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Introduction

The ancestry of our work traces back to Shields and Wallen’s study [26] of
the commutant of the operator M, of multiplication by z on certain Hilbert
spaces of functions holomorphic in the unit disc. In addition to a few other
natural hypotheses, Shields and Wallen assumed all point evaluation func-
tionals on their spaces to be bounded, and asked at the end of their paper if,
under these conditions, the adjoint of M, must always have a cyclic vector
(they also asked this question for M, itself).

Later, Wogen [30] proved a striking “hypercyclicity theorem” for the Hardy
space H 2, which asserts that the collection of adjoints of nonscalar multipli-
cation operators on H 2 has a common cyclic vector (“nonscalar” means “not
a constant multiple of the identity operator”). Finally, Chan [6] recently
extended Wogen’s theorem to Hilbert spaces of functions, holomorphic on
plane domains, that obey hypotheses similar to those imposed by Shields
and Wallen (in fact, Chan’s work takes place in a Banach space setting).

Chan’s methods, which refine those of Wogen, require that (besides the
natural assumption of continuity of point evaluations) some additional hy-
potheses must be placed on the space: In particular, the space must contain
the constant functions and be invariant under multiplication by z. The latter
hypothesis rules out, for example, the Dirichlet space of certain complicated
but still simply connected plane domains [1, Thms. 1 and 10]. In addition,
Chan’s methods require a “division hypothesis”: If « is a point of the do-
main on which the space lives, and a function in the space vanishes at «,
then its quotient by z —« must also belong to the space.

The aim of this paper is to remove all these extra hypotheses, thereby
placing Wogen’s theorem in its natural setting, and answering the most gen-
eral version of Shields and Wallen’s adjoint cyclicity question.

MAIN THEOREM. Suppose H is a Hilbert space of functions holomorph-
ic on a plane domain ), and suppose that for each point A\ €} the linear
Sfunctional of evaluation at \ is bounded on H. Then there is a vector in
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H that is cyclic for the adjoint of every nonscalar multiplication operator
on H.

The hypothesis about point evaluations amounts to requiring that the iden-
tity map take H continuously into the space of all functions, holomorphic
on 2, endowed with the topology of uniform convergence on compact sub-
sets of 2 (see the remark following Lemma 1.1). The reader should note that
nothing else is demanded of H; it need not, for example, separate points of
Q, or contain the constant functions, or admit multiplication by the inde-
pendent variable z.

Furthermore, a little twist in the proof, indicated at the end of Section 4,
serves to establish the Main Theorem for arbitrary domains € in C¥. This
extension to several variables underscores the importance of having a meth-
od of proof that does not require division hypotheses of the sort mentioned
above.

Finally, our methods also apply to the Frechet space H(C") of entire func-
tions on C, where they produce common cyclic vectors for the collection
of nonscalar continuous linear operators that commute with translations.
Previously Chan had obtained this result for the subclass of partial differen-
tial operators with constant coefficients [7].

Our method of proof, which is necessarily quite different from that of
Chan and Wogen, evolves from a separate line of inquiry initiated by Wer-
mer [29]. We create the desired cyclic vectors explicitly as infinite linear com-
binations of reproducing kernels, with the correct choice of kernel functions
arising from analysis of a concept similar to Wermer’s notion of spectral
synthesis sequence [29, Thm. 1(iii)]. By contrast, the method of Chan and
Wogen involves writing down the cyclic vectors as linear combinations of
kernel functions for successive derivatives at a single point.

The third section of this paper contains a detailed discussion of our strat-
egy of proof. Here the necessity of dealing with some form of spectral syn-
thesis becomes clear. In the first two sections we set out the necessary prelim-
inary material, and discuss some examples. In the fourth section we prove
the results about spectral synthesis which complete the proof of the Main
Theorem. In the final section we use an idea of Godefroy and Shapiro [11] to
strengthen the conclusion of our main theorem: There is actually a dense
linear manifold, invariant under the adjoint of every multiplication opera-
tor on H, which consists (except for zero) entirely of vectors cyclic for every
nonscalar adjoint multiplication operator. We outline the proof of our re-
sult about operators on spaces of entire functions, and discuss some related
work of Clancey and Rogers [8].

ACKNOWLEDGMENTS. Wade Ramey showed us how to prove the Main
Theorem in higher dimensions, and Ben Lotto taught us about de Branges’s
spaces. Sheldon Axler, N. K. Nikolskii, and Allen Shields provided us with
encouragement, helpful comments, and references to the literature. We thank
all of these colleagues for their interest.
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1. Preliminaries

Throughout this paper H will denote a Hilbert space (# {0}) of functions
holomorphic on a plane domain © such that, for each point A € 2, the linear
functional of evaluation at \:

S—=f(N\) (feH)
is bounded on H.
In this section we collect the elementary results about such spaces that
are needed for the sequel. All of this material is well known; it is presented
solely for the convenience of the reader.

REPRODUCING KERNELS. By the continuity of point evaluations and by
the Riesz representation theorem, there exists for each A €  a unique func-
tion k) € H such that

SN =Lk (feH).

The function £, is the reproducing kernel for the point A\, and its norm is
the same as that of the corresponding evaluation functional. This fact, along
with the boundedness of holomorphic functions on compact sets and the
uniform boundedness principle, yields the following.

1.1. LEMMA. For any compact subset F of Q, sup{|k)|: A€ F} <.

An immediate consequence of this result is the fact that convergence in H
implies uniform convergence on compact subsets of (2.

MULTIPLIERS. A complex valued function ¢ on Q for which ¢f € H for
every f € H is called a multiplier of H, and the collection of all of these mul-
tipliers is denoted 9 (AH). Each multiplier ¢ of H determines a linear multi-
plication operator M, on H by the formula:

M,f=ef (feH).

The boundedness of point evaluations and the closed graph theorem en-
sure that M, is a bounded operator on H; this in turn leads to a couple of
natural restrictions that must be placed on any function that hopes to be
a multiplier.

1.2. PROPOSITION. Each multiplier is a bounded holomorphic function
on ().

Proof (cf. [26, Lemma 3, p. 782]). We are assuming that A contains a holo-
morphic function f that does not vanish identically on Q. Suppose that ¢ €
M (H) and that A € Q is not a zero of f. Then, for each positive integer n,

leM)"[SN) =M YN[ = KMy S, k| < IMGII Sk < IM "I ST 1A -

Now take nth roots on both extremes of the last inequality, let # — o, and
use the fact that f(\) # 0. The result is
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leN)|=|M,].

Thus |¢|<|M,| on @\ f ~!{0}, a dense open subset of Q. Since ¢ is a mul-
tiplier, we have ¢f = g€ H, so ¢ = g/f is holomorphic on @\ f~!{0} and
bounded on that set by |[M,,|. Since f is not identically zero, the set f {0}
has no limit point in 2, so Riemann’s theorem on removable singularities
asserts that ¢ has a holomorphic extension to 2, which is necessarily also
bounded by |M,,|. O

REMARKS. (i) A closer look at the proof above shows that || is actually
bounded on {2 by the spectral radius of M,,.

(ii) Frequently, but not always, M (H) consists of a/l bounded holomor-
phic functions on . We will discuss some examples in the next section.

The following result, which links multipliers with kernel functions, is the
starting point for all of our work.

1.3. PROPOSITION. If ¢ € M(H) and NeQ, then Mk, = ¢(\)k,.

Proof (cf. [26, Lemma 4, p. 783]). For each fe H we have
(MZky, )=k M, =<Kk ef)
=0\ =Nk, £ = oWk, S,
which yields the desired result. O

TERMINOLOGY. A bounded linear operator 7" on a Hilbert space is cyclic
if the space has a vector x for which the linear span of the orbit {7T"x};—¢ is
dense. In this case x is called a cyclic vector for T.

A scalar multiple of the identity operator is called a scalar operator. All
other operators are nonscalar. The nonscalar multiplication operators are
precisely the ones whose symbols are nonconstant.

2. Some Examples

For simplicity we assume in this section that the domain © is bounded, and
contains the origin. We discuss some of the most important examples of Hil-
bert spaces of functions holomorphic on (2 that satisfy the hypotheses of
our Main Theorem, and briefly discuss the multipliers of these spaces. The
next-to-last example shows how the Main Theorem can apply even when the
underlying space of holomorphic functions is not immediately in evidence.

Recall the notation H(2) for the collection of functions holomorphic on
2, and denote by H*(Q) the space of bounded holomorphic functions on €.
Let U denote the open unit disc of the complex plane.

2.1. THE HARDY SPACE H? (cf. [9]). This is the Hilbert space of func-
tions f holomorphic on U for which
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1P= sup == || ftre™| do <o,
0<r<1 27 JO

A standard growth estimate shows that for each point of U, the linear func-

tional of evaluation at this point is continuous on /2 [19, Chap. 17, Prob. 10,

p. 382]. It follows immediately from the above definition that every bounded

holomorphic function on U is a multiplier of H?2.

For H? our Main Theorem reduces to Wogen’s original hypercyclicity the-
orem. It is possible to define a Hardy space H%(Q) for domains  other than
the unit disc (see, e.g., [9, Chap. 10] and [10]). What results is a Hilbert space
in which point evaluations are still continuous, and for which the space of
multipliers still coincides with the collection of bounded holomorphic func-
tions on 2.

2.2. THE BERGMAN SPACE OF Q. The Bergman space L2(Q) is the Hil-
bert space of functions f holomorphic on Q for which

/2= I/ dA <,

where dA represents Lebesgue area measure on the plane. It follows eas-
ily from the subharmonicity of | f|? that point evaluations are bounded on
L2(Q), so that again our Main Theorem applies. Just as for the Hardy spaces,
it is easy to see that IMM(L2(Q)) = H=(Q).

2.3. THE DIRICHLET SPACE. The Dirichlet space of Q is the space D(0)
consisting of functions f holomorphic on © for which

!|f||2=|f(0)|2+jﬂ| fl2dA<.

According to the change of variable formula, the integral on the right is the
multiplicity area of f(2). It is not difficult to check that D() satisfies the
hypotheses of our Main Theorem. What is interesting here is that the collec-
tion of multipliers of D(Q), which is by Proposition 1.2 a subset of H *(f),
need not coincide with A *(Q). This is easiest to see when Q = U. Each mul-
tiplier of D(U) actually belongs to D(U) (apply the multiplication opera-
tor to the constant function 1). But there exist bounded holomorphic func-
tions ¢ on U that do not belong to DH(U)—for example, the covering map
expf{(z+1)/(z—1)} from U onto U\{0} is bounded, but its image has infi-
nite multiplicity area, so it does not belong to the Dirichlet space.

The multipliers of D(U) have been identified by Stegenga [27], who gives
an elegant characterization in terms of a “capacitary Carleson measure”
condition.

2.4. WEIGHTED DIRICHLET SPACES. The previous two examples carn,
of course, be generalized considerably by replacing Lebesgue measure by
other measures. When Q = U, all three previous examples can be subsumed
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into a single scale of spaces defined in this way. For each a > —1, let D, de-
note the collection of functions fe H(U) for which

E=17OP+] |/ @0~ |2) dAz) <.

Routine calculations show (cf. [14]) that the spaces D, increase with «, and
that D, is D(U) when o =0, H*(U) when a =1, and L2(U) when a =2.
More generally, for « > 1, the space D, coincides with the Bergman space of
U defined with respect to the weighted Lebesgue measure (1 —|z| Y*~2dA(z).
Once again, each space D, obeys the hypotheses of the Main Theorem.

Shields and Wallen give axioms on a Hilbert space of holomorphic func-
tions on U which ensure that the commutant of M, is precisely the space
of multiplication operators [26, Lemma 6, p. 785]. All that is required, in
addition to the obvious hypothesis that M, act boundedly on the space, is
that point evaluations be continuous and that the kernel functions be simple
eigenfunctions of the adjoint of M,. It is easy to check that the weighted
Dirichlet spaces D, satisfy these axioms, and hence for these spaces our Main
Theorem can be rephrased as follows: for each o > —1 there is a function in
D, that is cyclic for every nonscalar operator that commutes with M.

2.5. THE CESARO OPERATOR. Let C, denote the Cesaro operator de-
fined on the sequence space £2 by

_ 1 & . 2. . _
(CoSf)(n)= e gof(J) (felt*n=0,1,2,...).

Shields and Wallen [26] have shown that the operator 1 — Cy is unitarily
equivalent to the operator M, of multiplication by z on a Hilbert space H
of analytic functions on U that has bounded point evaluations. They alsc
show that the commutant of M, is the collection of multiplication operators
on H,. Thus our Main Theorem provides a vector in H, that is cyclic for
every nonscalar operator that commutes with A}. Since an operator com-
mutes with 1 — Cy if and only if it commutes with C,,, we may conclude that
there is a vector in £? that is cyclic for every nonscalar operator that com-
mutes with C§.

2.6. DE BRANGES'S SPACES. The previous examples show the advantage
of having the conclusion of the Main Theorem available in maximum gen-
erality. This need for generality is even more striking in case the Hilbert
space H is one of the de Branges spaces JC(b) defined for 4 holomorphic
and of modulus <1 on the unit disc. We will not formally define these spaces
here, except to say that they generalize, in a natural way, those subspaces
of H? invariant under the adjoint of M,; through the work of Sarason and
others, these spaces are playing an increasingly important role in function
theoretic operator theory (see, e.g., [12], [13], [23], [24], [25]).

The point we wish to emphasize is that each space JC(b) is a Hilbert space
of holomorphic functions on U that obeys the hypotheses of our Main The-
orem (see [23] for details). If b is a nonconstant inner function, then 3C(b)
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is an ordinary M -invariant subspace of H 2 and has only the constant func-
tions as multipliers ([12], [13]). In the other direction, if 4 is not an extreme
point of the A * unit ball, then every function holomorphic in a neighbor-
hood of the closed unit disc is a multiplier [24, p. 79]. It is not known ex-
actly which b’s yield spaces JC(b) with nontrivial multipliers; for example,
it is not known if there are extreme points of the H * unit ball for which this
happens.

These difficulties notwithstanding, our Main Theorem asserts that if 3JC(b)
does have nontrivial multipliers then the collection of adjoints of these op-
erators has a common cyclic vector.

3. Main Theorem: Strategy of the Proof

Recall the hypothesis of our Main Theorem: H is a Hilbert space of func-
tions holomorphic on Q and, for each point \ € Q, the functional of evalua-
tion at \ is bounded on H. Our goal is to show that H contains a function
that is cyclic for every operator M, where ¢ is a nonconstant multiplier
of H.

We begin with an infinite sequence {);} of distinct points of {2 that con-
verge to some point of (. By Lemma 1.1, for each sequence {b;} of com-
plex numbers with X|b;| < co, the series

0 r=3 bk,
j=1

converges in H to a function f € H. We will find a way of choosing the points
{A\;} so that f has the desired “universal cyclicity” for every absolutely sum-
mable sequence {b;} with infinitely many nonzero terms.

To see what is involved, fix a nonconstant multiplier ¢ of H and a non-
negative integer n. Apply (M)" to both sides of (1), and use the H-conver-
gence of the series, the fact that M is the multiplication operator with sym-
bol ¢”, and Proposition 1.3. The result is

(M7= 3 bp0) ko
P

Hence, if g € H is orthogonal to the Mj-orbit of f then, for each nonnega-
tive integer #,

@ 0= =(g X b0H,) = 5 Ba0e(h)"
j= j=
Now suppose that the points {\;} may be chosen so that, for every non-

constant multiplier ¢ of H,

EIPLJI<OO and
Eujgo()\j)”=0 forall n=0

Then, if we set p; = 51 g(\;) and assume that infinitely many of the terms b;
are nonzero, we see that g must vanish on a subsequence of {A;}. Since any

3) } = n; =0 for all sufficiently large /.
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subsequence of {\;} clusters at a point of Q, this forces g to vanish identi-
cally. Thus only the zero function can be orthogonal to the M ;-orbit of f, so
that f is cyclic for M.

Hence, if we show how to choose points {A;} so that (3) holds for every
nonconstant multiplier of H, then the proof of our main theorem will be
complete. To see that some work is needed, note that an obvious necessary
condition for success is that for each nonconstant multiplier ¢, the terms of
the sequence {¢()\;)} must eventually be distinct. So, for example, if H is
the Hardy or Bergman space of the unit disc, and

1

N\yj= GTD (/j=12,...),

Npj_1=—

then (3) fails for ¢(z) =z2

4. Spectral Synthesis: Proof of Main Theorem

We say spectral synthesis holds for a bounded sequence {z;};° of complex
numbers if, whenever {u;}1° is an absolutely summable sequence of complex
numbers (X |p;| <o) for which

(*) > n;izf'=0 for all integers n=0,
j=1
then p; =0 for all ;.

An obvious necessary condition for spectral synthesis is that all of the
z;’s must be distinct. A sufficient condition is that they should, in addition
to being distinct, lie on a Jordan curve [29, Thm. 3].

This concept was first introduced into operator theory in 1952 by John
Wermer, who showed that among the normal operators on Hilbert space
which have a spanning set of eigenvectors, the ones for which every closed
invariant subspace is reducing are exactly those whose sequence of distinct
eigenvalues has spectral synthesis [29, Thm. 1].

Subsequently, Brown, Shields, and Zeller gave the following characteri-
zation of the spectral synthesis sequences belonging to a Jordan domain [5,
Thm. 3, p. 167]:

For a sequence {z;}1° in a Jordan domain Q, the following are equivalent:

(@) {z;}T does not have spectral synthesis.
(b) sup,cqlf(z)|=sup;|f(z;)| for every bounded holomorphic function
Son Q.

In case Q is the unit disc, Brown, Shields, and Zeller also showed that the
following equivalent condition can then be added to the list:

(c) Almost every boundary point of the unit circle may be approached
nontangentially by points of {z;}7.
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In the last section we encountered the following less restrictive version of
spectral synthesis.

4.1. DEFINITION. We call a bounded sequence {z;};° of complex numbers
an eventual spectral synthesis sequence (an ESS sequence) if every abso-
lutely summable sequence {u;}° of complex numbers for which (x) holds
must eventually vanish identically (i.e., if uy =ppn4;=--- =0 for some N).

According to the work of Section 3, the proof of the Main Theorem will be
complete once we prove the following.

4.2. ESS THEOREM. Each plane domain Q contains a sequence {\;} of
points convergent to a point of the domain, such that the image sequence
{o(Nj)} is an ESS sequence for every nonconstant holomorphic function ¢
on .

We devote the rest of this section to proving this theorem. We assume with-
out further comment that {u;} is an absolutely summable sequence of com-
plex numbers. One of the key steps in our analysis is a refinement of the fol-
lowing elementary result.

4.3. LEMMA. Suppose {z;} is a sequence of complex numbers, arranged
in order of decreasing moduli, and suppose that |z,|>|z,|. If {;} satisfies
(*), then p,=0.

Proof. By condition (*) and the fact that {|z;|} is a decreasing sequence, we
have, for every nonnegative integer n,

=) £l

Since |z;|>|z,|, the right side of the last inequality tends to zero as » in-
creases, and this yields the desired result. 1

Theorem 2 of [5] provides a more general result, in a somewhat different
setting. An immediate consequence of Lemma 4.3 is the next corollary.

4.4. COROLLARY. Any sequence of complex numbers with strictly de-
creasing moduli has spectral synthesis.

Wermer [29, Thm. 4] found a much stronger result than this: any sequence
of distinct complex numbers which contains no infinite subsequence with
strictly increasing moduli has spectral synthesis. His methods figure prom-
inently in our proof of the next result, the “~N =2 case of which is Lem-
ma 4.3.

4.5. LEMMA. Suppose {z;} is a complex sequence, arranged in order of
decreasing moduli. Suppose that 2,25, ..., Zn_1 all have equal moduli, and
that |zn_1|>|zn|. Then, whenever (n;) satisfies (*), we have
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N-1
2 Bizj = 2 piz)=0 for every integer n=0.
=1 Jj=N
Proof. As in the proof of Lemma 4.3, condition (*) and the monotonicity
of the sequence of moduli yield, for each »=0,
N-1

.2 wizf | <|zn]" E ’ﬂ/[

J =
so upon dividing both sides of the inequality above by |z;|”, letting n tend
to oo, and noting that |zy|/|z;| <1, we obtain:

N—-1 z,"
) lim 3 ,u,( ) —o0.
<1

n—owo j=]

Our hypotheses assert that for each 1< <N—1 there is a real number 6;
such that z;/z, =e*™%. Following Wermer [29, p. 272], we employ a result
of Dirichlet [28, pp. 295-296] to provide a strictly increasing infinite sequence
{t;} of integers such that, for each 1< j<N-—1,

) dist(2.0;, Z) <1/k for k=1,2,...,

where Z denotes the collection of integers, and distance is measured in the
usual way on the real line. Thus, for each fixed integer n =0,

2 m( ) S ez

j=1
N-1 .
=lim ¥ pe*™ %% [by ()]
k—oo j=1
=0 [by (DI.
Thus we obtain the first of the desired inequalities:
N-—1
i=1
The second inequality follows from this one and (*). O

We can now prove the “eventual” version of Corollary 4.4. This result pro-
vides a crucial step in our proof of the ESS theorem.

4.6. PROPOSITION. If {z;} is a sequence of complex numbers with mod-
uli eventually strictly decreasing to zero, then {z;} is an ESS sequence.

Proof. Without loss of generality, we may assume that z; > 0 for all j. Sup-
pose {u;} is a fixed sequence that satisfies condition (). Our goal is to show
that {u;} eventually vanishes identically. By hypothesis, there is some posi-
tive integer M such that the sequence {|z;|}7= 5, is strictly decreasing to zero.
Let m =min{|z,|, ..., |2p—1|} and choose N large enough so that |z;| < m for
J = N. By rearranging the first N—1 terms of the sequence {z;} and making
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the corresponding rearrangement of {u;} so as to preserve (), we may as-
sume that

|z1|=|za| = o = |zn-1| > |2n] > zn e > o
and that

> njzf'=0 for all integers n=0.
Jj=1

Now by applying Lemma 4.5 (perhaps repeatedly), we obtain

§)) > 1;jzj'=0 for every integer n=0.

j=N
Since the sequence {z;}7- » has strictly decreasing moduli, Corollary 4.4 as-
serts that u; =0 for j = N. ]

The last result shows us that, in order to prove Theorem 4.2, at least for func-
tions ¢ with ¢(0) =0 (we suppose for the moment that 0 € ), it is enough to
choose points {\;} in @ converging to zero in such a way that, for every such
¢, the sequence {|¢()\;)|} eventually decreases to zero. The choice of points
cannot be made casually. For example, it is not enough for the sequence
{\;} merely to have strictly decreasing moduli.

To see this, let @ =U and ¢(z) = %z2+ %23. After sketching the graph of
¢ over the real axis, the reader can see how to choose points A; on the real
interval (—1,1), alternately negative and positive, with strictly decreasing
absolute values, so that ¢(N\;;_1) =¢(\,;) for each j. Thus {¢();)} is not
an ESS sequence.

The goal of the next few paragraphs is to show that this sort of thing
does not happen if the sequence {\;} consists of consecutive points lying on
a smooth curve through the origin. We begin with a simple geometric fact
from calculus.

4.7. CURVE LEMMA. Suppose that v: (—1,1) — C is continuously differ-
entiable, with v(0) =0 and v’(0) #0. Then, for some 0 <e <1, the function
|v| is strictly increasing on the interval (0, €).

Proof. Since |y|?is differentiable on (—1, 1), we need only show that its de-
rivative 2y(¢)+y’(¢) (dot product in R?) is strictly positive on an interval
(0, €). Since y(0) =0, the definition of differentiability asserts that
V(O =1y O +3(N] (-1<1<),

where 6: (—1, 1) —» C tends to zero with ¢. Taking dot products on both sides
of the last equation, we have
Y(E)ey (2) =ty (0) ey (£) +6(2) v (2)]

=t[|7(0) P+ v (0) e (y'(£) —'(0)) +8(¢)+y'(1)].

Since v’ is continuous on (—1, 1) and 6(#) tends to zero with ¢, we may choose
0 <e <1 so that, for |f|<e, we have simultaneously

1)
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@  (O=7O|<~ and [5()] max |y()]< |y (0.
4 It|=<1/2 4

Thus, for 0 < ¢ <e, equation (1) implies
Y()ey' (1) 2 L[|y (O) P — |y (1) —v"(0) |7 (0) | — v’ (£)]|6(2)|]

2| OF -1 OF = {1y OF] by @)

4
= 5|’Y'(0)|2>0,
as desired. Thus |vy|? is strictly increasing on (0, €) and hence so is |y|. O

Our goal in this section is to prove Theorem 4.2. The following consequence
of Lemma 4.7 does this, at least for ¢’s that vanish somewhere on 2, and
therefore almost completes the proof of the Main Theorem.

4.8. COROLLARY. Suppose that v:(—1,1) > Q is continuously differenti-
able, with v'(0) #0. Let {t;} be a sequence in the open unit interval that de-
creases strictly to zero, and define \;=v(t;) (j=1,2,...). Then for every
holomorphic function ¢ on Q, with ¢(v(0)) = 0, the sequence of moduli
{le(N\;)|} eventually strictly decreases to zero.

Proof. Let a=+(0). Since ¢(a)=0 there is a nonnegative integer m for
which ¢ can be factored as

e(2)=(zZ—a)"Y(z) (z€Q),

where ¢ is holomorphic on © and vanishes at o, but y’(a) #0.

The conditions imposed on ¢ and v ensure that both y—« and - sat-
isfy the hypotheses of Lemma 4.7, so their moduli both increase strictly on
some interval (0, ¢). Thus the same is true of the modulus of ¢¢~, which im-
mediately yields the desired property of the image sequence {o()))]}. ]

The restriction that ¢ vanish at some point of  is easily disposed of.

4.9. LEMMA. If {z;} is an ESS sequence, then so is the sequence {z;+ o}
Jor every complex number «.

Proof. Suppose {u;} is an absolutely summable sequence for which

0) > ni(zj+a)"=0 for every integer n=0.

j=1
We must show that all but finitely many of the terms y; vanish. Upon ex-
panding the summand in (1) by the binomial theorem and interchanging the
order of summation, we obtain

n

0=13 (Z)a"”k( > ujz;’) (n=0,1,2,...).
k=0 Jj=1
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We have here a lower triangular system of equations, which can be succes-
sively solved for the inner sum. The result is

> wzl=0 (n=0,1,2,...).
ji=1

But we are assuming that {z;} is an ESS sequence, and hence all but finitely
many of the terms p; are zero, as desired. U

Putting the last two results together yields the next corollary.

4.10. COROLLARY. Suppose the curve v and the sequence {\;} are as in
the hypotheses of Corollary 4.8. Then, for any nonconstant holomorphic
Sfunction ¢ on 1, the image sequence {¢(\;)} is an ESS sequence.

Proof. By Corollaries 4.6 and 4.8, the sequence {¢(\;)—¢(v(0))]} has the
desired property; hence, by Lemma 4.9, so does {¢(};)}. O

The proof of Theorem 4.2, and therefore of the Main Theorem, is now com-
plete. For the benefit of the reader we summarize the findings of the last two
sections.

4.11. MAIN THEOREM REVISITED. Suppose that y:(—1,1) - Q is contin-
uously differentiable, with v'(0) # 0. For a sequence {(t;} in the open unit in-
terval that decreases strictly to zero, define \;=~(;) (j=1,2,...). Then,
Jor any absolutely summable sequence {b;} of complex numbers with in-
finitely many nonzero terms, the function f defined by the series

f=2 bk,
j=1

lies in H and is a cyclic vector for every operator M}, where ¢ is a noncon-
stant multiplier of H.

4.12. REMARKS. (a) Since the points {);] cluster in 2, the corresponding
reproducing kernels span a dense subspace of H. Thus the explicit form given
for the “universally cyclic” vectors f described above shows that the collec-
tion of such vectors is, in fact, dense in H. The requirement that infinitely
many of the coeflicients b; should not vanish prevents the /s described above
from forming a linear subspace, but we will see in the next section that t/ere
is a dense linear subspace of H that consists (except for zero) of common
cyclic vectors for the adjoints of the nonscalar multiplication operators.

(b) Nikolskii has observed that the curve lemma can be avoided (albeit
with some loss in generality) if one requires that the sequence {)\;} converge
geometrically to a point a € Q:

INjt1—al/INj—al=g<1 for all j.

For in this case, if ¢ is a holomorphic function on 2, then a simple power
series argument shows that

le(N 1) —e(@)|/|e(N\)—e(a)|<(g+1)/2<1
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for all sufficiently large j. Thus {¢(A;)} has eventually strictly decreasing
moduli and so is an ESS sequence by Proposition 4.6.

4.13. MAIN THEOREM IN C”». The Main Theorem generalizes verbatim to
arbitrary domains in C?, where N > 1. Here we indicate the changes needed
to make the proof work in this new setting.

Let Q denote such a domain, and (as in the previous work) let H denote a
Hilbert space of functions holomorphic on € such that, for each point \ € (2,
the linear functional of evaluation at \ is continuous on H.

The discussion in Section 1 of the reproducing kernels and multipliers in
such spaces goes through, practically unchanged, to this higher-dimensional
setting. The only argument requiring extra care is the proof of Proposition
1.2, the result showing each multiplier of A to be a bounded holomorphic
function on Q. The argument given shows that each multiplier is holomorphic
off the zero set of some nontrivial holomorphic function on Q. The differ-
ence here is that in higher dimensions zero sets are never discrete, so zeros
cannot be removed one at a time. But Riemann’s original theorem, applied
to the restriction of our multiplier to the intersection of each complex line
with Q, shows that the function under scrutiny is holomorphic on every such
set, and therefore holomorphic on all of Q (see [21, Chap. 4, Cor., p. 62]).
So Proposition 1.2 continues to hold in higher dimensions.

Let us call a subset S of Q a set of uniqueness for H({) if the only holo-
morphic function vanishing on S is the zero function. In dimension 1, the
sets of uniqueness are precisely the subsets of  having a limit point in Q,
but as we observed in the last paragraph, in higher dimensions the situation
is considerably more complicated.

The essence of our method for constructing common cyclic vectors for
adjoint multipliers can be summarized, in any dimension, as follows.

PROPOSITION. Suppose there exists a sequence {\;) in Q such that:
(1) {N;} is a set of uniqueness for H({}); and
(ii) for every nonconstant function ¢ holomorphic on 2, the image se-
quence {¢(\;)} is an ESS sequence.
Then, for each absolutely summable sequence {b;} of nonzero complex
numbers, the series %, bjk; converges to a function fe H that is a cyclic
vector for every operator M}, where ¢ is a nonconstant multiplier of H.

Thus the extension of the Main Theorem from one to many complex dimen-
sions is performed by the following result, whose proof was provided for us
by Wade Ramey.

THEOREM. Suppose Q is a domain in C» and o € Q. Then there exists a
sequence {\;} in Q such that:
@ N —o;
(b) {\,} is a set of uniqueness for H(Q); and
(c) for every nonconstant ¢ holomorphic on Q, the image sequence
{o(N;)} is an ESS sequence.
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Proof (W. Ramey). For simplicity, let us initially suppose that « is the point
with all coordinates “1”, and Q contains the closure of the unit polydisc U™,
Thus the “distinguished boundary”

TV = {(w;, wy, ..., Wp): le]=1 for1<j=<Nj]

of UV also lies in Q. We note that T" is a “maximum modulus set” for func-
tions holomorphic in a neighborhood of the closure of U”: The modulus of
each such function attains its supremum over U” at some point of T [20,
Thm. 2.1.3, p. 18]. In particular, T" is a set of uniqueness for functions that
are holomorphic in a neighborhood of the closure of U.

Fix real numbers o}, 05, ..., oy, linearly independent over the rationals,
and define a mapping v: R— TV by

v(t)= (e, e ... e'N") (teR).

Because of our choice of the parameters g, the curve y(R) is dense in TV
and is therefore a set of uniqueness for functions holomorphic on . More
is true:

Every subset of v(R) with a limit point is a set of uniqueness for H({1).

For suppose {#;} is a convergent sequence of distinct real numbers. If g is
holomorphic on € and vanishes at each point y(¢;), then the composition
G = g~ is real-analytic on R and vanishes at each point ;. Thus G=0onR,
so g =0 on y(R) and therefore on T". Thus g =0 on Q, since, as we pointed
out above, TV is a set of uniqueness for functions holomorphic on €.

Now let \; =v(1/j) for j=1,2,.... Thus {\;} is a sequence in y(R) that
converges to a. By the last paragraph, {)\;} is a set of uniqueness for H(2);
we claim it has the desired spectral synthesis property.

To see this, suppose ¢ is holomorphic and nonconstant on 2. Then the
composition ¢e+ is real-analytic on R, so there exists e >0 and an integer
M =0 such that

eoy(t)—poy(0)=tMy(2) (Jt|=e),

where ¢ is a complex valued real-analytic function on (—e, €), with ¢¥’(0)#
0. By the curve lemma, for some 0 <¢’< e, the modulus of ¢ is strictly in-
creasing on the interval [0, €’], so the same is true of ¢ <+. Thus the sequence
{¥(N;)— ()} has moduli that are eventually strictly decreasing, so {¢()\;)}
is an ESS sequence by Propositions 4.6 and 4.9. This completes the proof,
under the special assumptions that { contains the unit polydisc and « lies on
the distinguished boundary of that polydisc.

For the general case, one need only repeat the argument with the unit
polydisc replaced by an appropriate translated dilate. We leave the detailsto
the reader. ]

5. Final Remarks

We collect here a few complements to the work of the previous sections, and
comment on some related work in the literature.
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Cyclic vector manifolds. In [11], Godefroy and Shapiro show that non-
scalar operators that commute with variants of the backward shift have dense
invariant manifolds of cyclic vectors. Their idea works in the present con-
text, and yields an improvement of the Main Theorem.

5.1. THEOREM. There is a dense linear manifold of H, invariant under
the adjoint of every multiplication operator, each nonzero element of which
is cyclic for the adjoint of every nonscalar multiplication operator.

Proof. Let f be one of the vectors promised by the Main Theorem. We

claim that
L={M}f: e IM(H))

has the desired properties. Clearly L is a linear submanifold of H. To see
that L has the desired invariance, choose multipliers ¢ and ¢ of H. Then
ey is also a multiplier, and

MM f)=(M, M) =M}, feL,
so L is M;—invariant. Moreover, L is dense in H because it contains orbits
of the form {(M)"f}, and such orbits have dense linear span in H provided
the multiplier ¢ is nonconstant.
It remains to show that if Y € M (H) is not constant then each nonzero

element of L is cyclic for M. Fix 07 ¢ € M (H), so M, f is a typical non-
zero element of L. Since M and M;,f commute, we have

span{(M})"M3 f)5=o =M [span{(M})"f)7=o).

Since f is cyclic for M, the set in brackets on the right is dense in H. Since
M, is one-to-one (¢ # 0), its adjoint has dense range, so the left side of the
equation above emerges as the image of a dense set under an operator with
dense range. It is therefore dense, and the proof is complete. ]

Operators on the space of entire functions that commute with translation.
Our method applies as well to the space H(C") of entire functions on C%,
endowed with the topology of uniform convergence on compact sets, where
it produces common cyclic vectors (even manifolds of them, in the sense
of Theorem 5.1) for the class of nonscalar continuous linear operators that
commute with translations.

The idea behind the proof is that each of our operators can be written in
the form L =®(D,, D,, ..., Dy), where ® is an entire function of exponen-
tial type and D,, D,, ..., Dy are the usual partial differentiation operators
(see, e.g., [11, §5]. For a = («y, ay, ..., an) € CV, the function e, defined by

e,(z) =exp(a 21+ a2+ +ayzy) (aeCh)

is an eigenvector for D; with eigenvalue «;, and is therefore also an eigen-
vector for the above operator L = ®(D), this time with eigenvalue ®(«).
The proof of our Main Theorem can now be repeated, with the eigenvectors
{e,] replacing the Hilbert space reproducing kernels, and with the orthog-
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onality argument replaced by an application of the Hahn-Banach theorem.
This latter step requires the fact that every continuous linear functional on
H(C") can be represented by integration against a Borel measure on C" of
compact support. We leave the details to the reader.

Very strong cyclicity theorems were proved for the operators of differen-
tiation and translation on H(C) by Birkhoff [3] and MacLane [15]. These
results were recently generalized by Godefroy and Shapiro [11] to operators
of the sort discussed above. The result indicated above generalizes work of
Chan [7], who found common cyclic vectors for the class of positive order
partial differential operators with constant coefficients.

Comparison with work of Clancey and Roger&*. In 1978, Clancey and
Rogers studied cyclic vectors for hyponormal and co-hyponormal operators
[8]. An important result in their paper was the following.

5.2. THEOREM [8, Thm. 3]). Ifan operator T on Hilbert space has the fol-
lowing property:

(CR) E(T):=spanfker(T—\I): Ne C,T—\I surjective} Iisdense,
then T has a dense set of cyclic vectors.

Clancey and Rogers also pointed out a connection between their result and
spectral synthesis [8, §4]. Our Main Theorem provides cyclic vectors for the
adjoints of multiplication operators in a very general setting (in fact, it pro-
vides common cyclic vectors). Although the Clancey-Rogers theorem shows
that adjoints of some multiplication operators have cyclic vectors, we will
now show that it does not apply to all of them.

In order to state our result, we need to introduce the little Bloch space:
This is the collection B, of functions f holomorphic on the unit disc U for
which :

o 1 1=
|f (Z)|_0(1“|Z|) as |z|]—1".

Every bounded holomorphic function on U satisfies the corresponding “big
oh” condition (the collection of holomorphic functions satisfying this con-
dition is the big Bloch space, or just the Bloch space). Although it is clear
that every finite Blaschke product belongs to B, the existence of infinite
Blaschke products in B, was only recently observed by Sarason [22, p. 337].
Since then, Bishop [4] has given a more constructive proof of the existence
of such Blaschke products.

We can now present the promised result, which shows that the existence
of a dense set of cyclic vectors for our adjoint multiplication operators does
not, in general, follow from Theorem 5.2.

5.3. THEOREM. If ¢ is a Blaschke product in the little Bloch space, and
M, is viewed as an operator on the Bergman space L2(U), then EM})=
{0}.
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Proof. Suppose initially that ¢ is just a bounded holomorphic function on
U. Then, for each complex number A, since M — N =M_, we have

ker(M:—NI)=ker(M}_\)=[(¢—N)LZ(U)]*.
Since an operator is surjective if and only if its adjoint is bounded below,
(1) E(M})=span{[(¢—N)L%(U)]*: M,_, bounded below on L%(U)j].

Regarding boundedness below of multiplication operators on the Bergman
space, Sheldon Axler has pointed out to us the following useful fact:

If p € By, then M, is not bounded below on L%(U).
Axler’s proof is as follows. In [2], he proves that the self-commutator
S,=M:M,~M,M;
is compact on L2 =L2(U) if (and only if) ¢ € B,. Now the L2-reproducing
kernel for a point Ae U is:

ky(z)= (zeU).

1
m(1—N\z)?2
As X tends to dU, the normalizations f defined by
knz) _ 1 (1=]\P)

k] Vo (1—Xz)?
clearly converge to zero uniformly on compact subsets of U, and therefore,
by their norm boundedness and the continuity of point evaluations, con-
verge to zero weakly in L2.

Now suppose ¢ is an inner function in B, but not a finite Blaschke prod-
uct. By the compactness of the self-commutator S, and the above-mentioned
weak convergence, |S, f\]| — 0 as |[\|=17; hence
2) 0= liim <S¢f>\,fx>=|)\llim (el =leMPIA,

A-—=1— -1-
where the last equality arises from computation of the inner product, using
Proposition 1.3. Since ¢ is not a finite Blaschke product, there is a sequence

{\;} in U, tending to the boundary, such that ¢(\;) — 0. Upon substituting
A; for X in (2) above we obtain

N(z)= (zeU)

lim | M, /3| =0.

j—oo
Since each f) has norm 1, this shows that M, is not bounded below, as de-
sired. O

We can now complete the proof of Theorem 5.3. As before, fix ¢ an in-
ner function in &, not a finite Blaschke product. Our goal is to show that
E(M})={0}. For each A e U, the function

w_

N I—an
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is again in B3, and not a finite Blaschke product; so, by the argument above,
M, is not bounded below on L and hence neither is

M —)\=MI—X¢M99)\'

©
Thus the complex numbers that figure in the right side of the expression (1)
for E(M ) must lie outside the open unit disc. If they lie outside the c/osed
unit disc, then M,,_, is invertible and hence (¢ —\)LZ(U)=LZ(U). So, in
fact, only points A on the unit circle can contribute to the right side of (1).
But even these contribute nothing. If |\| =1, then X belongs to the boundary
of the spectrum of M, and hence to the approximate point spectrum of M,,.
Thus M,_, cannot be bounded below for any A\ on the unit circle.

Summarizing the work of the last few paragraphs, we have

E(M})=span{[(¢—N)L%(U)]*: M,_, bounded below on L%(U)}
Cspan{[(¢—N)L(U)]*: |\ =1}
={0]. O

We remark that MacDonald and Sundberg [16, Cor. 23, p. 610] have shown
that the multiplication operator induced on L2(U) by an inner function is
bounded below on L2(U) if and only if the function is a finite product of
interpolating Blaschke products. The result of Axler mentioned above shows
that no nontrivial inner function in the little Bloch space is a finite product
of interpolating Blaschke products.

Additional information relating to Theorem 5.2 can be found in recent
work of Nikolskii and Vasyunin ([17], [18]).
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