Parareflexive Operators on Banach Spaces
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1. Introduction

Nilpotent operators on finite-dimensional spaces are all direct sums of Jor-
dan cells. In infinite-dimensional Hilbert spaces this is not true in general;
however, every nilpotent operator there is still quasi-similar to a direct sum
of Jordan cells [1]. A slightly different approach yields quasi-similarity of an
arbitrary nilpotent operator on a Hilbert space to a direct sum of Jordan
models, that is, Jordan block-cells [1]. The latter approach seems more ap-
propriate for transplanting these results into a Banach space. This is accom-
plished in Section 2, where we apply the notion of quasi-similarity that was
extended to Banach spaces in [9].

The results of Section 2 are applied in Section 3 to extend to Banach spaces
a Hilbert space result on parareflexive operators [1]. Unfortunately, some of
our results are proven only in Banach spaces that satisfy a technical condi-
tion (see condition (A) introduced in §2). This condition is satisfied in par-
ticular by all Hilbert spaces and by all separable Banach spaces. Our main
result is a characterization of parareflexive operators on Banach spaces that
satisfy condition (A).

2. Nilpotent Operators

The most simple nilpotent operators on a Banach space are Jordan opera-
tors, that is, operators J,,(X) acting on a direct sum X"=X®X®---®X
of m copies of a Banach space X, where m is a positive integer supplied with
(say) the /; norm and defined by

S (X)) (X1, X0y e s X)) = (X2, X35 0005 X, 0).
Observe that this operator can be represented by an operator matrix

070 ..00

007 .. 00
J (X)) = .

0 00 0 I

0 0 0 0 0
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We do not exclude here the possibility 72 =1, which gives merely the zero op-
erator on the space X. Every nilpotent operator on a Hilbert space is quasi-
similar to a direct sum of Jordan operators [1]. Here we give a Banach space
extension of this result, using the notion of inner and outer representations
[9]. An operator V between the Banach spaces X and Y is called a quasi-
affinity if it has trivial kernel and dense range. An operator 7, on a Banach
space X is said to be an inner representation of an operator 7, acting on a
given Banach space X, if there exists a quasi-affinity V; from X, into X such
that ¥V, To= TV,. An operator 7°on a Banach space X ’is said to be an outer
representation of T if there exists a quasi-affinity V'° from X into X ° such
that T°V =V T.

The main result of this section is the following theorem, which holds
in every Banach space satisfying the technical condition defined here. (Of
course, this condition is introduced merely for the purposes of this note.)
We say that a Banach space X has property (A) if:

(A1) for any closed subspace U of X there exists a closed subspace V of
X such that VNU={0} and V@ U is dense in X; and
(A2) every subspace and every factor space of X has property (Al).

Observe that every Hilbert space has this property, since we may take V=
U+t in (A1) while the subspaces and the factor spaces of a Hilbert space are
all Hilbert spaces again. By a result of Murray and Mackey (see [8], [7]),
every separable Banach space has this property.

2.1. THEOREM. Let T be a nilpotent operator of order n on a nontrivial
Banach space X satisfying property (A). Then there exist Banach spaces Y;
and Z;,i=1,2,...,n, such that the operator

R=3 @)
on the space =
Y=Y @Y
i=1
is an inner representation of T, and the operator
S= 3 ®JAZ)
on the space =
z=3 @z

i=1
is an outer representation of T.
REMARK. We do not exclude the possibility that some of the subspaces Y;

and Z; are trivial. However, since the order of the nilpotent operator T is n,
the subspaces Y, and Z, are necessarily nontrivial.
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Proof. Let us first give the inner part of the proof. Start with a subspace Y,
such that
X=Ker T"=CI(Y,®Ker T"" 1)

and suppose inductively that we have already determined subspaces Y,,
Y,_15-.+» Yy_x4 for a fixed index k < n, where Y,,_;CKer 7" for i=0, 1,
..., k—1. Denote by U,_,, the span of Ker 7"~ *~!and the sets T'Y,,_ . ; for
i=1,2,..., k, and observe that U,_, C Ker T"~*. Using property (A) we can
find a subspace Y,_, C Ker 7"~ % such that

§)) Ker T" *=Cl(Y,_,®U,_,).
Finally, define the mapping

n .
V:Y=>®Y'->X, and

i=1
n 2 . n i - - .
Vi Z@WLyh D T X Ty
i=1 i=1j=1
Observe that for the operator

R=3 ®J(Y),
i=1

it holds that VR =TV. It remains to show that V is a quasi-affinity.
In order to prove that the kernel of V is trivial, choose any vector

n .
SO .. yheY
i=1

such that
n i . . .
E 2 TI_J)’,' =0.
i=1j=1
Note that 7 is an element of Y,,NKer 77! and is therefore equal to zero.

Suppose, inductively, that y,f_‘f L;=0forall 0=i=< j<k, where k is a fixed
index, 0 < k < n. Observe at first that y"~Fe Y, _, and is equal to

k . n—1 J . .
=X Ty = X 2Ty,
i=1 j=k+1i=0
where the double sum is supposed to be trivial in the case k+1<n—1.
The terms of the first sum are elements of T'Y,_,;, while the terms of
the second sum all belong to Ker 77~ %~!; therefore, the whole sum lies in
the space U,_g, which yields y”~#=0 by (1). Using an induction argument
on the index /, we shall actually show that all y"=f, ; are equal to zero. Sup-
pose that we have already shown this for all indices i up to a fixed index
m=0. Then the vector y=F, ..., is a sum of

k
i-m—1,n—k
- E T Yn—k+1
i=m+2
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and of a vector contained in Ker 7"~ %¥*™ Consequently, the vector y;"=F, ..+
belongs to the space U,,_ »+1, and by (1) is therefore equal to zero. Induc-
tion on both indices gives us the desired result.

Next, show that ¥ has dense range. Choose an arbitrary vector x € X and
note that it can be approximated by a vector of the form y, +u,_,, where
yleY, and u,_,;eKer T"~. Suppose inductively that we have already ap-
proximated our vector x by a sum

k-1 j . .

2 E T'y;?:j_i_l-i— un—k’

Jj=0i=0
where y,;’:jﬂ.e Y,_;+; and where u,_,e€Ker T"* for a fixed index k=1.
Using (1) and the definition of the space U,,_;, we can approximate the vec-
tor u,,_; by a sum

k
i n—k
2Ty kit uy g1
i=0
with y7=F, €Y, _p.;and u,_;_,eKer Y"~¥~1 Therefore, the sum

koo .
j§0 igoT' n—j+it Un—k-1
approximates the original vector x. Since this induction ends after a finite
number of steps, the final approximation may be made as close as desired,
and the inner part of the proof is completed.
We turn now to the outer part of the proof. We begin by finding a closed
subspace X, of X such that

X =Cl(X,®Cl(ImT"" 1)),

and suppose inductively that subspaqes Xy Xn_1s -+ X—r+1 have already
been found such that X, _;DIm 7" 'for i=0,1,...,k—1; here k is a fixed
index, 1<k <n. Set

k -
Un—k= Cl(Im Tn—k_l) N ( ﬂ T n~k+t’)
i=1
and note that U,_, D Im T"~* By condition (A) find a subspace X,_; of X
containing Im 7"~ * such that

() X/ V= CUXy_p/ Ve k@Up_/ Vi)

where V,_, denotes Cl(Im 7"~%). At the end of induction introduce the

mapping
n -
W: X—>Z=)> ®Z,
i=1

where Z;= X/X;, by

(T~ x+ X;).

n i
=1

Wix— ) ®
=1

=

J



i
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Since T'x € X;, it follows easily from this definition that WT = SW, where
n
S= Y @J(Z)
i=1

is defined as an operator on Z. It remains to show that W is a quasi-affinity.
But, for each x € Ker W, it follows that T/xe X , for all indices i=0,1,...,
r—land r=1,2,...,n. This forces x to belong to U, and therefore to V;=
Cl(Im T'), by equation (2) for k= n—1. Use this argument inductively to see
that x belongs to all subspaces Cl(Im T¥) for k=1, 2,..., n. Consequently,
Xx must be equal to zero.

In order to see that the range of W is dense in the space Z, choose an
arbitrary continuous functional on Z which annihilates Im W. Recall the
definition of Z to see that such a functional is determined by a double se-
quence of functionals fifeX’, for j=1,2,...,i and i=_ 1,2,...,n. With no
loss of generality we may suppose that all functionals f/ annihilate X;. Now,
pick an arbitrary vector x € X and note that

n i . .
(3) f)=3 ¥ (T 'x)=0.
i=1j=1
If xeIm 7”7}, this equation reduces to
fax)=0

due to the fact that 7/~"!'x=0 for j>1and xeImT" !CImT""CX,_,
for r=1. Since xe Im 7" ! is arbitrary, and X, and Cl(Im 7"~!) are dis-
joint, this forces f,! to be trivial. Assume now inductively that we have al-
ready shown the functionals f,.j to be trivial for all indices under considera-
tion such that i —j > n—k, where k is a fixed integer, 1 <k < n. For each
vector x € Im 7", equation (3) then reduces to

En: fii+k—n(Ti+k~n—lx)=0
i=n—k+1
due to the following three facts: First, for j > k—1 we have 7/~ 1x=0; sec-
ond, for j<k—1 (but j>i+k—n) we obtain 7/~ xe Cl(Im T"x) C X, for
each r <n—k+Jj that includes r =i, third, for j <i+ k—n, the functionals
f,.j are trivial by the induction hypothesis. Now choose first an arbitrary vec-
tor x from U, _;, to get from equation (2) (with index k& decreased by 1) that
Sy k41 s trivial. Continue by choosing x in such a way that Tx belongs to
U, —x+2 and proceed inductively on i. After both inductions are completed
we see that the functional f is trivial, and the theorem is proved. Cl

In Section 3 we shall need the following simple implication of this theorem.

2.2. PROPOSITION. Under the assumptions of the theorem there exists a
quasi-affinity from Y, into Z,. Therefore, Y, is finite-dimensional if and
only if the same holds for Z,. In this case, their dimensions are equal and
there also exists a quasi-affinity from Y, _, into Z,_,.
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Proof. Let the operators 7 on X, Son Y, and R on Z be defined as in the
theorem. Denote by V the quasi-affinity from Y into X such that TV =V3§
and by W the quasi-affinity from X into Z such that WT =RW. It follows
that R¥WV =wWVS* for all k, and therefore the restriction of W¥ to Im S¥
(a closed subspace) is a quasi-affinity into Im R* (which is also closed). The
first assertion now follows from the fact that Im $”~! is equal to the first
copy of the space Y,, in the direct sum that defines ¥, and Im R"~!is equal to
the first copy of Z,, in the defining sum for Z.

Similarly, Im §”~2 is the direct sum of the first two copies of ¥, and the
first copy of Y,,_;, while Im 7”2 is the direct sum of the first two copies of
Z,_ and the first copy of Z,_;; the proposition follows. O

3. Parareflexive Operators

A linear subspace M of a Banach space X will be called paraclosed if it is the
range of some bounded linear mapping 4 from a Banach space Y into X.
Note that we can always assume A to be one-to-one. Otherwise, take Y/Ker A
instead of Y, and instead of A take the operator from Y/Ker 4 into X in-
duced by A. Obviously, every closed subspace is paraclosed; however, in
infinite-dimensional Banach spaces there exist paraclosed subspaces which
are not closed. Also, in every Banach space of infinite dimension there exists
a linear subspace which is not paraclosed. Indeed, in such a space we can
find a sequence of vectors {x;} such that the distance of x; to the linear span
of the others is strictly positive for all /; then the linear span of these vectors
is not paraclosed, as can easily be seen.

Observe that the intersection and the sum of two paraclosed subspaces is
paraclosed. If U;=A;Y;, i=1,2, then U;+ U, =AY where Y=Y,®Y, and
A1@y,)=Ay+Ay, for y;eY; (i=1,2), while UyNU, = AZ where Z =
(Y @ry,€Y; A y=Azy,}.

Note that, when X is a Hilbert space, every subspace of X which is para-
closed in the sense of Foias [5] is also paraclosed in our sense; however, the
converse is not true.

We begin this section with Banach space extensions of some results of
Douglas and Foias [3]. Most of the proofs follow similar lines and will not
be given in full detail. However, we shall introduce some new tricks to avoid
the Nagy-Foias theory of contractions in Hilbert spaces.

In the following theorem, a vector x € X will be called algebraic for the
operator 7 if there exists a polynomial p such that p(7T)x =0.

3.1. THEOREM. Let S and T be operators on X, with S nonalgebraic and
|S|< 1. Then T'=u(S) for a function ue H” if and only if T leaves invari-
ant the range of every bounded linear mapping A that intertwines S with a
completely nonunitary contraction on a Hilbert space.

Proof. 1f every vector x € X is algebraic for S, then S is algebraic by a well-
known result of Kaplansky (see [6, Thm. 15]). Therefore, there must exist
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a nonalgebraic vector x € X. Denote by U, the smallest closed subspace that
contains the vector x and is invariant under S.

Note that any function ¢ € H?is analytic on the open unit disc in the com-
plex plane containing the spectrum of S. Consequently, we can define A, ¢ =
#(S)x to obtain a bounded linear mapping from H? into X. Assume that
A, ¢ =0 for a nonzero ¢ € H?; then ¢(S)x =0, which implies ¢(S lu,)=0.
It is well known (and easy to see, using the spectral mapping theorem) that
this yields the existence of a polynomial p such that p(S|y,) = 0; this forces
p(S)x =0, contradicting the fact that the vector x is nonalgebraic. We have
thus shown that the mapping A, is one-to-one. Now observe that SA, =
A,M,, where M, is the unilateral shift on H? defined by (M, ¢)(\) =
A¢(N), for ¢ € H? and \ from the unit disc. By the assumptions of the theo-
rem the linear subspace A, H? is invariant under 7, and by the closed graph
theorem N=A;'TA, is a bounded linear operator on H?. Moreover, it can
easily be shown that N leaves invariant each closed subspace of H? that is
invariant under M _; it then follows by a result of Sarason (see [10, p. 514])
that there exists a function u, € H® such that N=u, (M ) and finally T | y, =
u,(S)|u,. Using similar arguments as in the second part of the proof of The-
orem 1 in [3], it can be shown that the function u = u, is actually indepen-
dent of the choice of the nonalgebraic vector x. Also, the same result holds
for possible algebraic vectors of S and therefore T'=u(S). The proof of the
theorem’s other implication is straightforward. L

3.2. THEOREM. Let S and T be two operators on X, and let S be nonalge-
braic. Then T =u(S) for an entire function u if and only if T leaves invari-
ant every paraclosed subspace invariant under S.

Proof. Let us first settle the easier implication. Suppose that the paraclosed
subspace Im A4, where A4 is a one-to-one bounded linear mapping from a
Banach space Y into X, is invariant under S. Then the operator R =A"1SA4
is bounded (by the closed graph theorem), and

u(S) Im A=u(S)AY=Au(R)YCAY=Im A

for every entire function u.

To prove the converse, define S, =rS for each real number r satisfying
0<r<|S|™!. Clearly, we can apply Theorem 3.1 to the operator S, to get a
function u, € H® with T=u,(S,). It can easily be shown that #(\) =u,(r\)
is independent of r for all X in the common definition set. It follows that u is
an entire function, and since 7= u(S) the proof is complete. L]

3.3. COROLLARY. IfSand T are two commuting operators on X, then T
leaves invariant every paraclosed subspace of X invariant under S if and
only if T=u(S) for an entire function u.

Proof. For nonalgebraic S the assertion follows immediately from Theo-
rem 3.2. The algebraic case is covered by a result of Fillmore (see [4, Thm.
2]). U
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An operator 7 on X is called parareflexive if each operator U on X leaving
invariant all the paraclosed invariant subspaces of 7 is an entire function of
T. This definition extends to operators on a Banach space the well-known
Hilbert space notion of parareflexivity (see [1]). Here we give a result which
may be of some independent interest.

3.4. THEOREM. Every inner and outer representation of a parareflexive
operator is parareflexive.

Proof. Let T on Y be an outer representation of S on X, with the intertwin-
ing quasi-affinity denoted by V, and suppose that S is parareflexive. If T is
not algebraic, then by Theorem 3.2 it is parareflexive and the proposition
follows. Suppose now that 7 is algebraic; then the same holds for S. Choose
an operator U leaving invariant every paraclosed subspace of Y invariant
under 7. In particular, U leaves invariant Im V, and by the closed graph the-
orem W=V "!UV is a bounded operator on X. Now, for every paraclosed
subspace M of X that is invariant under S, the space VM is a paraclosed sub-
space of Y that is invariant under 7" and consequently also under U. There-
fore, M is invariant under W and (since M was arbitrary) W is an entire
function of S. It follows that U is (the same) entire function of 7.

To obtain the inner part of the proof suppose that 7, S, and V are the
same as above with one exception: this time assume that 7 is parareflexive.
Again, we may confine ourselves to the case where 7" and S are both alge-
braic, since the nonalgebraic case is covered by Theorem 3.2. Choose an
operator U on X leaving invariant every paraclosed subspace of X that is
invariant under S.

For each functional f € X, the dual of X, denote by M the smallest linear
subspace of X’ containing f that is invariant under S’, the adjoint of S. Ob-
serve that M is finite-dimensional and therefore closed even in the X topol-
olgy of X’. Denote by MY the annihilator of M in X, that is, the set of all
x € X such that g(x) =0 for all g€ M. Note that M/ is invariant under S,
and since MY is closed, it must also be invariant under U. It follows that the
annihilator (M7)*—that is, the set of all ge X’ such that g(x) =0 for all
X er —is invariant under U’. But, since M is closed in the X topology of
X', we have necessarily that M/ = (Mf )*. Consequently, there exists a poly-
nomial p, such that U'f = p,(S’) f.

Thus if feImV’ and ge X’ with f=V"g, we have

Uf=pi(S)VWW'g=Vp(T')g.
This implies that U’ leaves Im V' invariant. It follows by the closed graph
theorem that Z =V’ ~'U’V"’ is a bounded operator on Y”. On the other hand,

the mapping W = VUV ~!is densely defined and linear on Im ¥ C Y with val-
ues in Y. Moreover, for each y e Im V and x € X such that y =Vx, we have

SWy)=f(WVx)=f(VUx)=(UV'))(x)=(V'Zf)(x) =(Zf)}(¥)

for all feY’, which proves that Z=W". The boundedness of Z now yields
the same for W. Denote the unique everywhere defined bounded extension
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of W again by W. For each feY’ we have

VW =UVf=pys(SIW [ =VDy (TS
This proves W'f = py.(T") f. Fix now a vector x € X and choose f € Y’ such
that f(7*x) =0 for all indices k. Because W'f = p,.+(T") f, it follows that
JS(Wx)=0, and by the choice of feY’ we get a polynomial p, such that
Wx = p,(T)x. This implies that W leaves invariant every paraclosed sub-
space of Y that is invariant under T’; since 7 is parareflexive by assumption,

W must be an entire function of 7. Consequently, U is (the same) entire
function of S and our proof is finished. O

Before giving our main result we must introduce a Banach space version of
the Deddens-Fillmore condition [2]. Here we use our results of Section 2.
Naturally, we shall also impose condition (A) on the Banach space X.

Fix a nilpotent operator 7, and choose an inner representation

R=3 ®J(Y)

on the space
n .
Y=% @Y/
i=1
of the operator T with the intertwining quasi-affinity denoted by V. Also
choose an outer representation

S= '2169‘][(2;)
on the space -

n .
z=3 @z
i=1

of this operator T with intertwining quasi-affinity denoted by W. By Propo-
sition 2.2, the Banach space Y, is finite-dimensional if and only if the same
holds for Z,, and in this case there exists a quasi-affinity from Y,,_, into
Z,_y; in particular, Y, _, is trivial if and only if the same holds for Z,_,. We
shall say that 7 satisfies the Deddens-Fillmore condition [2] if either n=1 or
the following holds: If any one of the spaces Z,, or Y, (and hence if both of
them) has dimension 1, then at least one of the spaces Y,_; or Z,_; (and
hence then both of them) must be nontrivial. Note that, by the preceding
considerations, this definition depends only on 7 and not on the concrete
choice of inner or outer representations satisfying the implications of Theo-
rem 2.1.

3.5. THEOREM. A nilpotent operator on a Banach space satisfying (A) is
parareflexive if and only if it satisfies the Deddens-Fillmore condition.

Proof. Inview of Theorem 2.1 and Theorem 3.4, we need only consider the
case where T is a direct sum of Jordan operators. In order to simplify nota-
tions, suppose that 7=R on X =Y, where R and Y are as above. Further,
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suppose that 7" does not satisfy the Deddens-Fillmore condition. Then n> 1,
Y, is one-dimensional, and Y,,_, is trivial. Identify Y,, with the scalar field C;
then every x € X can be written as

X = ()\], )\2, cery )\,,)G-)y,
where
n—2 .
ye 3 @Y.
i=1
Define a bounded operator P on X by
Px=(\,_1,0,...,00®0

for x e X as above. Since TP =0 and PT # 0, P cannot be an entire function
of 7. On the other hand, denote by M, the smallest subspace of X invariant
under T which contains the vector x € X. Then the vectors 7" 'x =()\,, 0,
0 00@0and 7" 2x = (N1, A\ps 0, ..., 0)@®O are elements of M, and so Px
is also in M. It follows that P leaves invariant every subspace that is invari-
ant under 7, and 7T is not a parareflexive operator.

To get the converse implication of the theorem, suppose that 7 satisfies
the Deddens-Fillmore condition. Let P be any operator on X which leaves
invariant all the closed subspaces invariant under 7. Fix a nonzero vector x
from the last copy of Y,,. If Y,, is not one-dimensional, then fix another vec-
tor y from the last copy of Y,, that is linearly independent of x; elsewhere, fix
a nonzero vector y from the last copy of Y, _;. Now choose a vector z € X,
linearly independent of the vectors x and y, and denote by M, the smallest
subspace invariant under 7" that contains the vectors x, y, and z. It follows
that M, is a finite-dimensional subspace of X and T |y, still satisfies “our”
condition. By the Deddens-Fillmore theorem [2] there must exist a polyno-
mial p, such that P |, = p,(T | ,). With no loss of generality we may sup-
pose that the degree of p, is not greater than n. But this implies that Px =
P(T)x is independent of z, and therefore the polynomial p = p, is indepen-
dent of z. It follows that P = p(T) and T is parareflexive. tl

3.6. THEOREM. An operator T on a Banach space satisfying (A) is para-
reflexive if and only if either it is nonalgebraic or the nilpotents correspond-
ing to the points of the spectrum of T satisfy the Deddens-Fillmore condi-
tion.

Proof. Observe that in the algebraic case the spectral subspaces of 7 still
satisfy condition (A), and use the above results. ]
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