circumstances 3C can be written as the algebraic sum $3C_1 + 3C_2$ of two nontrivial invariant subspaces of T; equivalently, T commutes with a nontrivial idempotent operator E. Furthermore, E = E(T) can be written as a certain contour integral, and the upper semicontinuity of separate parts of the spectrum implies that every operator T' close enough to T commutes with a nontrivial idempotent E' = E(T'). Moreover, if T has the above property then the same is true for every operator WTW^{-1} similar to T, because $\sigma(WTW^{-1}) = \sigma(T)$.

On the other hand, in [6] Gilfeather considered the class of all strongly irreducible operators defined by

 $SI(IC) = \{T \in \mathcal{L}(IC) : T \text{ does not commute with any nontrivial idempotent}\}.$

(Here $\mathcal{L}(\mathcal{K})$ denotes the algebra of all operators acting on \mathcal{K} .)

In this note we characterize the norm-closure SI(IC) of the class SI(IC). In a certain sense, this characterization can be considered as an "approximate inverse" of the Riesz decomposition theorem. Indeed, we have the following.

THEOREM.

$$SI(\mathcal{H})^- = \{T \in \mathcal{L}(\mathcal{H}) : \sigma(T) \text{ is connected}\}.$$

Our introductory paragraph indicates that $\sigma(T)$ is necessarily connected for each T in $SI(IC)^-$; moreover, the class SI(IC) (as well as its closure) is invariant under similarity. Thus, we must show only that every T in $\mathfrak{L}(IC)$ with a connected spectrum can be uniformly approximated by strongly irreducible operators.

Received June 5, 1989.

^{*}The research of this author has been partially supported by a grant from the National Science Foundation.

Michigan Math. J. 37 (1990).

2. Some Examples of Strongly Irreducible Operators

The proof of the reverse inclusion in the Theorem will follow the same lines as the proof of Lemma 5.5 of [4]. Recall that a *Cauchy domain* is a non-empty bounded open subset Ω of C whose boundary consists of finitely many piecewise disjoint rectifiable Jordan curves; Ω is an *analytic* Cauchy domain if, in addition, the boundary consists of analytic Jordan curves. A connected Cauchy domain is called a *Cauchy region*.

LEMMA 1. Suppose that

$$R = \begin{pmatrix} A_1 & & & & & & \\ & A_2 & & & & & \\ 0 & & \ddots & & & 0 \\ & & A_n & & & \\ Q_{11} & Q_{12} & \cdots & Q_{1n} & C_1 & & \\ Q_{21} & Q_{22} & \cdots & Q_{2n} & & C_2 & & \\ \vdots & \vdots & & \vdots & & 0 & \ddots \\ Q_{m1} & Q_{m2} & \cdots & Q_{mn} & & & C_m \end{pmatrix}$$

with respect to the orthogonal direct sum decomposition

$$\mathfrak{K} = \left(\sum \bigoplus_{i=1}^{n} \mathfrak{N}_{i}\right) \oplus \left(\sum \bigoplus_{i=1}^{m} \mathfrak{M}_{i}\right),$$

where

(i) $\{\sigma(A_j)\}_{j=1}^n$ and $\{\sigma(C_i)\}_{i=1}^m$ are two familes of pairwise disjoint compact sets such that

$$\sigma(R) = \left[\bigcup_{j=1}^{n} \sigma(A_j) \right] \cup \left[\bigcup_{i=1}^{m} \sigma(C_i) \right]$$

and $\sigma(R)$ is connected;

- (ii) interior $\sigma(R)$, interior $\sigma(C_i)$ (i = 1, 2, ..., m), and interior $\sigma(A_j)$ (j = 1, 2, ..., m) are Cauchy regions;
- (iii) A_j and C_i are strongly irreducible operators such that

$$A_i X = XC_i \Rightarrow X = 0;$$

(iv) either $\sigma(A_j) \cap \sigma(C_i) = \emptyset$ and $Q_{ji} = 0$, or $\sigma(A_j) \cap \sigma(C_i) \neq \emptyset$ and Q_{ji} does not belong to the range of the mapping

$$Y \to \tau_{C_i, A_j}(Y) := C_i Y - Y A_j.$$

Then R is strongly irreducible.

The proof follows exactly as in the proof of [4, Lemma 5.5, pp. 67–70]. The condition " $A_j X = X C_i \Rightarrow X = 0$ " guarantees that every operator E commuting with R necessarily has a lower triangular matrix with respect to the given decomposition; moreover,

where E_j commutes with A_j (j = 1, 2, ..., n) and E'_i commutes with C_i (i = 1, 2, ..., m).

Furthermore, since A_j and C_i are strongly irreducible, an idempotent E commuting with R necessarily satisfies $E_j = 0$ or 1 and $E'_i = 0$ or 1. Finally, condition (iv) guarantees that E = 0 or 1, whence we conclude that R is strongly irreducible.

LEMMA 2. Let $A, C \in \mathfrak{L}(\mathfrak{IC})$. Assume that

$$3C = \bigvee \{ \ker(\lambda - C)^k : \lambda \in \Gamma, k \ge 1 \}$$

for a certain subset Γ of the point spectrum $\sigma_p(C)$ of C, and $\sigma_p(A) \cap \Gamma = \emptyset$; then

$$AX = XC \Rightarrow X = 0.$$

Proof. Let p be a monic polynomial with zeros in Γ and let $x \in \mathcal{K}$ be any vector such that p(C)x = 0; then AX = XC implies

$$p(A)Xx = Xp(C)x = X0 = 0.$$

Since p(A) is injective, we infer that Xx = 0. It readily follows that

$$\ker X \supset \bigvee \{\ker(\lambda - C)^k : \lambda \in \Gamma, k \ge 1\} = \Im C.$$

Hence,
$$X = 0$$
.

Recall that $T \in \mathcal{L}(3\mathbb{C})$ is semi-Fredholm if ran T is closed and either ker T or ker T^* is finite-dimensional; in this case, we define the index of T by ind $T = \dim \ker T - \dim \ker T^*$. The reader is referred to [9] for references.

LEMMA 3. Let Ω be a Cauchy region. Given n $(1 \le n < \infty)$, there exists $A = A(\Omega, -n) \in SI(IC)$ such that $\sigma(A) = \Omega^-$, $\sigma_e(A) = \partial \Omega$, and $\ker(\lambda - A) = \{0\}$ and $\inf(\lambda - A) = -n$ for all $\lambda \in \Omega$, where $\sigma_e(A)$ denotes the essential spectrum of the operator A.

Proof. Let $H^2(\partial\Omega)$ denote the closure in $L^2(\partial\Omega,dm)$ (dm= linear Lebesgue measure on the boundary of Ω) of the rational functions with poles outside Ω^- , and let $M_+(\partial\Omega)=$ "multiplication by λ " on $H^2(\partial\Omega)$. It is well known (see, e.g., [8, Chap. 3]) that

$$\sigma(M_{+}(\partial\Omega)) = \Omega^{-}, \qquad \sigma_{e}(M_{+}(\partial\Omega)) = \partial\Omega,$$

and

$$\ker(\lambda - M_+(\partial \Omega)) = \{0\}$$
 and $\operatorname{ind}(\lambda - M_+(\partial \Omega)) = -1$ for all $\lambda \in \Omega$.

Moreover, by Yoshino's theorem, the commutant $\alpha'(M_+(\partial\Omega))$ of $M_+(\partial\Omega)$ consists of all operators of multiplication by functions in $H^{\infty}(\partial\Omega)$ [10]. Since Ω is a connected Cauchy region, it is not difficult to deduce that $M_{+}(\partial\Omega)$ is strongly irreducible. Thus, if n=1 then we can take $A=M_+(\partial\Omega)$.

Suppose $1 < n < \infty$. In this case we define

$$A = \begin{pmatrix} B & 1 & & & 0 \\ & B & 1 & & & \\ & & B & \ddots & & \\ & & & \ddots & & \\ & & & \ddots & & \\ & 0 & & B & 1 \\ & & & B \end{pmatrix}$$

(with respect to the orthogonal direct sum $H^2(\partial\Omega)^{(n)}$ of n copies of $H^2(\partial\Omega)$), where $B = M_{+}(\partial \Omega)$.

Suppose $L = (L_{ij})_{i, i=1}^n \in \mathfrak{A}'(A)$; then

$$0 = AL - LA$$

$$= \begin{bmatrix} [B, L_{11}] + L_{21} \\ [B, L_{21}] + L_{31} \\ \vdots \\ [B, L_{n-1,1}] + L_{n1} \\ [B, L_{n1}] & [B, L_{n2}] - L_{n1} & [B, L_{n3}] - L_{n2} \cdots & [B_1 L_{nn}] - L_{n,n-1} \end{bmatrix}$$
where $[B, C] = BC - CB$ and the (i, j) -entry for $1 \le i < n$ and $1 < j \le n$ is

where [B, C] = BC - CB and the (i, j)-entry for $1 \le i < n$ and $1 < j \le n$ is equal to $[B, L_{ij}] + L_{i+1, j} - L_{i, j-1}$.

The (n, 1)-entry indicates that $L_{n1} \in \mathcal{C}'(B)$, and the (n, 2)-entry shows that

$$L_{n1} = [B, L_{n2}] = \delta_B(L_{n2}) \in \operatorname{ran} \delta_B,$$

where δ_B is the inner derivation induced by B. Thus

$$L_{n1} \in \mathfrak{C}'(B) \cap \operatorname{ran} \delta_B$$
.

We shall see later (Lemma 4 below) that $\mathfrak{A}'(B) \cap \operatorname{ran} \delta_B = \{0\}$, and therefore $L_{n1} = 0$. Now the (n-1, 1)- and (n, 2)-entries show that $L_{n-1, 1}$ and L_{n2} commute with B. By induction, we deduce that

$$L_{n1} = L_{n-1,1} = \cdots = L_{21} = L_{n2} = L_{n3} = \cdots = L_{n,n-1} = 0$$

and $L_{11}, L_{nn} \in \mathfrak{A}'(B)$. By a formal repitition of the same arguments, we infer that

$$L_{ij} = 0$$
 for $1 \le j < i \le n$

and that

$$L_{ii} \in \mathfrak{A}'(B)$$
 for all $i = 1, 2, ..., n$.

Suppose that $E \in \Omega'(B)$ is idempotent. By replacing (if necessary) E by 1-E, we can directly assume that $E_{11} \neq 0$. Since $E = E^2$ implies $E_{ii} = E_{ii}^2$ for all i, and since B is strongly irreducible, we deduce that $E_{ii} = 1$ or 0 for all i = 1, 2, ..., n; in particular, $E_{11} = 1$.

The above matricial computation shows that

$$0 = AE - EA = \begin{bmatrix} 0 & [B, E_{12}] + E_{22} - E_{11} & * \\ 0 & 0 & * \\ * & * & * \end{bmatrix},$$

so that $E_{22} - E_{11} = E_{22} - 1 \in \mathfrak{A}'(B) \cap \operatorname{ran} \delta_B$. Once again, we deduce that $E_{22} = 1$ (and therefore $E_{12} = 0$ because E is idempotent).

By another inductive argument, we conclude that $E_{ii} = 1$ for all i, and hence E = 1. It follows that $A \in SG(3C)$. The other properties follow by straightforward computations.

In order to complete the proof of Lemma 3, we must show that

$$\mathfrak{A}'(B) \cap \operatorname{ran} \delta_B = \{0\},\$$

where $B = M_{+}(\partial \Omega)$. Indeed, we have a stronger result.

LEMMA 4. $\alpha'(B)$ is orthogonal to ran δ_B , in the sense of Banach spaces; that is,

$$||R - \delta_B(L)|| \ge ||R||$$

for all $R \in \mathfrak{A}'(B)$ and all $L \in \mathfrak{L}(\mathfrak{IC})$.

Proof. Clearly, $\ker \delta_B = \mathfrak{A}'(B)$, and (by using Yoshino's theorem [10]) this algebra contains no nonzero compact operators. Furthermore, if $\pi : \mathfrak{L}(\mathfrak{K}) \to \mathfrak{L}(\mathfrak{K})/\mathfrak{K}(\mathfrak{K})$ denotes the canonical projection of $\mathfrak{L}(\mathfrak{K})$ onto the quotient Calkin algebra $\mathfrak{L}(\mathfrak{K})/\mathfrak{K}(\mathfrak{K})$, and if R = "multiplication by ϕ " ($\phi \in H^{\infty}(\partial \Omega)$) commutes with B, then

$$\|\pi(R)\| = \|R\| = \|\phi\|_{\infty}.$$

(Here $\mathcal{K}(\mathcal{K})$ denotes the ideal of all compact operators.)

Recall that $B = M_+(\partial \Omega)$ is a rationally cyclic subnormal operator [8, Chap. 3]. The Berger-Shaw theorem implies that B is essentially normal, that is, $m = \pi(B)$ is a normal element of the Calkin algebra [3].

Let $\rho: \mathfrak{L}(\mathfrak{IC})/\mathfrak{K}(\mathfrak{IC}) \to \mathfrak{L}(\mathfrak{IC}_{\rho})$ be a faithful unital *-representation. Since $M = \rho(m)$ is normal, a result of Anderson indicates that

$$||A|| \leq ||A - \delta_M(X)||$$

for all $A \in \mathfrak{A}'(M)$ and all $X \in \mathfrak{L}(\mathfrak{R}_{\rho})$ [1, Thm. 1.7].

It readily follows that for each $R \in \mathcal{C}'(B)$ and each $L \in \mathcal{L}(\mathcal{K})$,

$$||R|| = ||\rho \circ \pi(R)|| \le ||\rho \circ \pi(R) - \delta_M(\rho \circ \pi(L))||$$

= $||\rho \circ \pi[R - \delta_B(L)]|| \le ||R - \delta_B(L)||$.

Hence, $\alpha'(B)$ is orthogonal to ran δ_B .

LEMMA 5. Given an analytic Cauchy region Ω and $\eta > 0$ small enough so that the complements of Ω^- and

$$\Lambda(\Omega, \eta) := \bigcup \{\Omega^- + r\eta : 0 \le r \le 1\}$$

have exactly the same number of components, there exists $A = A(\Omega, \eta, -\infty) \in SI(SC)$ such that $\sigma(A) = \Lambda(\Omega, \eta)$, the left essential spectrum $\sigma_{le}(A)$ of A coincides with $\bigcup \{\partial \Omega + r\eta : 0 \le r \le 1\}$, and

$$\ker(\lambda - A) = \{0\}$$
 and $\operatorname{ind}(\lambda - A) = -\infty$

for all $\lambda \in \Omega \setminus \sigma_{le}(A)$.

Proof. The operator L of [7, Lemma 3] satisfies all our requirements. Indeed, the operator constructed in this reference has the right spectral properties and its double commutant, $\mathfrak{A}''(L) = [\mathfrak{A}'(L)]'$, is a maximal Abelian strictly cyclic subalgebra of $\mathfrak{L}(\mathfrak{F})$. More precisely: (1) $\mathfrak{A}''(L) = \mathfrak{A}'(L)$ coincides with the algebra of all multiplications by the elements of a suitable Hilbert space of smooth functions in two variables t, λ ($0 \le t \le 1$, and λ runs over a certain compact subset of \mathbb{C}); (2) L = "multiplication by λ " on this space; and (3) $\mathfrak{F} = \mathfrak{A}''(L)e_0$, where $e_0(t,\lambda) \equiv 1$ is a strictly cyclic vector for the algebra. Moreover, if Ω is connected, then \mathfrak{F} is a space of continuous functions defined on a *connected* subset of $[0,1] \times \Lambda(\Omega,\eta)$, whence we readily infer that L commutes with no nontrivial idempotent. Hence, L is strongly irreducible.

COROLLARY 6. Let Ω be an analytic Cauchy region. Given $n \ (1 \le n < \infty)$, there exists $A = A(\Omega, n) \in SI(3\mathbb{C})$ such that $\sigma(A) = \Omega^-$, $\sigma_e(A) = \partial \Omega$, and

$$\ker(\lambda - A)^* = \{0\}$$
 and $\operatorname{ind}(\lambda - A) = n$

for all $\lambda \in \Omega$.

Moreover, if $\eta > 0$ is small enough to guarantee that the complements of Ω^- and $\Lambda(\Omega, \eta)$ have exactly the same number of components, then there exists $A = A(\Omega, \eta, \infty) \in SI(\mathfrak{C})$ such that $\sigma(A) = \Lambda(\Omega, \eta)$,

$$\sigma_{re}(A) = \bigcup \{\partial \Omega + r\eta : 0 \le r \le 1\},$$

and

$$\ker(\lambda - A)^* = \{0\}$$
 and $\operatorname{ind}(\lambda - A) = \infty$

for all $\lambda \in \Omega \setminus \sigma_{re}(A)$.

Proof. For $1 \le n < \infty$, define $A(\Omega, n) = A(\Omega^*, -n)^*$, where $\Omega^* = \{\overline{\lambda} : \lambda \in \Omega\}$ and $A(\Omega^*, -n)$ is defined as in Lemma 3. For $n = \infty$, $A(\Omega, \eta, \infty)$ is similarly defined by using Lemma 5.

LEMMA 7. Let Ω be an analytic Cauchy region. Then there exists $A = A(\Omega, 0) \in SG(3\mathbb{C})$ such that $\sigma(A) = \Omega^-$, $\sigma_e(A) = \partial \Omega$, and

$$\dim \ker(\lambda - A) = \dim \ker(\lambda - A)^* = 1$$

for all $\lambda \in \Omega$.

Proof. Define

$$A = \begin{pmatrix} M_{+}(\partial \Omega^{*})^{*} & X \\ 0 & M_{+}(\partial \Omega) \end{pmatrix}$$

(with respect to $H^2(\partial\Omega) \oplus H^2(\partial\Omega)$). Since

$$\sigma_e(M_+(\partial\Omega^*)^*) = \sigma_e(M_+(\partial\Omega)) = \partial\sigma_e(M_+(\partial\Omega^*)^*)$$
$$= \partial\sigma_e(M_+(\partial\Omega)) = \partial\Omega,$$

it follows from [5, Thm. 5] that X can be chosen so that

$$X \notin \operatorname{ran} \tau_{M_{+}(\partial \Omega^{*})^{*}, M_{+}(\partial \Omega)}$$

 $(\tau_{B,C})$ is defined exactly as in Lemma 1).

Since $M_+(\partial\Omega)$ and $M_+(\partial\Omega^*)^*$ are strongly irreducible, it follows from Lemmas 1 and 2 that so is A. (Indeed, $\sigma_p(M_+(\partial\Omega)) = \phi$, while $H^2(\partial\Omega) = \bigvee \{\ker(\omega - M_+(\partial\Omega^*)^*)^k : k \ge 1\}$ for each $\omega \in \Omega$.)

We close this section with a standard result on approximation of operators (see [8, Chap. 3]).

LEMMA 8. Given $T \in \mathcal{L}(\mathfrak{IC})$ and $\epsilon > 0$, there exists $T_{\epsilon} \in \mathcal{L}(\mathfrak{IC})$ such that $||T - T_{\epsilon}|| < \epsilon$, $\sigma_{lre}(T_{\epsilon}) := \sigma_{le}(T) \cap \sigma_{re}(T)$ is the closure of an analytic Cauchy domain Φ such that

 $\sigma_{lre}(T) \subset \Phi \subset \{\lambda \in \mathbb{C} : \operatorname{dist}[\lambda, \sigma_{lre}(T)] \leq \epsilon\},\$

and

$$\operatorname{ind}(\lambda - T_{\epsilon}) = \operatorname{ind}(\lambda - T),$$

 $\operatorname{dim} \ker(\lambda - T_{\epsilon})^{k} = \operatorname{dim} \ker(\lambda - T)^{k}, \quad and$
 $\operatorname{dim} \ker(\lambda - T_{\epsilon})^{*k} = \operatorname{dim} \ker(\lambda - T)^{*k}$

for all $\lambda \in \sigma_{lre}(T_{\epsilon})$ and all $k \ge 1$.

In particular, the number of components of $\sigma(T_{\epsilon})$ is finite and cannot exceed the number of components of $\sigma(T)$.

3. Proof of the Main Result

Now we are in a position to prove the Theorem. Suppose $T \in \mathcal{L}(3\mathbb{C})$ and $\sigma(T)$ is a connected set. Given $\epsilon > 0$, we construct T_{ϵ} and Φ as in Lemma 8. Clearly, $\sigma(T_{\epsilon})$ is connected. Let Ω be an analytic Cauchy domain such that $\Omega^- \subset \Phi$ and $\mathbb{C} \setminus \Omega^-$ and $\mathbb{C} \setminus \Phi^-$ have exactly the same number of components.

Let $\Omega_1, \Omega_2, ..., \Omega_n$ be an enumeration of the components of $\sigma(T_{\epsilon}) \setminus \Omega^-$. Let η $(0 < \eta < \epsilon)$ be small enough so that $(\Omega_j)_{\eta} \cap (\Omega_k)_{\eta} = \emptyset$. By using Lemmas 3, 5, and 7 and Corollary 6, we define A_j as follows: if

$$n = \operatorname{ind}(\lambda - T) = \operatorname{ind}(\lambda - T_{\epsilon}) \neq 0, \pm \infty$$
 for all $\lambda \in \Omega_i$,

then $A_j = A(\Omega_j, n)$; if $\operatorname{ind}(\lambda - T_{\epsilon}) = 0$ ($\lambda \in \Omega_j$) then $A_j = A(\Omega_j, 0)$; and finally, if $\operatorname{ind}(\lambda - T_{\epsilon}) = -\infty$ (resp., ∞) for all $\lambda \in \Omega_j$, then $A_j = A(\Omega_j, \eta, -\infty)$ (resp., $A_j = A(\Omega_j, \eta, \infty)$).

Observe that if $j \neq k$ then

$$\sigma(A_i) \cap \sigma(A_k) \subseteq \Lambda(\Omega_i, \eta) \cap \Lambda(\Omega_k, \eta) \subset (\Omega_i)_{\eta} \cap (\Omega_k)_{\eta} = \emptyset.$$

The open set $\Omega \setminus \sigma(\sum \bigoplus_{j=1}^n A_j)$ has finitely many components, $\Psi_1, \Psi_2, ..., \Psi_m$, and these components are (not necessarily analytic) Cauchy regions. Define $C_i = M_+(\Psi_i^*)^*$, i = 1, 2, ..., m; if $i \neq h$, then

$$\sigma(C_i) \cap \sigma(C_h) = \Psi_i^- \cap \Psi_h^- = \emptyset.$$

If R is defined as in Lemma 1 (for some $Q = (Q_{ii})$), then

$$\sigma(R) = \left[\bigcup_{j=1}^{n} \sigma(A_j)\right] \cup \left[\bigcup_{i=1}^{m} \sigma(C_i)\right],$$

and this set is connected and coincides with $\Omega^- \cup [\sigma(T_{\epsilon}) \setminus \sigma_{lre}(T_{\epsilon})]$. Thus, $\{\sigma(A_j)\}_{j=1}^m$, $\{\sigma(C_i)\}_{i=1}^m$, and R satisfy (i) and (ii) of Lemma 1.

Since $H^2(\partial \Psi_i) = V\{\ker(\omega_i - C_i)^k : k \ge 1\}$ and $\omega_i \notin \sigma(A_j)$ for each $\omega_i \in \Psi_i$, we deduce from Lemma 2 that (iii) of Lemma 1 is satisfied.

By construction, $\sigma(A_j) \cap \sigma(C_i) = \partial \sigma(A_j) \cap \partial \sigma(C_i) = \sigma_l(A_j) \cap \sigma_r(C_i)$, where $\sigma_l(\cdot)$ and $\sigma_r(\cdot)$ denote (respectively) the left and right spectrum of the operator. Thus, by using [5] (or [8, Thm. 3.19]), we can construct $Q = (Q_{ji})$ so that (iv) of Lemma 1 is also satisfied.

It readily follows that $R \in SI(3C)$. Moreover, our construction shows that

$$\sigma(R) \subset \sigma(T_{\epsilon})$$
 and $\sigma_{lre}(R) \subset \sigma_{lre}(T_{\epsilon})$,

 $\sigma(T_{\epsilon})$ and $\sigma(R)$ are connected sets, and each component of $\sigma_{lre}(T_{\epsilon})$ meets $\sigma_{lre}(R)$. Further,

$$\operatorname{ind}(\lambda - R) = \operatorname{ind}(\lambda - T_{\epsilon}), \quad \operatorname{dim} \ker(\lambda - R)^{k} \leq \operatorname{dim} \ker(\lambda - T_{\epsilon})^{k},$$

and

$$\dim \ker(\lambda - R)^{*k} \le \dim \ker(\lambda - T_{\epsilon})^{*k}$$

for all $\lambda \in \sigma(T_{\epsilon}) \setminus \sigma_{lre}(T_{\epsilon})$ and all $k \ge 1$.

The similarity orbit theorem [2, Thm. 9.2] implies that T_{ϵ} can be uniformly approximated by operators R_{ϵ} similar to R. Hence, there exists R_{ϵ} similar to R such that

$$||T-R_{\epsilon}|| \le ||T-T_{\epsilon}|| + ||T_{\epsilon}-R_{\epsilon}|| < 2\epsilon.$$

Since $R_{\epsilon} \in S\mathcal{G}(\mathcal{IC})$ and ϵ can be chosen arbitrarily small, we conclude that $T \in S\mathcal{G}(\mathcal{IC})^-$.

If $T \in \mathcal{L}(\mathbb{C}^d)$ and $\sigma(T) = \{\lambda\}$, then T belongs to the closure of the similarity orbit of $\lambda + q_n$, where q_n denotes the nilpotent Jordan cell of order n, which is strongly irreducible [8, Chap. 2]. By combining this observation with the Theorem and Lemma 8, we can easily derive the following consequence.

COROLLARY 9. Given $T \in \mathfrak{L}(\mathfrak{K})$, there exists a sequence $\{T_n\}_{n=1}^{\infty}$ in $\mathfrak{L}(\mathfrak{K})$ such that $\|T - T_n\| \to 0 (n \to \infty)$, and T_n is similar to a finite direct sum of strongly irreducible operators; moreover, if $\sigma(T)$ only has a finite number

m of components, then the T_n 's can be chosen so that each of them has exactly m direct summands.

References

- 1. J. H. Anderson, *On normal derivations*, Proc. Amer. Math. Soc. 38 (1973), 135–140.
- 2. C. Apostol, L. A. Fialkow, D. A. Herrero, and D. Voiculescu, *Approximation of Hilbert space operators*, II, Res. Notes Math., 102, Pitman, Boston, 1984.
- 3. C. A. Berger and B. I. Shaw, *Self-commutators of multicyclic hyponormal operators are always trace class*, Bull. Amer. Math. Soc. 79 (1973), 1193–1199.
- 4. J. B. Conway, D. A. Herrero, and B. B. Morrel, *Completing the Riesz–Dunford functional calculus*, Mem. Amer. Math. Soc., 417, Amer. Math. Soc., Providence, R.I., 1989.
- 5. C. Davis and P. Rosenthal, *Solving linear operator equations*, Canad. J. Math. 26 (1974), 1384–1389.
- 6. F. Gilfeather, *Strong reducibility of operators*, Indiana Univ. Math. J. 22 (1972), 393–397.
- 7. D. A. Herrero, *Quasisimilar operators with different spectra*, Acta Sci. Math. (Szeged) 41 (1979), 101–118.
- 8. ——, Approximation of Hilbert space operators, I, Res. Notes Math., 72, Pitman, Boston, 1982.
- 9. T. Kato, Perturbation Theory for Linear Operators, Springer, New York, 1966.
- 10. T. Yoshino, *Subnormal operator with a cyclic vector*, Tôhoku Math. J. (2) 21 (1969), 47–55.

Domingo A. Herrero Department of Mathematics Arizona State University Tempe, AZ 85287 Chun-Lan Jiang
Department of Mathematics
Jilin University
Changchun Jilin
China

